socket send() hangs after sending certain amount of bytes - c++

I want to send a string to my nodejs TCP server.
This is the code for my client (C++):
#include <nds.h>
#include <dswifi9.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string>
std::string hostname = "hostname";
int port = 61733;
int sock;
int main(){
Connect(); //function to connect with a WiFi network
ConnectToServer();
unsigned long lastSendTime = 0;
unsigned long sendInterval = 200; //send a message every 200 milliseconds
unsigned int nMsgSent = 0;
while (1){
unsigned long now = milliseconds(); //function to get the time in milliseconds
if ((now - lastSendTime) > sendInterval){
std::string request = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
request += request;
request += std::to_string(nMsgSent);
request += "\n";
int sendResult = ::send(sock, request.c_str(), request.length(), 0);
iprintf("req(%d): %d\n", nMsgSent, sendResult);
nMsgSent++;
lastSendTime = now;
}
}
return 0;
}
This is my server code (JS):
var net = require('net');
var tcpServer = net.createServer();
var tcpPort = 61733;
tcpServer.on('connection', onConnection);
function onConnection(conn){
var remoteAddress = conn.remoteAddress + ':' + conn.remotePort;
console.log('New client connection from: %s', remoteAddress);
conn.on('data', onData);
conn.once('close', onClose);
conn.on('error', onError);
function onData(data){
console.log('connection data from %s: %s', remoteAddress, data);
}
function onClose(){
console.log('connection from %s closed', remoteAddress);
}
function onError(err){
console.log('Connection %s error: %s', remoteAddress, err.message);
}
}
tcpServer.listen(tcpPort, function(){
console.log('Server listening on: %j', tcpServer.address());
});
Here comes the problem:
The client only sends about 180 messages and then send hangs. The server only receives ~120 messages. When I increase the length of the request, the client sends less requests and when I decrease the length, the clients sends more requests. I also found out that when I decrease the sendInterval, I can send more requests before send hangs. I don't know what I'm doing wrong. When I execute similar code with a nodejs client, everything is okay, so the problem lies with the C++ client.
EDIT:
I don't really think this is necessary, but here is the code of connectToServer():
void ConnectToServer()
{
sock = socket(AF_INET, SOCK_STREAM, 0);
if (socket >= 0)
{
printf("Created Socket!\n");
}
else
{
printf("Couldn't create socket");
}
struct hostent * host = gethostbyname(hostname.c_str());
if (host != NULL)
{
printf("Found IP Address!\n");
}
else
{
printf("IP not found");
}
struct sockaddr_in server;
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned long *)(host->h_addr_list[0]));
int connectResult = ::connect(sock, (struct sockaddr *)&server, sizeof(server));
if (connectResult >= 0)
{
printf("Connected to server!\n");
}
else
{
printf("Not connected to server. Err: %d\n", connectResult);
}
}
Output from C++ client(send interval: 2000ms, msgLength: 126-127 chars):
req(1): 126
req(2: 126
req(3): 126
...keeps going on for a while...
req(9): 126
req(10): 126
req(11): 127
req(12): 127
...keeps going on for a while...
req(74): 64
send() hangs after this
Output from nodejs server(only receives 9 messages):
connection data from ip::port: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ12345678900
...keeps going on for a while...
connection data from ip::port: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ12345678909
Test results to see if there's a connection between send interval, message length and the number of sent messages:
sendInterval | msgLength | nMsg
---------------------------------------
200 | 127 | 26
200 | 65 | 33
---------------------------------------
400 | 65 | 59
400 | 127 | 53
---------------------------------------
2000 | 65 | 47
2000 | 127 | 21
(I don't see a connection between these values)

