I am writing a program which is using bicubic interpolation, and I am using EasyBMP, but i have a problem. While input image are peppers.
My output looks like this.
#define BOUNDS(val, min, max) if (val < min) { val = min; } else if (val > max) { val = max; }
void resize(float value)
{
BMP* temp = new BMP();
int in_w = image->TellWidth();
int in_h = image->TellHeight();
temp->SetSize(in_w*value, in_h*value);
RGBApixel input;
for (int y = 0; y < temp->TellHeight(); ++y)
{
float v = float(y) / float(temp->TellHeight() - 1);
for (int x = 0; x < temp->TellWidth(); ++x)
{
float u = float(x) / float(temp->TellWidth() - 1);
input = this->bicubicInterpolation(u,v);
temp->SetPixel(x,y,input);
}
}
delete image;
image=temp;
}
RGBApixel bicubicInterpolation(float u, float v)
{
RGBApixel p[4][4];
int q,w;
float x = (u * image->TellWidth()) - 0.5;
int xint = int(x);
float dx = x - floor(x);
float y = (v * image->TellHeight()) - 0.5;
int yint = int(y);
float dy = y - floor(y);
for(int i=0; i<4; i++)
{
for(int j=0; j<4; j++)
{
q=xint - 1 + j;
BOUNDS(q,0,image->TellWidth()-1)
w=yint - 1 + i;
BOUNDS(w,0,image->TellHeight()-1)
p[j][i] = image->GetPixel(q,w);
}
}
RGBApixel toReturn;
RGBApixel el1 = this->interpolation(p[0][0],p[1][0], p[2][0], p[3][0], dx);
RGBApixel el2 = this->interpolation(p[0][1],p[1][1], p[2][1], p[3][1], dx);
RGBApixel el3 = this->interpolation(p[0][2],p[1][2], p[2][2], p[3][2], dx);
RGBApixel el4 = this->interpolation(p[0][3],p[1][3], p[2][3], p[3][3], dx);
RGBApixel value = this->interpolation(el1, el2, el3, el4, dy);
return value;
}
RGBApixel interpolation(RGBApixel A, RGBApixel B, RGBApixel C, RGBApixel D, float t)
{
float a[3],b[3],c[3],d[3];
RGBApixel toRet;
a[0]=A.Red;
b[0]=B.Red;
c[0]=C.Red;
d[0]=D.Red;
a[1]=A.Green;
b[1]=B.Green;
c[1]=C.Green;
d[1]=D.Green;
a[2]=A.Blue;
b[2]=B.Blue;
c[2]=C.Blue;
d[2]=D.Blue;
float w[3];
float x[3];
float y[3];
float z[3];
float color[3];
for(int i=0; i<3; i++)
{
w[i]= -a[i] / 2.0f + (3.0f*b[i]) / 2.0f - (3.0f*c[i]) / 2.0f + d[i] / 2.0f;
x[i]= a[i] - (5.0f*b[i]) / 2.0f + 2.0f*c[i] - d[i] / 2.0f;
y[i]= -a[i] / 2.0f + c[i] / 2.0f;
z[i]= b[i];
color[i]= w[i] * t*t*t + x[i] * t*t + y[i] * t +z[i];
}
toRet.Red=color[0];
toRet.Green=color[1];
toRet.Blue=color[2];
toRet.Alpha=255;
return toRet;
}
Have you noticed mistake that I made?
It was beign out of range. Just need to:
color[i]= w[i] * t*t*t + x[i] * t*t + y[i] * t +z[i];
BOUNDS(color[i],0,255);
Related
I'm trying "rotation algorithm" in opngl but it's not working I'm getting a blank page when I run my program
. should I put POINT* verts or Point verts[6]
is there something wrong with my code?
