Append and clear for a list c++ - c++

I'm trying to realize two methds append() and clear().
In appened(), I need to newPoint to the end of a list. If the list is empty, then adds newPoint as the first(and only) point in the list.
In clear(),I need to remove all the points in a list.
Can you give me some advice to realize appened and clear.
Here is a code:
//
#pragma once
const int maxListSize = 10;
class Point
{
private:
float x;
float y;
public:
Point(float x0 = 0, float y0 = 0)
{
x = x0;
y = y0;
}
};
class PointList
{
private:
//Data members
int size;
int cursor;
Point points[maxListSize];
public:
PointList();
//List Manipalution operations
void append(Point newPoint);
void clear();
~PointList();
};
*I don't need you to write everything for me, just give me some advice. I would like to realize it by myself. Thank you for helping.

Since you store your list elements by value (Point points[maxListSize]),
it is quite easy to do:
PointList() :size(0) {}
void append(Point newPoint) { points[size++] = newPoint; }
void clear() { size = 0; }
This assumes that your Point object doesn't manage any resource, which is true for this particular example. Otherwise, inserted Point objects should be destroyed in clear.

To get the semantics that you're probably expecting for appending new items, and clearing out existing items, I suggest you look at the placement new operator, and manually calling the destructor of an item in the list.
Currently your class will construct all of the items in the list when you create the list. This can be quite time consuming for complex structures. Then, instead of the constructor for your elements being called, you'll instead be calling the copy-assignment operator, as the items are already constructed.
If you store your array as
char * points[sizeof(Point)*maxListSize];
Any only initialize the items when they're actually added, you avoid the construction cost when you create the list.
Your append function takes it's argument by value. Instead, I recommend you have two append functions. One that takes const&, and the other that takes an rvalue-reference. Then, inside the append function, call the placement new operator on the address of the next location in your array.
To clear the array, simple call the destructor for each element in the array one at a time.

Related

Can I update an object inside an array?

So I created an object and then added it into an array
Class Item{
...
};
Class Machine{
void setQuantity(int i);
};
Machine::Machine(){
Item items[5];
items[0] = a(int q);
}
I defined the setQuantity() and then tried to setQuantity later in the code, with
items[0].setQuantity(items[0].getQuantity() + 1);
but the quantity of a didn't update. Is it because I can't update a property of an item in an array or why can't the quantity change?
I'm thinking of changing the array into a vector, but I'm wondering if the problem is with the array or not. If it isn't then changing it into a vector won't matter does it?
Thanks in advance!
int Item::getQuantity(){
return quantity;
}
void Item::setQuantity(int q){
quantity = q;
}
items[i].setQuantity(items[i].getQuantity + 1);
I think the problem here is that you are declaring a variable inside a function call a(), which is, based on the code listed, undefined.
int q is the syntax for a variable declaration, but no value has been defined for q.
For each of the 5 items that you create, the default constructor of the class Item is called.
If you want to assign a value to items[0] you can (and probably should), for example, implement an assignment operator and a copy constructor in Item. Or you could store pointers to Item in the array instead of the objects themselves, and then use items[0] = new Item(...) to assign the items.

Own vector class for arduino (c++)

I added also void Clear()-method.
https://redstoner.com/forums/threads/840-minimal-class-to-replace-std-vector-in-c-for-arduino
https://forum.arduino.cc/index.php?topic=45626.0
I'm asking about this Vector class.
void push_back(Data const &x) {
if (d_capacity == d_size) resize();
d_data[d_size++] = x;
}; // Adds new value. If needed, allocates more space
How to add "insert"-method to this Vector class (arduino use C++ but not have a standard vector methods)?
Vector<Sensor*> sensors;
I have a another class Sensor and I use vector like this.
push.back(new Sensor (1,1,"Sensor_1",2));
Is it possible to add values one by one to this vector class? And how to do it?
I like to ask also other question.
How can I call delete/call destructor for this Vector "sensors" so all pointers are deleted? Or sensors vector is deleted? I want to clear the data and then add data to it.
If you want to add an item to the end of the vector, use the push_back method you've quoted above. If you want to add an item somewhere else in the vector, you'll need to add your own method which re-sizes if necessary, shifts the elements above the insert location up one place and then copies the new element into the correct slot. Something like this (untested):
void insert_at(size_t idx, Data const &data) {
assert(idx < d_size);
if (d_capacity == d_size) {
resize();
}
for (size_t i = d_size; i > idx; --i) {
d_data[i] = std::move(d_data[i - 1]);
}
d_data[idx] = data;
++d_size;
}
As Nacho points out, you might be better off with a linked list if you're going to do a lot of these insert operations, especially if the data you're storing is large and/or has a complex move operator.