As i can see there are some issues that you should attend:
You are trying to send many message into the while of the client's
code, but you are not checking if there is an error, using the
variable sendResult . It should be checked before send another
message.
You are using the same thread to send data and check for the interval which has an infinity loop to send each message, it consume a lot of CPU. I suggest to create a thread (TSync) to attend the interval with sleep or std::chrono and invoke a method which send the message by socket, but not in the same thread TSync because you will block socket with sleeps.
Finally, you should use FD_SET and selectto check when you can send data by sockets, when the socket is ready to send more bytes.
It is probably that the way you are sending message without control is afecting the TX channel because it is getting fulled so you should control the output operation with FD_SET and select to get synchronized with the socket. In the case of write, Microsoft documentation says:
The select function is used to determine the status of one or more sockets. For each socket, the caller can request information on read, write, or error status.
writefds: Data can be sent.
UPDATED, April 21th: I suggest you share more information about your problem, like the code and configuration of your server to know if there is some time out configured or buffer size. The information that you are supplied is not enough and don't understimated the request that us make you, like this comment:
I don't really think this is necessary, but here is the code of connectToServer():
The connection process is important because we can see if the socket server has some options setted.
In this case all information that you shared us could be helpful instead of assume that is not important.
So, at this moment, that is all that i can help you.
UPDATE April 24th: Try these steps to control the socket transmition and setting a NON-Blocing socket:
After you get a successful connection, in the client, set the socket as NON-BLOCKING.
Use in your loop File Descriptor (FD_SET) and select to check when the socket is ready to write.
Your code should has a code as follow:
void ConnectToServer()
{
//... your code
int connectResult = ::connect(sock, (struct sockaddr *)&server, sizeof(server));
if (connectResult >= 0)
{
u_long iMode = 1;
int iResult = ioctlsocket(sock, FIONBIO, &iMode); //Set the socket Non-Blocking
printf("Connected to server!\n");
}
else
{
printf("Not connected to server. Err: %d\n", connectResult);
}
}
int main(){
Connect(); //function to connect with a WiFi network
ConnectToServer();
unsigned long lastSendTime = 0;
unsigned long sendInterval = 200; //send a message every 200 milliseconds
unsigned int nMsgSent = 0;
fd_set write_fd;
while (1){
unsigned long now = milliseconds(); //function to get the time in milliseconds
if ((now - lastSendTime) > sendInterval){
std::string request = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
request += request;
request += std::to_string(nMsgSent);
request += "\n";
FD_ZERO(&write_fd); //Reset the File Descriptor
FD_SET(sock, &write_fd); //Set se File descriptor to the socket.
int result = select(max_sd, NULL, &write_fd, NULL, NULL); //Wait until the socket is ready to write
if (result < 0)
{
iprintf("There was a problem with the sockets reading.\n");
FD_ZERO(&write_fd);
}
int sendResult = ::send(sock, request.c_str(), request.length(), 0);
iprintf("req(%d): %d\n", nMsgSent, sendResult);
nMsgSent++;
lastSendTime = now;
}
}
return 0;
}