void rotate(POINT* verts, GLint nverts, POINT fixedv, GLdouble theta) {
POINT newverts[6]; //POINT fixedv
GLint k;
for (k = 0; k < nverts; k++) {
newverts[k].x = fixedv.x + (verts[k].x - fixedv.x) * cos(theta) - (verts[k].y - fixedv.y) * sin(theta);
newverts[k].y = fixedv.y + (verts[k].x - fixedv.x) * sin(theta) + (verts[k].y - fixedv.y) * cos(theta);
newverts[k].x = (verts[k].x) * cos(theta) - (verts[k].y) * sin(theta);
newverts[k].y = (verts[k].x) * sin(theta) + (verts[k].y) * cos(theta);
}
glBegin(GL_TRIANGLE_FAN);
for (k = 0; k < nverts; k++)
glVertex2f(newverts[k].x, newverts[k].y);
glEnd();
glFlush();
}
display code:
void display() {
glColor3f(r, g, b);
if (check == 3) {
double theta = 3.14 * 0.5;
POINT verts[6],fixedpivot;
fixedpivot.x = x;
fixedpivot.y = y;
verts[0].x = x + 25;
verts[0].y = y + 50;
verts[1].x = x;
verts[1].y = y;
verts[2].x = x+50;
verts[2].y = y;
verts[3].x = x + 25;
verts[3].y = y + 50;
verts[4].x = x + 50;
verts[4].y = y + 100;
verts[5].x = x;
verts[5].y = y + 100;
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(r, g, b);
rotate(verts, 6, fixedpivot, theta);
glFlush();
I'm translating Python's version of 'page_dewarper' (https://mzucker.github.io/2016/08/15/page-dewarping.html) into C++. I'm going to use dlib, which is a fantastic tool, that helped me in a few optimization problems before. In line 748 of Github repo (https://github.com/mzucker/page_dewarp/blob/master/page_dewarp.py) Matt uses optimize function from Scipy, to find the minimal distance between two vectors. I think, my C++ equivalent should be solve_least_squares_lm() or solve_least_squares(). I'll give a concrete example to analyze.
My data:
a) dstpoints is a vector with OpenCV points - std::vector<cv::Point2f> (I have 162 points in this example, they are not changing),
b) ppts is also std::vector<cv::Point2f> and the same size as dstpoints.
std::vector<cv::Point2f> ppts = project_keypoints(params, input);
It is dependent on:
- dlib::column_vector 'input' is 2*162=324 long and is not changing,
- dlib::column_vector 'params' is 189 long and its values should be changed to get the minimal value of variable 'suma', something like this:
double suma = 0.0;
for (int i=0; i<dstpoints_size; i++)
{
suma += pow(dstpoints[i].x - ppts[i].x, 2);
suma += pow(dstpoints[i].y - ppts[i].y, 2);
}
I'm looking for 'params' vector that will give me the smallest value of 'suma' variable. Least squares algorithm seems to be a good option to solve it: http://dlib.net/dlib/optimization/optimization_least_squares_abstract.h.html#solve_least_squares, but I don't know if it is good for my case.
I think, my problem is that for every different 'params' vector I get different 'ppts' vector, not only single value, and I don't know if solve_least_squares function can match my example.
I must calculate residual for every point. I think, my 'list' from aforementioned link should be something like this:
(ppts[i].x - dstpoints[i].x, ppts[i].y - dstpoints[i].y, ppts[i+1].x - dstpoints[i+1].x, ppts[i+1].y - dstpoints[i+1].y, etc.)
, where 'ppts' vector depends on 'params' vector and then this problem can be solved with least squares algorithm. I don't know how to create data_samples with these assumptions, because it requires dlib::input_vector for every sample, as it is shown in example: http://dlib.net/least_squares_ex.cpp.html.
Am I thinking right?
I'm doing the same thing this days. My solution is writing a Powell Class by myself. It works, but really slowly. The program takes 2 minutes in dewarping linguistics_thesis.jpg.
I don't know what cause the program running so slowly. Maybe because of the algorithm or the code has some extra loop. I'm a Chinese student and my school only have java lessons. So it is normal if you find some extra codes in my codes.
Here is my Powell class.
using namespace std;
using namespace cv;
class MyPowell
{
public:
vector<vector<double>> xi;
vector<double> pcom;
