C++ Move 2D Point Along Angle - c++

So I am writing a game in C++, currently I am working on a 'Compass', but I am having some problems with the vector math..
Here is a little image I created to possibly help explain my question better
Ok, so as you can see the 2D position of A begins at (4, 4), but then I want to move A along the 45 degree angle until the 2D position reaches (16, 16), so basically there is a 12 distance between where A starts and where it ends. And my qustion is how would I calculate this?

the simplest way in 2D is to take angle 'ang', and distance 'd', and your starting point 'x' and 'y':
x1 = x + cos(ang) * distance;
y1 = y + sin(ang) * distance;
In 2D the rotation for any object can be just stored as a single value, ang.
using cos for x and sin for y is the "standard" way that almost everyone does it. cos(ang) and sin(ang) trace a circle out as ang increases. ang = 0 points right along the x-axis here, and as angle increases it spins counter-clockwise (i.e at 90 degrees it's pointing straight up). If you swap the cos and sin terms for x and y, you get ang = 0 pointing up along the y axis and clockwise rotation with increasing ang (since it's a mirror image), which could in fact be more convenient for making game, since y-axis is often the "forward" direction and you might like that increasing ang spins to the right.
x1 = x + sin(ang) * distance;
y1 = y + cos(ang) * distance;
Later you can get into vectors and matricies that do the same thing but in a more flexible manner, but cos/sin are fine to get started with in a 2D game. In a 3D game, using cos and sin for rotations starts to break down in certain circumstances, and you start really benefiting from learning the matrix-based approaches.

The distance between (4,4) and (16,16) isn't actually 12. Using pythagorean theorem, the distance is actually sqrt(12^2 + 12^2) which is 16.97. To get points along the line you want to use sine and cosine. E.g. If you want to calculate the point halfway along the line the x coordinate would be cos(45)(16.97/2) and the y would be sin(45)(16.97/2). This will work with other angles besides 45 degrees.

Related

cocos2d-x determine where a object will be based off its vector

In my game i want my towers to shoot where the enemy is going to be by the time the bullet reaches it.
i don't want my bullet to curve, i want it to shoot directly to the estimated location based on the speed the unit is moving and the direction it is moving
My thought is that i determine the direction of my enemy by subtracting its current position from its last position every time it moves. so lets say that its direction is (1,1)
after that i am not 100% sure what logic i would need to do.
i am thinking i need to know the distance from the tower to the enemy to determine the time i need to estimate how far the enemy is going to be when the bullet should reach it.
i really don't know where to start with this one, so if anyone can give me some pointers on how i should handle this solution.
In case of uniformly accelerated linear movement
x(t) = x0 + vx * t
y(t) = y0 + vy * t
where vx, vy are projections of velocity v on coordinate axis. Velocity is vector which scalar value is speed, and direction in the direction of movement. In your case, if your direction vector is normalized, multiply it by speed to get velocity.
You know starting position: (x0, y0). You only need projections vx and vy. If w is angle between x-axis and velocity, then
vx = v * cos(w)
vy = v * sin(w)
As for angle: use atan2f function, or cocos2d function ccpToAngle (which uses atan2f itself) with normalized direction vector.
Suppose , the position vector of your enemy is P, his velocity is E and the speed of your bullet is b. [ I will use upper case letter for vector, and its corresponding lower case for its modulus]
Suppose, after time t the enemy will be hit.
Then, t*B = P + t*E [where B is the velocity of the bullet. Note, you don't know the direction of B, but you the mod value of it, b]
Now try to calculate t ! It is not easy I think, there is another unknown, the directional vector of B. You have to replace it with known variables and t and then solve if for t. Use other vector tools, like dot product to get the angle between P and B, to get to other equations and relation between other vectors.
Update:
I just did some short calculation, I might be wrong. Just let me know if this works.
t is the real positive solution of the following equation:
t^2*(e^2-b^2) + t*(2*p*e*cos(the angle between P and E)) + p^2 = 0

Points on a circle, with limits. How To calculate without angle, but radius and centre point?