Related

ZMQ_HEARTBEAT_TTL does not discard outgoing queue even if ZMQ_LINGER is set

I have a server which uses a ZMQ_ROUTER to communicate with ZMQ_DEALER clients. I set the ZMQ_HEARTBEAT_IVL and ZMQ_HEARTBEAT_TTL options on the client socket to make the client and server ping pong each other. Beside, because of the ZMQ_HEARTBEAT_TTL option, the server will timeout the connection if it does not receive any pings from the client in a time period, according to zmq man page:
The ZMQ_HEARTBEAT_TTL option shall set the timeout on the remote peer for ZMTP heartbeats. If
this option is greater than 0, the remote side shall time out the connection if it does not
receive any more traffic within the TTL period. This option does not have any effect if
ZMQ_HEARTBEAT_IVL is not set or is 0. Internally, this value is rounded down to the nearest
decisecond, any value less than 100 will have no effect.
Therefore, what I expect the server to behave is that, when it does not receive any traffic from a client in a time period, it will close the connection to that client and discard all the messages in the outgoing queue after the linger time expires. I create a toy example to check if my hypothesis is correct and it turns out that it is not. The chain of events is as followed:
The server sends a bunch of data to the client.
The client receives and processes the data, which is slow.
All send commands return successfully.
While the client is still receiving the data, I unplug the internet cable.
After a few seconds (set by the ZMQ_HEARTBEAT_TTL option), the server starts sending FIN signals to the client, which are not being ACKed back.
The outgoing messages are not discarded (I check the memory consumption) even after a while. They are discarded only if I call zmq_close on the router socket.
So my question is, is this suppose to be how one should use the ZMQ heartbeat mechanism? If it is not then is there any solution for what I want to achieve? I figure that I can do heartbeat myself instead of using ZMQ's built in. However, even if I do, it seems that ZMQ does not provide a way to close a connection between a ZMQ_ROUTER and a ZMQ_DEALER, although that another version of ZMQ_ROUTER - ZMQ_STREAM provides a way to do this by sending an identity frame followed by an empty frame.
The toy example is below, any help would be thankful.
Server's side:
#include <zmq.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int main(int argc, char **argv)
{
void *context = zmq_ctx_new();
void *router = zmq_socket(context, ZMQ_ROUTER);
int router_mandatory = 1;
zmq_setsockopt(router, ZMQ_ROUTER_MANDATORY, &router_mandatory, sizeof(router_mandatory));
int hwm = 0;
zmq_setsockopt(router, ZMQ_SNDHWM, &hwm, sizeof(hwm));
int linger = 3000;
zmq_setsockopt(router, ZMQ_LINGER, &linger, sizeof(linger));
char bind_addr[1024];
sprintf(bind_addr, "tcp://%s:%s", argv[1], argv[2]);
if (zmq_bind(router, bind_addr) == -1) {
perror("ERROR");
exit(1);
}
// Receive client identity (only 1)
zmq_msg_t identity;
zmq_msg_init(&identity);
zmq_msg_recv(&identity, router, 0);
zmq_msg_t dump;
zmq_msg_init(&dump);
zmq_msg_recv(&dump, router, 0);
printf("%s\n", (char *) zmq_msg_data(&dump)); // hello
zmq_msg_close(&dump);
char buff[1 << 16];
for (int i = 0; i < 50000; ++i) {
if (zmq_send(router, zmq_msg_data(&identity),
zmq_msg_size(&identity),
ZMQ_SNDMORE) == -1) {
perror("ERROR");
exit(1);
}
if (zmq_send(router, buff, 1 << 16, 0) == -1) {
perror("ERROR");
exit(1);
}
}
printf("OK IM DONE SENDING\n");
// All send commands have returned successfully
// While the client is still receiving data, I unplug the intenet cable on the client machine
// After a while, the server starts sending FIN signals
printf("SLEEP before closing\n"); // At this point, the messages are not discarded (memory usage is high).
getchar();
zmq_close(router);
zmq_ctx_destroy(context);
}
Client's side:
#include <zmq.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char **argv)
{
void *context = zmq_ctx_new();
void *dealer = zmq_socket(context, ZMQ_DEALER);
int heartbeat_ivl = 3000;
int heartbeat_timeout = 6000;
zmq_setsockopt(dealer, ZMQ_HEARTBEAT_IVL, &heartbeat_ivl, sizeof(heartbeat_ivl));
zmq_setsockopt(dealer, ZMQ_HEARTBEAT_TIMEOUT, &heartbeat_timeout, sizeof(heartbeat_timeout));
zmq_setsockopt(dealer, ZMQ_HEARTBEAT_TTL, &heartbeat_timeout, sizeof(heartbeat_timeout));
int hwm = 0;
zmq_setsockopt(dealer, ZMQ_RCVHWM, &hwm, sizeof(hwm));
char connect_addr[1024];
sprintf(connect_addr, "tcp://%s:%s", argv[1], argv[2]);
zmq_connect(dealer, connect_addr);
zmq_send(dealer, "hello", 6, 0);
size_t size = 0;
int i = 0;
while (size < (1ll << 16) * 50000) {
zmq_msg_t msg;
zmq_msg_init(&msg);
if (zmq_msg_recv(&msg, dealer, 0) == -1) {
perror("ERROR");
exit(1);
}
size += zmq_msg_size(&msg);
printf("i = %d, size = %ld, total = %ld\n", i, zmq_msg_size(&msg), size); // This causes the cliet to be slow
// Somewhere in this loop I unplug the internet cable.
// The client starts sending FIN signals as well as trying to reconnect. The recv command hangs forever.
zmq_msg_close(&msg);
++i;
}
zmq_close(dealer);
zmq_ctx_destroy(context);
}
PS: I know that setting the highwater mark to unlimited is bad practice, however I figure that the problem will be the same even if the highwater mark is low so let's ignore it for now.