vector<double> xicom;
vector<Point2d> dstpoints;
vector<double> myparams;
vector<double> params;
vector<Point> keypoint_index;
Point2d dst_br;
Point2d dims;
int N;
int itmax;
int ncom;
int iter;
double fret, ftol;
int usingAorB;
MyPowell(vector<Point2d> &dstpoints, vector<double> ¶ms, vector<Point> &keypoint_index);
MyPowell(Point2d &dst_br, vector<double> ¶ms, Point2d & dims);
MyPowell();
double obj(vector<double> ¶ms);
void powell(vector<double> &p, vector<vector<double>> &xi, double ftol, double &fret);
double sign(double a);// , double b);
double sqr(double a);
void linmin(vector<double> &p, vector<double> &xit, int n, double &fret);
void mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc);
double f1dim(double x);
double brent(double ax, double bx, double cx, double & xmin, double tol);
vector<double> usePowell();
void erase(vector<double>& pbar, vector<double> &prr, vector<double> &pr);
};
#include"Powell.h"
MyPowell::MyPowell(vector<Point2d> &dstpoints, vector<double>& params, vector<Point> &keypoint_index)
{
this->dstpoints = dstpoints;
this->myparams = params;
this->keypoint_index = keypoint_index;
N = params.size();
itmax = N * N;
usingAorB = 1;
}
MyPowell::MyPowell(Point2d & dst_br, vector<double>& params, Point2d & dims)
{
this->dst_br = dst_br;
this->myparams.push_back(dims.x);
this->myparams.push_back(dims.y);
this->params = params;
this->dims = dims;
N = 2;
itmax = N * 1000;
usingAorB = 2;
}
MyPowell::MyPowell()
{
usingAorB = 3;
}
double MyPowell::obj(vector<double> &myparams)
{
if (1 == usingAorB)
{
vector<Point2d> ppts = Dewarp::projectKeypoints(keypoint_index, myparams);
double total = 0;
for (int i = 0; i < ppts.size(); i++)
{
double x = dstpoints[i].x - ppts[i].x;
double y = dstpoints[i].y - ppts[i].y;
total += (x * x + y * y);
}
return total;
}
else if(2 == usingAorB)
{
dims.x = myparams[0];
dims.y = myparams[1];
//cout << "dims.x " << dims.x << " dims.y " << dims.y << endl;
vector<Point2d> vdims = { dims };
vector<Point2d> proj_br = Dewarp::projectXY(vdims, params);
double total = 0;
double x = dst_br.x - proj_br[0].x;
double y = dst_br.y - proj_br[0].y;
total += (x * x + y * y);
return total;
}
return 0;
}
void MyPowell::powell(vector<double> &x, vector<vector<double>> &direc, double ftol, double &fval)
{
vector<double> x1;
vector<double> x2;
vector<double> direc1;
int myitmax = 20;
if(N>500)
myitmax = 10;
else if (N > 300)
{
myitmax = 15;
}
double fx2, t, fx, dum, delta;
fval = obj(x);
int bigind;
for (int j = 0; j < N; j++)
{
x1.push_back(x[j]);
}
int iter = 0;
while (true)
{
do
{
do
{
iter += 1;
fx = fval;
bigind = 0;
delta = 0.0;
for (int i = 0; i < N; i++)
{
direc1 = direc[i];
fx2 = fval;
linmin(x, direc1, N, fval);
if (fabs(fx2 - fval) > delta)
{
delta = fabs(fx2 - fval);
bigind = i;
}
}
if (2.0 * fabs(fx - fval) <= ftol * (fabs(fx) + fabs(fval)) + 1e-7)
{
erase(direc1, x2, x1);
return;
}
if (iter >= itmax)
{
cout << "powell exceeding maximum iterations" << endl;
return;
}
if (!x2.empty())
{
x2.clear();
}
for (int j = 0; j < N; j++)
{
x2.push_back(2.0*x[j] - x1[j]);
direc1[j] = x[j] - x1[j];
x1[j] = x[j];
}
myitmax--;
cout << fx2 << endl;
fx2 = obj(x2);
if (myitmax < 0)
return;
} while (fx2 >= fx);
dum = fx - 2 * fval + fx2;
t = 2.0*dum*pow((fx - fval - delta), 2) - delta * pow((fx - fx2), 2);
} while (t >= 0.0);
linmin(x, direc1, N, fval);
direc[bigind] = direc1;
}
}
double MyPowell::sign(double a)//, double b)
{
if (a > 0.0)
{
return 1;
}
else
{
if (a < 0.0)
{
return -1;
}
}
return 0;
}
double MyPowell::sqr(double a)
{
return a * a;
}
void MyPowell::linmin(vector<double>& p, vector<double>& xit, int n, double &fret)
{
double tol = 1e-2;
ncom = n;
pcom = p;
xicom = xit;
double ax = 0.0;
double xx = 1.0;
double bx = 0.0;
double fa, fb, fx, xmin;
mnbrak(ax, xx, bx, fa, fx, fb);
fret = brent(ax, xx, bx, xmin, tol);
for (int i = 0; i < n; i++)
{
xit[i] = (xmin * xit[i]);
p[i] += xit[i];
}
}