This is quite complicated to explain, so I will do my best, sorry if there is anything I missed out, let me know and I will rectify it.
My question is, I have been tasked to draw this shape,
(source: learnersdictionary.com)
This is to be done using C++ to write code that will calculate the points on this shape.
Important details.
User Input - Centre Point (X, Y), number of points to be shown, Font Size (influences radius)
Output - List of co-ordinates on the shape.
The overall aim once I have the points is to put them into a graph on Excel and it will hopefully draw it for me, at the user inputted size!
I know that the maximum Radius is 165mm and the minimum is 35mm. I have decided that my base Font Size shall be 20. I then did some thinking and came up with the equation.
Radius = (Chosen Font Size/20)*130. This is just an estimation, I realise it probably not right, but I thought it could work at least as a template.
I then decided that I should create two different circles, with two different centre points, then link them together to create the shape. I thought that the INSIDE line will have to have a larger Radius and a centre point further along the X-Axis (Y staying constant), as then it could cut into the outside line.
So I defined 2nd Centre point as (X+4, Y). (Again, just estimation, thought it doesn't really matter how far apart they are).
I then decided Radius 2 = (Chosen Font Size/20)*165 (max radius)
So, I have my 2 Radii, and two centre points.
Now to calculate the points on the circles, I am really struggling. I decided the best way to do it would be to create an increment (here is template)
for(int i=0; i<=n; i++) //where 'n' is users chosen number of points
{
//Equation for X point
//Equation for Y Point
cout<<"("<<X<<","<<Y<<")"<<endl;
}
Now, for the life of me, I cannot figure out an equation to calculate the points. I have found equations that involve angles, but as I do not have any, I'm struggling.
I am, in essence, trying to calculate Point 'P' here, except all the way round the circle.
(source: tutorvista.com)
Another point I am thinking may be a problem is imposing limits on the values calculated to only display the values that are on the shape.? Not sure how to chose limits exactly other than to make the outside line a full Half Circle so I have a maximum radius?
So. Does anyone have any hints/tips/links they can share with me on how to proceed exactly?
Thanks again, any problems with the question, sorry will do my best to rectify if you let me know.
Cheers
UPDATE;
R1 = (Font/20)*130;
R2 = (Font/20)*165;
for(X1=0; X1<=n; X1++)
{
Y1 = ((2*Y)+(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
Y2 = ((2*Y)-(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
cout<<"("<<X1<<","<<Y1<<")";
cout<<"("<<X1<<","<<Y2<<")";
}
Opinion?
As per Code-Guru's comments on the question, the inner circle looks more like a half circle than the outer. Use the equation in Code-Guru's answer to calculate the points for the inner circle. Then, have a look at this question for how to calculate the radius of a circle which intersects your circle, given the distance (which you can set arbitrarily) and the points of intersection (which you know, because it's a half circle). From this you can draw the outer arc for any given distance, and all you need to do is vary the distance until you produce a shape that you're happy with.
This question may help you to apply Code-Guru's equation.
The equation of a circle is
(x - h)^2 + (y - k)^2 = r^2
With a little bit of algebra, you can iterate x over the range from h to h+r incrementing by some appropriate delta and calculate the two corresponding values of y. This will draw a complete circle.
The next step is to find the x-coordinate for the intersection of the two circles (assuming that the moon shape is defined by two appropriate circles). Again, some algebra and a pencil and paper will help.
More details:
To draw a circle without using polar coordinates and trig, you can do something like this:
for x in h-r to h+r increment by delta
calculate both y coordinates
To calculate the y-coordinates, you need to solve the equation of a circle for y. The easiest way to do this is to transform it into a quadratic equation of the form A*y^2+B*y+C=0 and use the quadratic equation:
(x - h)^2 + (y - k)^2 = r^2
(x - h)^2 + (y - k)^2 - r^2 = 0
(y^2 - 2*k*y + k^2) + (x - h)^2 - r^2 = 0
y^2 - 2*k*y + (k^2 + (x - h)^2 - r^2) = 0
So we have
A = 1
B = -2*k
C = k^2 + (x - h)^2 - r^2
Now plug these into the quadratic equation and chug out the two y-values for each x value in the for loop. (Most likely, you will want to do the calculations in a separate function -- or functions.)
As you can see this is pretty messy. Doing this with trigonometry and angles will be much cleaner.
More thoughts:
Even though there are no angles in the user input described in the question, there is no intrinsic reason why you cannot use them during calculations (unless you have a specific requirement otherwise, say because your teacher told you not to). With that said, using polar coordinates makes this much easier. For a complete circle you can do something like this:
for theta = 0 to 2*PI increment by delta
x = r * cos(theta)
y = r * sin(theta)
To draw an arc, rather than a full circle, you simply change the limits for theta in the for loop. For example, the left-half of the circle goes from PI/2 to 3*PI/2.