Pointer Copy to Out of Scope c++

Today i went back and investigated an error i got in an old project. It's not exactly an error, rather, i don't know how to do what i need to do. Don't really want to go into the details of the project as it is old and buggy and inefficient and more importantly irrelevant. So i coded a new sample code:
#include <iostream>
#include <vector>
#include <time.h>
#include <random>
#include <string>
class myDoc;
class myElement
{
int myInt;
std::string myString;
myElement * nextElement;
//a pointer to the element that comes immediately after this one
public:
myElement(int x, std::string y) : myInt(x), myString(y){};
friend myDoc;
};//an element type
class myDoc
{
std::vector<myElement> elements;
public:
void load();
~myDoc()
{
//I believe i should delete the dynamic objects here.
}
};// a document class that has bunch of myElement class type objects as members
void myDoc::load()
{
srand(time(0));
myElement * curElement;
for (int i = 0; i < 20; i++)
{
int randInt = rand() % 100;
std::string textInt = std::to_string(randInt);
curElement = new myElement(randInt,textInt);
//create a new element with a random int and its string form
if (i!=0)
{
elements[i-1].nextElement = curElement;
//assign the pointer to the new element to nextElement for the previous element
//!!!!!!!!!!!! this is the part that where i try to create a copy of the pointer
//that goes out of scope, but they get destroyed as soon as the stack goes out of scope
}
elements.push_back(*curElement);// this works completely fine
}
}
int main()
{
myDoc newDoc;
newDoc.load();
// here in newDoc, non of the elements will have a valid pointer as their nextElement
return 0;
}
Basic rundown: we have a document type that consists of a vector of element type we define. And in this example we load 20 random dynamically allocated new elements to the document.
My questions/problems:
When the void myElement::load() function ends, the pointer and/or the copies of it goes out of scope and get deleted. How do i keep a copy that stays(not quite static, is it?) at least until the object it points to is deleted?
The objects in the elements vector, are they the original dynamically allocated objects or are they just a copy?
I allocate memory with new, how/when should i delete them?
Here is a picture i painted to explain 1st problem(not very accurate for the specific example but the problem is the same), and thank you for your time.
Note: I assumed you want a vector of myElement objects where each one points to the element next to it. It is unclear if you want the objects in elements to point to copies of them, anyway it should be pretty easy to modify the code to achieve the latter
This is what happens in your code:
void myDoc::load()
{
..
curElement = new myElement(n,m); // Create a new element on the heap
...
// If this is not the first element we inserted, have the pointer for the
// previous element point to the heap element
elements[i-1].nextElement = curElement;
// Insert a COPY of the heap element (not the one you stored the pointer to)
// into the vector (those are new heap elements copied from curElement)
elements.push_back(*curElement);// this works completely fine
}
so nothing gets deleted when myDoc::load() goes out of scope, but you have memory leaks and errors since the pointers aren't pointing to the elements in the elements vector but in the first heap elements you allocated.
That also answers your second question: they're copies.
In order to free your memory automatically, have no leaks and point to the right elements you might do something like
class myElement
{
int a;
std::string b;
myElement *nextElement = nullptr;
//a pointer to the element that comes immediately after this one
public:
myElement(int x, std::string y) : a(x), b(y){};
friend myDoc;
};//an element type
class myDoc
{
std::vector<std::unique_ptr<myElement>> elements;
public:
void load();
~myDoc()
{}
};// a document class that has bunch of myElement class type objects as members
void myDoc::load()
{
srand((unsigned int)time(0));
for (int i = 0; i < 20; i++)
{
int n = rand() % 100;
std::string m = std::to_string(n);
//create a new element with a random int and its string form
elements.emplace_back(std::make_unique<myElement>(n, m));
if (i != 0)
{
//assign the pointer to the new element to nextElement for the previous element
elements[i - 1]->nextElement = elements[i].get();
}
}
}
Live Example
No need to delete anything in the destructor since the smart pointers will be automatically destroyed (and memory freed) when the myDoc element gets out of scope. I believe this might be what you wanted to do since the elements are owned by the myDoc class anyway.