void MyPowell::mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc)
{
const double GOLD = 1.618034, GLIMIT = 110.0, TINY = 1e-20;
double val, fw, tmp2, tmp1, w, wlim;
double denom;
fa = f1dim(ax);
fb = f1dim(bx);
if (fb > fa)
{
val = ax;
ax = bx;
bx = val;
val = fb;
fb = fa;
fa = val;
}
cx = bx + GOLD * (bx - ax);
fc = f1dim(cx);
int iter = 0;
while (fb >= fc)
{
tmp1 = (bx - ax) * (fb - fc);
tmp2 = (bx - cx) * (fb - fa);
val = tmp2 - tmp1;
if (fabs(val) < TINY)
{
denom = 2.0*TINY;
}
else
{
denom = 2.0*val;
}
w = bx - ((bx - cx)*tmp2 - (bx - ax)*tmp1) / (denom);
wlim = bx + GLIMIT * (cx - bx);
if ((bx - w) * (w - cx) > 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
ax = bx;
fa = fb;
bx = w;
fb = fw;
return;
}
else if (fw > fb)
{
cx = w;
fc = fw;
return;
}
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
else
{
if ((cx - w)*(w - wlim) >= 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
bx = cx;
cx = w;
w = cx + GOLD * (cx - bx);
fb = fc;
fc = fw;
fw = f1dim(w);
}
}
else if ((w - wlim)*(wlim - cx) >= 0.0)
{
w = wlim;
fw = f1dim(w);
}
else
{
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
}
ax = bx;
bx = cx;
cx = w;
fa = fb;
fb = fc;
fc = fw;
}
}
double MyPowell::f1dim(double x)
{
vector<double> xt;
for (int j = 0; j < ncom; j++)
{
xt.push_back(pcom[j] + x * xicom[j]);
}
return obj(xt);
}
double MyPowell::brent(double ax, double bx, double cx, double & xmin, double tol = 1.48e-8)
{
const double CGOLD = 0.3819660, ZEPS = 1.0e-4;
int itmax = 500;
double a = MIN(ax, cx);
double b = MAX(ax, cx);
double v = bx;
double w = v, x = v;
double deltax = 0.0;
double fx = f1dim(x);
double fv = fx;
double fw = fx;
double rat = 0, u = 0, fu;
int iter;
int done;
double dx_temp, xmid, tol1, tol2, tmp1, tmp2, p;
for (iter = 0; iter < 500; iter++)
{
xmid = 0.5 * (a + b);
tol1 = tol * fabs(x) + ZEPS;
tol2 = 2.0*tol1;
if (fabs(x - xmid) <= (tol2 - 0.5*(b - a)))
break;
done = -1;
if (fabs(deltax) > tol1)
{
tmp1 = (x - w) * (fx - fv);
tmp2 = (x - v) * (fx - fw);
p = (x - v) * tmp2 - (x - w) * tmp1;
tmp2 = 2.0 * (tmp2 - tmp1);
if (tmp2 > 0.0)
p = -p;
tmp2 = fabs(tmp2);
dx_temp = deltax;
deltax = rat;
if ((p > tmp2 * (a - x)) && (p < tmp2 * (b - x)) &&
fabs(p) < fabs(0.5 * tmp2 * dx_temp))
{
rat = p / tmp2;
u = x + rat;
if ((u - a) < tol2 || (b - u) < tol2)
{
rat = fabs(tol1) * sign(xmid - x);
}
done = 0;
}
}
if(done)
{
if (x >= xmid)
{
deltax = a - x;
}
else
{
deltax = b - x;
}
rat = CGOLD * deltax;
}
if (fabs(rat) >= tol1)
{
u = x + rat;
}
else
{
u = x + fabs(tol1) * sign(rat);
}
fu = f1dim(u);
if (fu > fx)
{
if (u < x)
{
a = u;
}
else
{
b = u;
}
if (fu <= fw || w == x)
{
v = w;
w = u;
fv = fw;
fw = fu;
}
else if (fu <= fv || v == x || v == w)
{
v = u;
fv = fu;
}
}
else
{
if (u >= x)
a = x;
else
b = x;
v = w;
w = x;
x = u;
fv = fw;
fw = fx;
fx = fu;
}
}
if(iter > itmax)
cout << "\n Brent exceed maximum iterations.\n\n";
xmin = x;
return fx;
}
vector<double> MyPowell::usePowell()
{
ftol = 1e-4;
vector<vector<double>> xi;
for (int i = 0; i < N; i++)
{
vector<double> xii;
for (int j = 0; j < N; j++)
{
xii.push_back(0);
}
xii[i]=(1.0);
xi.push_back(xii);
}
double fret = 0;
powell(myparams, xi, ftol, fret);
//for (int i = 0; i < xi.size(); i++)
//{
// double a = obj(xi[i]);
// if (fret > a)
// {
// fret = a;
// myparams = xi[i];
// }
//}
cout << "final result" << fret << endl;
return myparams;
}
void MyPowell::erase(vector<double>& pbar, vector<double>& prr, vector<double>& pr)
{
for (int i = 0; i < pbar.size(); i++)
{
pbar[i] = 0;
}
for (int i = 0; i < prr.size(); i++)
{
prr[i] = 0;
}
for (int i = 0; i < pr.size(); i++)
{
pr[i] = 0;
}
}
I used PRAXIS library, because it doesn't need derivative information and is fast.
I modified the code a little to my needs and now it is faster than original version written in Python.
I need some help here. Please excuse the complexity of the code. Basically, I am looking to use the bisection method to find a value "Theta" and each i increment.