Rotate a 3D- Point around another one

I have a function in my program which rotates a point (x_p, y_p, z_p) around another point (x_m, y_m, z_m) by the angles w_nx and w_ny.
The new coordinates are stored in global variables x_n, y_n, and z_n. Rotation around the y-axis (so changing value of w_nx - so that the y - values are not harmed) is working correctly, but as soon as I do a rotation around the x- or z- axis (changing the value of w_ny) the coordinates aren't accurate any more. I commented on the line I think my fault is in, but I can't figure out what's wrong with that code.
void rotate(float x_m, float y_m, float z_m, float x_p, float y_p, float z_p, float w_nx ,float w_ny)
{
float z_b = z_p - z_m;
float x_b = x_p - x_m;
float y_b = y_p - y_m;
float length_ = sqrt((z_b*z_b)+(x_b*x_b)+(y_b*y_b));
float w_bx = asin(z_b/sqrt((x_b*x_b)+(z_b*z_b))) + w_nx;
float w_by = asin(x_b/sqrt((x_b*x_b)+(y_b*y_b))) + w_ny; //<- there must be that fault
x_n = cos(w_bx)*sin(w_by)*length_+x_m;
z_n = sin(w_bx)*sin(w_by)*length_+z_m;
y_n = cos(w_by)*length_+y_m;
}
What the code almost does:
compute difference vector
convert vector into spherical coordinates
add w_nx and wn_y to the inclination and azimuth angle (see link for terminology)
convert modified spherical coordinates back into Cartesian coordinates
There are two problems:
the conversion is not correct, the computation you do is for two inclination vectors (one along the x axis, the other along the y axis)
even if computation were correct, transformation in spherical coordinates is not the same as rotating around two axis
Therefore in this case using matrix and vector math will help:
b = p - m
b = RotationMatrixAroundX(wn_x) * b
b = RotationMatrixAroundY(wn_y) * b
n = m + b
basic rotation matrices.
Try to use vector math. Decide in which order you rotate, first along x, then along y perhaps.
If you rotate along z-axis, [z' = z]
x' = x*cos a - y*sin a;
y' = x*sin a + y*cos a;
The same repeated for y-axis: [y'' = y']
x'' = x'*cos b - z' * sin b;
z'' = x'*sin b + z' * cos b;
Again rotating along x-axis: [x''' = x'']
y''' = y'' * cos c - z'' * sin c
z''' = y'' * sin c + z'' * cos c
And finally the question of rotating around some specific "point":
First, subtract the point from the coordinates, then apply the rotations and finally add the point back to the result.
The problem, as far as I see, is a close relative to "gimbal lock". The angle w_ny can't be measured relative to the fixed xyz -coordinate system, but to the coordinate system that is rotated by applying the angle w_nx.
As kakTuZ observed, your code converts point to spherical coordinates. There's nothing inherently wrong with that -- with longitude and latitude, one can reach all the places on Earth. And if one doesn't care about tilting the Earth's equatorial plane relative to its trajectory around the Sun, it's ok with me.
The result of not rotating the next reference axis along the first w_ny is that two points that are 1 km a part of each other at the equator, move closer to each other at the poles and at the latitude of 90 degrees, they touch. Even though the apparent purpose is to keep them 1 km apart where ever they are rotated.
if you want to transform coordinate systems rather than only points you need 3 angles. But you are right - for transforming points 2 angles are enough. For details ask Wikipedia ...
But when you work with opengl you really should use opengl functions like glRotatef. These functions will be calculated on the GPU - not on the CPU as your function. The doc is here.
Like many others have said, you should use glRotatef to rotate it for rendering. For collision handling, you can obtain its world-space position by multiplying its position vector by the OpenGL ModelView matrix on top of the stack at the point of its rendering. Obtain that matrix with glGetFloatv, and then multiply it with either your own vector-matrix multiplication function, or use one of the many ones you can obtain easily online.
But, that would be a pain! Instead, look into using the GL feedback buffer. This buffer will simply store the points where the primitive would have been drawn instead of actually drawing the primitive, and then you can access them from there.
This is a good starting point.