Can't Save structure content

I have the next problem:
I created the structure:
struct Series : vector<Candle>
{
Security Sec;
int LookFor;
int TF;
int Corrector;
string ID;
int line;
Series(){};
Series (int _lookfor);
void Update();
};
Constructor:
Series::Series (int _lookfor)
{
LookFor=_lookfor;
for (int i = 1; i<=LookFor; i++)
{
Candle cantype = Candle(i);
push_back(cantype);
}
}
So, then we call this construcor it fills object by candle-values. LookFor - is a number of candles in the vector-series.
After initialization i want update this serie (if there is more new candle, i want delete last one and insert new on the begining of vector-serie)
void Series::Update()
{
if (size()==LookFor)
{
if (newer(cantype,c1))
{
Candle cantype = Candle(1);
Candle c1 = at(0);
pop_back();
emplace(begin(),cantype);
}
}
I need to initialize a vector of these series:
vector vec;
vec.push_back(Series(3));
And constructor does its job, everithing is fine.
But then i update them:
for (size_t x =0; x<=size()-1;x++) vec[x].Update();
I have a problem: it cann't save changes in vector. In Update method everithing is fine, it inserts needed candle in itself, but then method is ended - the state of vector (each element of vec) has no changes. In method we see changes, but after it vector become after constructor-like, the state still the same.
Tell me, please, what am I doing wrong?
As others already mentioned, do not derive from these containers (could cause nasty errors like missing dtor calls and memory leaks, no virtual destructor is present in these containers). Instead, add the vector as a member or leave it as is, if you do private inheritance.
You may use the iterator interface for such containers:
for(std::vector<Series>::iterator sIt = vec.begin();sIt != vec.end();++sIt) sIt->Update();
For your task, consider using a deque or a list as a circular buffer instead of the vector for the Candles. It would perform better for insertions and therefore allows you to use push_front() instead of emplace() or insert().
Alternatively, you could hold an index of the vector element just past the last element (which should be the first) and just assign the new candle, et voilĂ , you've got a dense circular buffer.
There are implementations of such circular buffers, for example the one of boost:
http://www.boost.org/doc/libs/1_52_0/libs/circular_buffer/doc/circular_buffer.html
Despite logic issues, which could prevent the modification in certain states, I can't see, why your code doesn't work at all, at least not when I went through the snippets you posted.

STL List copies a struct, but the copied values are offset by two memory addresses