I know that all the calculations work fine when I know the Theta, and I have the code run to just simply calculate all the values, but when I introduce a while loop and the bisection method to have the code approximate Theta, I can't seem to get it to run correctly. I am assuming I have my while loop set up incorrectly....
#include <math.h>
#include <iostream>
#include <vector>
#include <iomanip>
#include <algorithm> // std::max
using namespace std;
double FuncM(double theta, double r, double F, double G, double Gprime, double d_t, double sig);
double FuncM(double theta, double r, double F, double G, double Gprime, double d_t, double sig)
{
double eps = 0.0001;
return ((log(max((r + (theta + F - 0.5 * G * Gprime ) * d_t), eps))) / sig);
}
double FuncJSTAR(double m, double x_0, double d_x);
double FuncJSTAR(double m, double x_0, double d_x)
{
return (int(((m - x_0) / d_x)+ 0.5));
}
double FuncCN(double m, double x_0, double j, double d_x);
double FuncCN(double m, double x_0, double j, double d_x)
{
return (m - x_0 - j * d_x);
}
double FuncPup(double d_t, double cn, double d_x);
double FuncPup(double d_t, double cn, double d_x)
{
return (((d_t + pow(cn, 2.0)) / (2.0 * pow(d_x, 2.0))) + (cn / (2.0 * d_x)));
}
double FuncPdn(double d_t, double cn, double d_x);
double FuncPdn(double d_t, double cn, double d_x)
{
return (((d_t + pow(cn, 2.0)) / (2.0 * pow(d_x, 2.0))) - (cn / (2.0 * d_x)));
}
double FuncPmd(double pd, double pu);
double FuncPmd(double pd, double pu)
{
return (1 - pu - pd);
}
int main()
{
const int Maturities = 5;
const double EPS = 0.00001;
double TermStructure[Maturities][2] = {
{0.5 , 0.05},
{1.0 , 0.06},
{1.5 , 0.07},
{2.0 , 0.075},
{3.0 , 0.085} };
//--------------------------------------------------------------------------------------------------------
vector<double> Price(Maturities);
double Initial_Price = 1.00;
for (int i = 0; i < Maturities; i++)
{
Price[i] = Initial_Price * exp(-TermStructure[i][1] * TermStructure[i][0]);
}
//--------------------------------------------------------------------------------------------------------
int j_max = 8;
int j_range = ((j_max * 2) + 1);
//--------------------------------------------------------------------------------------------------------
// Set up vector of possible j values
vector<int> j_value(j_range);
for (int j = 0; j < j_range; j++)
{
j_value[j] = j_max - j;
}
//--------------------------------------------------------------------------------------------------------
double dt = 0.5;
double dx = sqrt(3 * dt);
double sigma = 0.15;
double mean_reversion = 0.2; // "a" value
//--------------------------------------------------------------------------------------------------------
double r0 = TermStructure[0][1]; // Initialise r(0) in case no corresponding dt rate in term structure
//--------------------------------------------------------------------------------------------------------
double x0 = log(r0) / sigma;
//--------------------------------------------------------------------------------------------------------
vector<double> r_j(j_range); // rate at each j
vector<double> F_r(j_range);
vector<double> G_r(j_range);
vector<double> G_prime_r(j_range);
for(int j = 0; j < j_range; j++)
{
if (j == j_max)
{
r_j[j] = r0;
}
else
{
r_j[j] = exp((x0 + j_value[j]*dx) * sigma);
}
F_r[j] = -mean_reversion * r_j[j];
G_r[j] = sigma * r_j[j];
G_prime_r[j] = sigma;
}
//--------------------------------------------------------------------------------------------------------
vector<vector<double>> m((j_range), vector<double>(Maturities));
vector<vector<int>> j_star((j_range), vector<int>(Maturities));
vector<vector<double>> Central_Node((j_range), vector<double>(Maturities));
vector<double> Theta(Maturities - 1);