Bluetooth can receive data but cannot transmit it (socket programming in C++ to communicate Matlab)

I am using Raspberry Pi 3's internal bluetooth and I am writing a c++ code to connect the bluetooth of my windows PC. On the PC side, I use Matlab and I am able to send bytes to raspberry. However when I try to send bytes from raspberry to PC, I get the following error:
"Transport endpoint is not connected"
and Matlab says "Unsuccessful read: the specified amount of data was not returned within the timeout period".
Another interesting thing is that, when I try to send more than three bytes from Matlab, raspberry only receives the first three as if the rest did not exist. If I use two reads in a row, I am able to get 6 bytes and so on. Just pointing this odd fact since I thought it might be connected with my main problem and be a clue.
I have also tried to send a file manually, using the bluetooth symbol on menubar and it worked. So c++ code should be doing something different to cause this problem.
What is likely to be the cause of my problem? How can I send data from raspberry to my computer using c++?
My code is as follows:
(Referred website: http://people.csail.mit.edu/albert/bluez-intro/index.html)
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>
int main(int argc, char **argv)
{
struct sockaddr_rc loc_addr = { 0 }, rem_addr = { 0 };
char buf[1024] = { 0 };
int s, client, bytes_read;
socklen_t opt = sizeof(rem_addr);
// allocate socket
s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);
bdaddr_t tempBDADDR = {0};
// bind socket to port 1 of the first available
// local bluetooth adapter
loc_addr.rc_family = AF_BLUETOOTH;
loc_addr.rc_bdaddr = tempBDADDR;
loc_addr.rc_channel = (uint8_t) 1;
bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));
// put socket into listening mode
listen(s, 1);
// accept one connection
client = accept(s, (struct sockaddr *)&rem_addr, &opt);
ba2str( &rem_addr.rc_bdaddr, buf );
fprintf(stderr, "accepted connection from %s\n", buf);
memset(buf, 0, sizeof(buf));
// read data from the client
bytes_read = read(client, buf, sizeof(buf));
if( bytes_read > 0 ) {
printf("received [%s]\n", buf);
}
int status = 0;
// send a message
if( status == 0 ) {
status = write(s, "hello!", 6);
}
if( status < 0 ) perror("uh oh");
// close connection
close(client);
close(s);
return 0;
}
Matlab side is as straight forward as:
b = Bluetooth('raspberrypi', 1);
fopen(b);
fwrite(b, uint('1234'));
input = fread(b,6)
fclose(b);
clear('b');
EDIT:
Just figured that I do not get the "Transport endpoint is not connected" when I use the following line. However this only allows me to connect as client, whereas matlab only has a client type of connection. So now, I am able to send data to my computer from another socket without getting any errors, but cannot read it with matlab.
status = connect(s, (struct sockaddr *)&addr, sizeof(addr));
Just figured it out. Leaving this here in case it helps someone else as well.
When a connection is accepted, a new descriptor is returned (along with a new socket). This is a significant difference from connect(). So I was wrong at the following line.
status = write(s, "hello!", 6);
changing it to
status = write(client, "hello!", 6);
worked like a charm.
(Reference: http://users.pja.edu.pl/~jms/qnx/help/tcpip_4.25_en/prog_guide/sock_advanced_tut.html)