I'm compiling using Code::Blocks on Windows 7 using the MinGW compiler (which I can only assume is the latest version; both Code::Blocks and MinGW were installed this past week). My issue crops up under a particular circumstance, and my attempts to write a simpler script that demonstrates the problem have failed (which implies that there is something wrong with my structure). Also, my apologies for how long this post is.
Currently, I'm rolling with one class, FXSDL, which will act as an SDL wrapper:
class FXSDL
{
public:
FXSDL();
virtual ~FXSDL();
int Initialize();
int Render();
FXID CreateCharacter(FXID hRefID, string fpImage, int wpxTile, int hpxTile, map<int, vector<int> > htAnims);
int SetAnim(FXID hRefID, FXID hAnimID);
FXID hPlayer;
protected:
private:
list<FXSurface> m_lstFXObjects;
list<FXSurface>::iterator m_liFirst;
SDL_Surface* m_lpsfSDLScreen;
Uint32 m_tmOld;
Uint32 m_tmFrame;
};
The value type of my list is:
struct FXSurface
{
FXID hRefID;
int wpxTile;
int hpxTile;
int wpxTotal;
int hpxTotal;
int cntTiles;
map<int, vector<int> > htAnims; // All animations
map<int, vector<int> >::iterator vCurr; // Currently active animation
vector<int>::iterator fiCurr; // Currently active frame
SDL_Surface* lpsfSDL;
SDL_Rect* lprcTiles; // Predefined frame positions
string* fpImage;
};
I've implemented very simple initialize and render function. The CreateCharacter function takes a few parameters, the most important of which is htAnims, a map of integer vectors (idea being: I define numeric ids with easy-to-remember representations, such as FXA_IDLE or FXA_WALK, as the key, and the series of number values representing frames for the animation as a vector). This could be fairly easily implemented as a multidimensional integer array, but animations are variable in length and I want to be able to add new anims (or redefine existing ones) without having to recast an array.
The CreateCharacter function is simple. It creates a new FXSurface, populates it with the required data, and pushes the new FXSurface onto the list:
FXID FXSDL::CreateCharacter(FXID hRefID, string fpImage, int wpxTile, int hpxTile, map<int, vector<int> > htAnims)
{
//list<FXSurface>::iterator lpsfTemp;
FXSurface lpsfTemp;
list<FXSurface>::iterator lpsfPos;
SDL_Rect* lprcCurr = NULL;
int cntTileW = 0;
int cntTileH = 0;
int cntCurr = 0;
// Start off by initializing our container struct
//lpsfTemp = new FXSurface();
lpsfTemp.lpsfSDL = IMG_Load(fpImage.c_str()); // Try to load the requested image
if(lpsfTemp.lpsfSDL != NULL) // If we didn't fail to
{
// Assign some variables for tracking
lpsfTemp.hRefID = hRefID;
lpsfTemp.fpImage = &fpImage;
lpsfTemp.wpxTotal = lpsfTemp.lpsfSDL->w;
lpsfTemp.hpxTotal = lpsfTemp.lpsfSDL->h;
// If a tile width was specified, use it
if(wpxTile != 0)
{
lpsfTemp.wpxTile = wpxTile;
lpsfTemp.hpxTile = hpxTile;
} // Otherwise, assume one tile
else
{
lpsfTemp.wpxTile = lpsfTemp.wpxTotal;
lpsfTemp.hpxTile = lpsfTemp.hpxTotal;
}
// Determine the tiles per row and column for later
cntTileW = lpsfTemp.wpxTotal / lpsfTemp.wpxTile;
cntTileH = lpsfTemp.hpxTotal / lpsfTemp.hpxTile;
// And the total number of tiles
lpsfTemp.cntTiles = cntTileW * cntTileH;
lpsfTemp.lprcTiles = new SDL_Rect[cntTileW*cntTileH];
// So we don't calculate this every time, determine each frame's coordinates and store them
for(int h = 0; h < cntTileH; h++)
{
for(int w = 0; w < cntTileW; w++)
{
cntCurr = (h*cntTileW)+w;
lprcCurr = new SDL_Rect;
lprcCurr->w = lpsfTemp.wpxTile;
lprcCurr->h = lpsfTemp.hpxTile;
lprcCurr->x = w*lpsfTemp.wpxTile;
lprcCurr->y = h*lpsfTemp.hpxTile;
lpsfTemp.lprcTiles[cntCurr] = *lprcCurr;
lprcCurr = NULL;
}
}
// Now acquire our list of animations and set the default
//lpsfTemp.htAnims = new map<int, vector<int> >(*htAnims);
lpsfTemp.htAnims = htAnims;
lpsfTemp.vCurr = lpsfTemp.htAnims.find(FXA_WALK_EAST);
lpsfTemp.fiCurr = lpsfTemp.vCurr->second.begin();
this->m_lstFXObjects.push_back(lpsfTemp);
}
else
{
hRefID = 0;
}
return hRefID;
}