vector<vector<double>> Pu((j_range), vector<double>(Maturities));
vector<vector<double>> Pd((j_range), vector<double>(Maturities));
vector<vector<double>> Pm((j_range), vector<double>(Maturities));
vector<vector<double>> Q((j_range), vector<double>(Maturities));// = {}; // Arrow Debreu Price. Initialised all array values to 0
vector<double> Q_dt_sum(Maturities);// = {}; // Sum of Arrow Debreu Price at each time step. Initialised all array values to 0
//--------------------------------------------------------------------------------------------------------
double Theta_A, Theta_B, Theta_C;
int JSTART;
int JEND;
int TempStart;
int TempEnd;
int max;
int min;
vector<vector<int>> Up((j_range), vector<int>(Maturities));
vector<vector<int>> Down((j_range), vector<int>(Maturities));
// Theta[0] = 0.0498039349327417;
// Theta[1] = 0.0538710670441647;
// Theta[2] = 0.0181648634139392;
// Theta[3] = 0.0381183886467521;
for(int i = 0; i < (Maturities-1); i++)
{
Theta_A = 0.00;
Theta_B = TermStructure[i][1];
Q_dt_sum[0] = Initial_Price;
Q_dt_sum[i+1] = 0.0;
while (fabs(Theta_A - Theta_B) >= 0.0000001)
{
max = 1;
min = 10;
if (i == 0)
{
JSTART = j_max;
JEND = j_max;
}
else
{
JSTART = TempStart;
JEND = TempEnd;
}
for(int j = JSTART; j >= JEND; j--)
{
Theta_C = (Theta_A + Theta_B) / 2.0; // If Theta C is too low, the associated Price will be higher than Price from initial term structure. (ie P(Theta C) > P(i+2) for Theta C < Theta)
// If P_C > P(i+2), set Theta_B = Theta_C, else if P_C < P(i+2), set Theta_A = Theta_C, Else if P_C = P(i+2), Theta_C = Theta[i]
//cout << Theta_A << " " << Theta_B << " " << Theta_C << endl;
m[j][i] = FuncM(Theta[i], r_j[j], F_r[j], G_r[j], G_prime_r[j], dt, sigma);
j_star[j][i] = FuncJSTAR(m[j][i], x0, dx);
Central_Node[j][i] = FuncCN(m[j][i], x0, j_star[j][i], dx);
Pu[j][i] = FuncPup(dt, Central_Node[j][i], dx);
Pd[j][i] = FuncPdn(dt, Central_Node[j][i], dx);
Pm[j][i] = FuncPmd(Pd[j][i], Pu[j][i]);
for (int p = 0; p < j_range; p++)
{
Q[p][i] = 0; // Clear Q array
}
Q[j_max][0] = Initial_Price;
Q[j_max -(j_star[j][i]+1)][i+1] = Q[j_max - (j_star[j][i]+1)][i+1] + Q[j][i] * Pu[j][i] * exp(-r_j[j] * dt);
Q[j_max -(j_star[j][i] )][i+1] = Q[j_max - (j_star[j][i] )][i+1] + Q[j][i] * Pm[j][i] * exp(-r_j[j] * dt);
Q[j_max -(j_star[j][i]-1)][i+1] = Q[j_max - (j_star[j][i]-1)][i+1] + Q[j][i] * Pd[j][i] * exp(-r_j[j] * dt);
}
for (int j = 0; j < j_range; j++)
{
Up[j][i] = j_star[j][i] + 1;
Down[j][i] = j_star[j][i] - 1;
if (Up[j][i] > max)
{
max = Up[j][i];
}
if ((Down[j][i] < min) && (Down[j][i] > 0))
{
min = Down[j][i];
}
}
TempEnd = j_max - (max);
TempStart = j_max - (min);
for (int j = 0; j < j_range; j++)
{
Q_dt_sum[i+1] = Q_dt_sum[i+1] + Q[j][i] * exp(-r_j[j] * dt);
cout << Q_dt_sum[i+1] << endl;
}
if (Q_dt_sum[i+1] == Price[i+2])
{
Theta[i] = Theta_C;
break;
}
if (Q_dt_sum[i+1] > Price[i+2])
{
Theta_B = Theta_C;
}
else if (Q_dt_sum[i+1] < Price[i+2])
{
Theta_A = Theta_C;
}
}
cout << Theta[i] << endl;
}
return 0;
}
Ok, my bad. I had a value being called incorrectly.
All good.
I can't get myobject1, myobject2, and myobject3 to have their own rotation rendered. They rotate but all facing the same direction.
rotate() stops working after glDrawElements gets called.
It only starts working again if I call glutSwapBuffers() in render(). But then my screen flickers, but the models are rendered the way I want them.
In other words: before any render() is called, rotate() works fine...
but using rotate() after any render() is called, rotate() does nothing...
because for rotate() to work again, I need to call glutSwapBuffer() every time I draw an object, which makes rotate() work correctly for myobject1, myobject2, and myobject3, but then screen then flickers.