Calculating a line from a starting point and angle in 3d

I have a point in 3D space and two angles, I want to calculate the resulting line from this information. I have found how to do this with 2D lines, but not 3D. How can this be calculated?
If it helps: I'm using C++ & OpenGL and have the location of the user's mouse click and the angle of the camera, I want to trace this line for intersections.
In trig terms two angles and a point are required to define a line in 3d space. Converting that to (x,y,z) is just polar coordinates to cartesian coordinates the equations are:
x = r sin(q) cos(f)
y = r sin(q) sin(f)
z = r cos(q)
Where r is the distance from the point P to the origin; the angle q (zenith) between the line OP and the positive polar axis (can be thought of as the z-axis); and the angle f (azimuth) between the initial ray and the projection of OP onto the equatorial plane(usually measured from the x-axis).
Edit:
Okay that was the first part of what you ask. The rest of it, the real question after the updates to the question, is much more complicated than just creating a line from 2 angles and a point in 3d space. This involves using a camera-to-world transformation matrix and was covered in other SO questions. For convenience here's one: How does one convert world coordinates to camera coordinates? The answers cover converting from world-to-camera and camera-to-world.
The line can be fathomed as a point in "time". The equation must be vectorized, or have a direction to make sense, so time is a natural way to think of it. So an equation of a line in 3 dimensions could really be three two dimensional equations of x,y,z related to time, such as:
x = ax*t + cx
y = ay*t + cy
z = az*t + cz
To find that set of equations, assuming the camera is at origin, (0,0,0), and your point is (x1,y1,z1) then
ax = x1 - 0
ay = y1 - 0
az = z1 - 0
cx = cy = cz = 0
so
x = x1*t
y = y1*t
z = z1*t
Note: this also assumes that the "speed" of the line or vector is such that it is at your point (x1,y1,z1) after 1 second.
So to draw that line just fill in the points as fine as you like for as long as required, such as every 1/1000 of a second for 10 seconds or something, might draw a "line", really a series of points that when seen from a distance appear as a line, over 10 seconds worth of distance, determined by the "speed" you choose.