It is precisely as the object is pushed that the error occurs. I've stepped through the code numerous times. Initially, I was only able to tell that my iterators were unable to dereference to the FXSurface object. After using watches to identify the exact memory address that the iterator and list objects pointed to, and dereferencing the address, I noticed the reason for my segfaults: all the values which I put into the original FXSurface were pushed down two memory blocks when the list object copied it!
My process for doing this is simple. I set up a breakpoint at the return statement for CreateCharacter, which gives me a view of lpsfTemp (the FXSurface I later add to the list) and m_lstFXObjects (the list I add it to). I scroll through the members of m_lstFXObjects, which brings me to _M_node, which contains the memory address of the only object I have added so far. I add a watch to this address in the form of (FXSurface)-hex address here-
First, find the address:
(There should be a picture here showing the highlighted _M_node attribute containing the list item's address, but I can't post pictures, and I can only post one URL. The second one is by far more important. It's located at http://www.fauxsoup.net/so/address.jpg)
Next, we cast and deference the address. This image shows both lpsfTemp and the copy in m_lstFXObjects; notice the discrepancy?
http://www.fauxsoup.net/so/dereferenced.jpg - See? All the values are in the correct order, just offset by two listings
I had initially been storing fpImages as a char*, so I thought that may have been throwing things off, but now it's just a pointer and the problem persists. Perhaps this is due to the map<int, vector<int> > I store?
FXSDL has a destructor, but no copy constructor and no assignment operator. Yo you're using naked pointers, but violate the Rule of Three.
I'm not going to look any further.
Use smart pointers to manage resources. Do not put a naked resource into a type, except when that type's only intention is to manage this one resource. From another answer given yesterday:
As a rule of thumb: If you have to manually manage resources, wrap each into its own object.
At a glance, I'd say you're double-deleting lpsfSDL and/or lprcTiles. When you have raw pointers in your structure, you need to follow the rule-of-three (implement copy constructor, assignment operator, and destructor) to properly manage the memory.
These lines look wrong to me:
lprcCurr = new SDL_Rect;
lprcCurr->w = lpsfTemp.wpxTile;
lprcCurr->h = lpsfTemp.hpxTile;
lprcCurr->x = w*lpsfTemp.wpxTile;
lprcCurr->y = h*lpsfTemp.hpxTile;
lpsfTemp.lprcTiles[cntCurr] = *lprcCurr;
lprcCurr = NULL;
lpsfTemp.lprcTiles is a SDL_Rect*. lprcTemp.lprcTiles[cntCurr] is a SDL_Rect. You should be writing this, IMHO:
SDL_Rect tmpRect;
tmpRect.w = lpsfTemp.wpxTile;
tmpRect.h = lpsfTemp.hpxTile;
tmpRect.x = w*lpsfTemp.wpxTile;
tmpRect.y = h*lpsfTemp.hpxTile;
lpsfTemp.lprcTiles[cntCurr] = tmpRect;
Dump the lprcCurr entirely.
Now this code:
lpsfTemp.vCurr = lpsfTemp.htAnims.find(FXA_WALK_EAST);
lpsfTemp.fiCurr = lpsfTemp.vCurr->second.begin();
This is bad. These iterators are invalid as soon as the push_back completes. That push_back is making a copy of lpsfTemp. The map and vector members are going to copy themselves and those iterators will copy themselves but they will be pointing to lpsfTemp's members which are going to be destroyed as soon as CreateCharacter exits.
One way to fix that would be to push_back a FXSurface object at the beginning, use back() to get its reference and operate on that instead of lpsfTemp. Then the iterators would stay consistent and they should stay consistent since you are using a list which does not copy its objects around. If you were using a vector or deque or anything other than a list you would need to manage all those pointers and iterators in the copy constructor and assignment operator.
Another thing: Double and triple check your array bounds when you access that lprcTiles array. Any mistake there and you could be scribbling over who knows what.
I don't know if any of that will help you.