void setModelMatrix() {
glBindBuffer(GL_UNIFORM_BUFFER, matricesUniBuffer);
glBufferSubData(GL_UNIFORM_BUFFER,
ModelMatrixOffset, MatrixSize, modelMatrix);
glBindBuffer(GL_UNIFORM_BUFFER,0);
}
void setIdentityMatrix(float *mat, int size) {
for (int i = 0; i < size * size; ++i)
mat[i] = 0.0f;
for (int i = 0; i < size; ++i)
mat[i + i * size] = 1.0f;
}
void multMatrix(float *a, float *b) {
float res[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
res[j*4 + i] = 0.0f;
for (int k = 0; k < 4; ++k) {
res[j*4 + i] += a[k*4 + i] * b[j*4 + k];
}
}
}
memcpy(a, res, 16 * sizeof(float));
}
void rotate(float angle, float x, float y, float z) {
float aux[16];
setRotationMatrix(aux,angle,x,y,z);
multMatrix(modelMatrix,aux);
setModelMatrix();
}
void setRotationMatrix(float *mat, float angle, float x, float y, float z) {
float radAngle = DegToRad(angle);
float co = cos(radAngle);
float si = sin(radAngle);
float x2 = x*x;
float y2 = y*y;
float z2 = z*z;
mat[0] = x2 + (y2 + z2) * co;
mat[4] = x * y * (1 - co) - z * si;
mat[8] = x * z * (1 - co) + y * si;
mat[12]= 0.0f;
mat[1] = x * y * (1 - co) + z * si;
mat[5] = y2 + (x2 + z2) * co;
mat[9] = y * z * (1 - co) - x * si;
mat[13]= 0.0f;
mat[2] = x * z * (1 - co) - y * si;
mat[6] = y * z * (1 - co) + x * si;
mat[10]= z2 + (x2 + y2) * co;
mat[14]= 0.0f;
mat[3] = 0.0f;
mat[7] = 0.0f;
mat[11]= 0.0f;
mat[15]= 1.0f;
}
void recursive_render () {
//myobject->ry+=0.0001f;
for (unsigned int n=0; n < scene->mNumMeshes; ++n) {
glBindBufferRange(GL_UNIFORM_BUFFER, materialUniLoc, myobject->Meshes[scene->mMeshes[n]].uniformBlockIndex, 0, sizeof(struct MyMaterial));
glBindTexture(GL_TEXTURE_2D, myobject->Meshes[scene->mMeshes[n]].texIndex);
glBindVertexArray(myobject->Meshes[nd->mMeshes[n]].vao);
glDrawElements(GL_TRIANGLES,myobject->Meshes[scene->mMeshes[n]].numFaces*3,GL_UNSIGNED_INT,0);
}
}
void render()
{
setIdentityMatrix(modelMatrix,4);
rotate(myobject->ry, 0.0, 1.0, 0.0);
scale(scaleFactor, scaleFactor, scaleFactor);
recursive_render(scene->mRootNode);
}
void renderScene(void) {
myobject1.ry = 50.0f;
myobject2.ry = 150.0f;
myobject3.ry = 270.0f;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
setCamera(camX,camY,camZ,0,0,0);
glUseProgram(program);
glUniform1i(texUnit,0);
myobject = &myobject1;
render();
myobject = &myobject2;
render();
myobject = &myobject3;
render();
glutSwapBuffers();
}
I have written a global version of Particle Swarm Optimization algorithm in C++.
I tried to write it exactly as same as my MATLAB PSO code that have written before, but this code generates different and so worst answers.
The MATLAB code is:
clear all;
numofdims = 30;
numofparticles = 50;
c1 = 2;
c2 = 2;
numofiterations = 1000;
V = zeros(50, 30);
initialpop = V;
Vmin = zeros(30, 1);
Vmax = Vmin;
Xmax = ones(30, 1) * 100;
Xmin = -Xmax;
pbestfits = zeros(50, 1);
worsts = zeros(50, 1);
bests = zeros(50, 1);
meanfits = zeros(50, 1);
pbests = zeros(50, 30);
initialpop = Xmin + (Xmax - Xmin) .* rand(numofparticles, numofdims);
X = initialpop;
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
gbestfit = minfit;
gbest = X(minfitidx, :);
for i = 1:numofdims
Vmax(i) = 0.2 * (Xmax(i) - Xmin(i));
Vmin(i) = -Vmax(i);
end
for t = 1:1000
w = 0.9 - 0.7 * (t / numofiterations);
for i = 1:numofparticles
if(fitnesses(i) < pbestfits(i))
pbestfits(i) = fitnesses(i);
pbests(i, :) = X(i, :);
end
end
for i = 1:numofparticles
for j = 1:numofdims
V(i, j) = min(max((w * V(i, j) + rand * c1 * (pbests(i, j) - X(i, j))...