Direct3D & iPhone Accelerometer Matrix

I am using a WinSock connection to get the accelerometer info off and iPhone and into a Direct3D application. I have modified Apples GLGravity's sample code to get my helicopter moving in relation to gravity, however I need to "cap" the movement so the helicopter can't fly upside down! I have tried to limit the output of the accelerometer like so
if (y < -0.38f) {
y = -0.38f;
}
Except this doesn't seem to work!? The only thing I can think of is I need to modify the custom matrix, but I can't seem to get my head around what I need to be changing. The matrix is code is below.
_x = acceleration.x;
_y = acceleration.y;
_z = acceleration.z;
float length;
D3DXMATRIX matrix, t;
memset(matrix, '\0', sizeof(matrix));
D3DXMatrixIdentity(&matrix);
// Make sure acceleration value is big enough.
length = sqrtf(_x * _x + _y * _y + _z * _z);
if (length >= 0.1f && kInFlight == TRUE) { // We have a acceleration value good enough to work with.
matrix._44 = 1.0f; //
// First matrix column is a gravity vector.
matrix._11 = _x / length;
matrix._12 = _y / length;
matrix._13 = _z / length;
// Second matrix is arbitrary vector in the plane perpendicular to the gravity vector {Gx, Gy, Gz}.
// defined by the equation Gx * x + Gy * y + Gz * z = 0 in which we set x = 0 and y = 1.
matrix._21 = 0.0f;
matrix._22 = 1.0f;
matrix._23 = -_y / _z;
length = sqrtf(matrix._21 * matrix._21 + matrix._22 * matrix._22 + matrix._23 * matrix._23);
matrix._21 /= length;
matrix._22 /= length;
matrix._23 /= length;
// Set third matrix column as a cross product of the first two.
matrix._31 = matrix._12 * matrix._23 - matrix._13 * matrix._22;
matrix._32 = matrix._21 * matrix._13 - matrix._23 * matrix._11;
matrix._33 = matrix._11 * matrix._22 - matrix._12 * matrix._21;
}
If anyone can help it would be much appreciated!
I think double integration is probably over-complicating things. If I understand the problem correctly, the iPhone is giving you a vector of values from the accelerometers. Assuming the user isn't waving it around, that vector will be of roughly constant length, and pointing directly downwards with gravity.
There is one major problem with this, and that is that you can't tell when the user rotates the phone around the horizontal. Imagine you lie your phone on the table, with the bottom facing you as you're sitting in front of it; the gravity vector would be (0, -1, 0). Now rotate your phone around 90 degrees so the bottom is facing off to your left, but is still flat on the table. The gravity vector is still going to be (0, -1, 0). But you'd really want your helicopter to have turned with the phone. It's a basic limitation of the fact that the iPhone only has a 2D accelerometer, and it's extrapolating a 3D gravity vector from that.
So let's assume that you've told the user they're not allowed to rotate their phone like that, and they have to keep it with the bottom point to you. That's fine, you can still get a lot of control from that.
Next, you need to cap the input such that the helicopter never goes more than 90 degrees over on it's side. Imagine the vector that you're given as being a stick attached to your phone, and dangling with gravity. The vector you have is describing the direction of gravity, relative to the phone's flat surface. If it were (0, -1, 0) the stick is pointing directly downwards (-y). if it were (1, 0, 0), the stick is pointing to the right of the phone (+x), and implies that the phone has been twisted 90 degrees clockwise (looking away from you at the phone).
Assume in this metaphor that the stick has full rotational freedom. It can be pointing in any direction from the phone. So moving the stick around describes the surface of a sphere. But crucially, you only want the stick to be able to move around the lower half of that sphere. If the user twists the phone so that the stick would be in the upper half of the sphere, you want it to cap such that it's pointing somewhere around the equator of the sphere.
You can achieve this quite cleanly by using polar co-ordinates. 3D vectors and polar co-ordinates are interchangeable - you can convert to and from without losing any information.
Convert the vector you have (normalised of course) into a set of 3D polar co-ordinates (you should be able to find this logic on the web quite easily). This will give you an angle around the horizontal plane, and an angle for vertical plane (and a distance from the origin - for a normalised vector, this should be 1.0). If the vertical angle is positive, the vector is in the upper half of the sphere, negative it's in the lower half. Then, cap the vertical angle so that it is always zero or less (and so in the lower half of the sphere). Then you can take the horizontal and capped vertical angle, and convert it back into a vector.
This new vector, if plugged into the matrix code you already have, will give you the correct orientation, limited to the range of motion you need. It will also be stable if the user turns their phone slightly beyond the 90 degree mark - this logic will keep your directional vector as close to the user's current orientation as possible, without going beyond the limit you set.
Try normalizing the acceleration vector first. (edit: after you check the length) (edit edit: I guess I need to learn how to read... how do I delete my answer?)
So if I understand this correctly, the iPhone is feeding you accelerometer data, saying how hard you're moving the iPhone in 3 axes.
I'm not familiar with that apple sample, so I don't know what its doing. However, it sounds like you're mapping acceleration directly to orientation, but I think what you want to do is doubly integrate the acceleration in order to obtain a position and look at changes in position in order to orient the helicopter. Basically, this is more of a physics problem than a Direct3D problem.
It looks like you are using the acceleration vector from the phone to define one axis of a orthogonal frame of reference. And I suppose +Y is points towards the ground so you are concerned about the case when the vector points towards the sky.
Consider the case when the iphone reports {0, -6.0, 0}. You will change this vector to {0, -.38, 0}. But they both normalize to {0, -1.0, 0}. So, the effect of clamping y at -.38 is influenced by magnitude of the other two components of the vector.
What you really want is to limit the angle of the vector to the XZ plane when Y is negative.
Say you want to limit it to be no more than 30 degrees to the XZ plane when Y is negative. First normalize the vector then:
const float limitAngle = 30.f * PI/180.f; // angle in radians
const float sinLimitAngle = sinf(limitAngle);
const float XZLimitLength = sqrtf(1-sinLimitAngle*sinLimitAngle);
if (_y < -sinLimitAngle)
{
_y = -sinLimitAngle;
float XZlengthScale = XZLimitLength / sqrtf(_x*_x + _z*_z);
_x *= XZlengthScale;
_z *= XZlengthScale;
}