+ rand * c2 * (gbest(j) - X(i, j))), Vmin(j)), Vmax(j));
X(i, j) = min(max((X(i, j) + V(i, j)), Xmin(j)), Xmax(j));
end
end
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
if(minfit < gbestfit)
gbestfit = minfit;
gbest = X(minfitidx, :);
end
worsts(t) = max(fitnesses);
bests(t) = gbestfit;
meanfits(t) = mean(fitnesses);
end
In which, testfunc1 is:
function [out] = testfunc1(R)
out = sum(R .^ 2, 2);
end
The C++ code is:
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <ctime>
#define rand_01 ((float)rand() / (float)RAND_MAX)
const int numofdims = 30;
const int numofparticles = 50;
using namespace std;
void fitnessfunc(float X[numofparticles][numofdims], float fitnesses[numofparticles])
{
memset(fitnesses, 0, sizeof (float) * numofparticles);
for(int i = 0; i < numofparticles; i++)
{
for(int j = 0; j < numofdims; j++)
{
fitnesses[i] += (pow(X[i][j], 2));
}
}
}
float mean(float inputval[], int vallength)
{
int addvalue = 0;
for(int i = 0; i < vallength; i++)
{
addvalue += inputval[i];
}
return (float)(addvalue / vallength);
}
void PSO(int numofiterations, float c1, float c2,
float Xmin[numofdims], float Xmax[numofdims], float initialpop[numofparticles][numofdims],
float worsts[], float meanfits[], float bests[], float *gbestfit, float gbest[numofdims])
{
float V[numofparticles][numofdims] = {0};
float X[numofparticles][numofdims];
float Vmax[numofdims];
float Vmin[numofdims];
float pbests[numofparticles][numofdims];
float pbestfits[numofparticles];
float fitnesses[numofparticles];
float w;
float minfit;
int minfitidx;
memcpy(X, initialpop, sizeof(float) * numofparticles * numofdims);
fitnessfunc(X, fitnesses);
minfit = *min_element(fitnesses, fitnesses + numofparticles);
minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
*gbestfit = minfit;
memcpy(gbest, X[minfitidx], sizeof(float) * numofdims);
for(int i = 0; i < numofdims; i++)
{
Vmax[i] = 0.2 * (Xmax[i] - Xmin[i]);
Vmin[i] = -Vmax[i];
}
for(int t = 0; t < 1000; t++)
{
w = 0.9 - 0.7 * (float) (t / numofiterations);
for(int i = 0; i < numofparticles; i++)
{
if(fitnesses[i] < pbestfits[i])
{
pbestfits[i] = fitnesses[i];
memcpy(pbests[i], X[i], sizeof(float) * numofdims);
}
}
for(int i = 0; i < numofparticles; i++)
{
for(int j = 0; j < numofdims; j++)
{
V[i][j] = min(max((w * V[i][j] + rand_01 * c1 * (pbests[i][j] - X[i][j])
+ rand_01 * c2 * (gbest[j] - X[i][j])), Vmin[j]), Vmax[j]);
X[i][j] = min(max((X[i][j] + V[i][j]), Xmin[j]), Xmax[j]);
}
}
fitnessfunc(X, fitnesses);
minfit = *min_element(fitnesses, fitnesses + numofparticles);
minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
if(minfit < *gbestfit)
{
*gbestfit = minfit;
memcpy(gbest, X[minfitidx], sizeof(float) * numofdims);
}
worsts[t] = *max_element(fitnesses, fitnesses + numofparticles);
bests[t] = *gbestfit;
meanfits[t] = mean(fitnesses, numofparticles);
}
}
int main()
{
time_t t;
srand((unsigned) time(&t));
float xmin[30], xmax[30];
float initpop[50][30];
float worsts[1000], bests[1000];
float meanfits[1000];
float gbestfit;
float gbest[30];
for(int i = 0; i < 30; i++)
{
xmax[i] = 100;
xmin[i] = -100;
}
for(int i = 0; i < 50; i++)
for(int j = 0; j < 30; j++)
{
initpop[i][j] = rand() % (100 + 100 + 1) - 100;
}
PSO(1000, 2, 2, xmin, xmax, initpop, worsts, meanfits, bests, &gbestfit, gbest);
cout<<"fitness: "<<gbestfit<<endl;
return 0;
}
I have debugged two codes many times but can not find the difference which makes answers different.
It is making me crazy!
May you help me please?
Update:
Please consider that, the function mean is just used for reporting some information and is not used in the optimization procedure.
You've got integer division in the following line
w = 0.9 - 0.7 * (float) (t / numofiterations);
w will be 0.2 for every iteration, change it to
w = 0.9 - 0.7 * t / numofiterations;
The first multiplication will automatically promote t to a double the division should then promote numof iterations to a double.
The parenthesis means it will be done first and therefore not be promoted as wo integers is involved in the division.
This could be a mistake in function mean:
return (float)(addvalue / vallength);
This is integer division, so the result is truncated down, then cast to float. It is unlikely this is what you want.