multiclent server connected but not receiving messages properly

I have to create a basic p2p connection with c++ sockets, which means each user has a server for listening onto connections and and a client for connecting, right?
For now I'm trying to create a master client which has a dedicated server and is a client too.
This means creating the server and client in the same program and I have used fork() which creates a child process of the server and the parent is the client. Now, fork works fine and I'm using select() to check sockets for reading data and i have modeled the server on this http://beej.us/guide/bgnet/output/html/multipage/advanced.html#select
Now when I run the program, the master client is able to connect to its own dedicated server, but the messages don't always get received by the server. Sometimes, it receives it, sometimes it doesn't. Any idea why?
Also, when a second client gets connected to the master client, and it doesn't have it's own server for now, the server shows that it gets a new connection, but when I write the message and send it, it doesn't receive any message from the second client, but it receives a message from the master client sometimes and not always.
EDIT: Added cout.flush
EDIT: I think forking the process causes some delay when a client and server run on the same program.
UPDATE: Added the new server code which causes a delay by one message (in response to the comments)
Here's the code.
SERVER CODE
while (1) {
unsigned int s;
readsocks = socks;
if (select(maxsock + 1, &readsocks, NULL, NULL, NULL) == -1) {
perror("select");
return ;
}
for (s = 0; s <= maxsock; s++) {
if (FD_ISSET(s, &readsocks)) {
//printf("socket %d was ready\n", s);
if (s == sock) {
/* New connection */
cout<<"\n New Connection";
cout.flush();
int newsock;
struct sockaddr_in their_addr;
socklen_t size = sizeof(their_addr);
newsock = accept(sock, (struct sockaddr*)&their_addr, &size);
if (newsock == -1) {
perror("accept");
}
else {
printf("Got a connection from %s on port %d\n",
inet_ntoa(their_addr.sin_addr), htons(their_addr.sin_port));
FD_SET(newsock, &socks);
if (newsock > maxsock) {
maxsock = newsock;
}
}
}
else {
/* Handle read or disconnection */
handle(s, &socks);
}
}
}
}
void handle(int newsock, fd_set *set)
{
char buf[256];
bzero(buf, 256);
/* send(), recv(), close() */
if(read(newsock, buf, 256)<=0){
cout<<"\n No data";
FD_CLR(newsock, set);
cout.flush();
}
else {
string temp(buf);
cout<<"\n Server: "<<temp;
cout.flush();
}
/* Call FD_CLR(newsock, set) on disconnection */
}

Why select() timeouts sometimes when the client is busy receiving data

I have written simple C/S applications to test the characteristics of non-blocking sockets, here is some brief information about the server and client:
//On linux The server thread will send
//a file to the client using non-blocking socket
void *SendFileThread(void *param){
CFile* theFile = (CFile*) param;
int sockfd = theFile->GetSocket();
set_non_blocking(sockfd);
set_sock_sndbuf(sockfd, 1024 * 64); //set the send buffer to 64K
//get the total packets count of target file
int PacketCOunt = theFile->GetFilePacketsCount();
int CurrPacket = 0;
while (CurrPacket < PacketCount){
char buffer[512];
int len = 0;
//get packet data by packet no.
GetPacketData(currPacket, buffer, len);
//send_non_blocking_sock_data will loop and send
//data into buffer of sockfd until there is error
int ret = send_non_blocking_sock_data(sockfd, buffer, len);
if (ret < 0 && errno == EAGAIN){
continue;
} else if (ret < 0 || ret == 0 ){
break;
} else {
currPacket++;
}
......
}
}
//On windows, the client thread will do something like below
//to receive the file data sent by the server via block socket
void *RecvFileThread(void *param){
int sockfd = (int) param; //blocking socket
set_sock_rcvbuf(sockfd, 1024 * 256); //set the send buffer to 256
while (1){
struct timeval timeout;
timeout.tv_sec = 1;
timeout.tv_usec = 0;
fd_set rds;
FD_ZERO(&rds);
FD_SET(sockfd, &rds)'
//actually, the first parameter of select() is
//ignored on windows, though on linux this parameter
//should be (maximum socket value + 1)
int ret = select(sockfd + 1, &rds, NULL, NULL, &timeout );
if (ret == 0){
// log that timer expires
CLogger::log("RecvFileThread---Calling select() timeouts\n");
} else if (ret) {
//log the number of data it received
int ret = 0;
char buffer[1024 * 256];
int len = recv(sockfd, buffer, sizeof(buffer), 0);
// handle error
process_tcp_data(buffer, len);
} else {
//handle and break;
break;
}
}
}
What surprised me is that the server thread fails frequently because of socket buffer full, e.g. to send a file of 14M size it reports 50000 failures with errno = EAGAIN. However, via logging I observed there are tens of timeouts during the transfer, the flow is like below:
on the Nth loop, select() succeeds and read 256K's data successfully.
on the (N+1)th loop, select() failed with timeout.
on the (N+2)th loop, select() succeeds and read 256K's data successfully.
Why there would be timeouts interleaved during the receving? Can anyone explain this phenomenon?
[UPDATE]
1. Uploading a file of 14M to the server only takes 8 seconds
2. Using the same file with 1), the server takes nearly 30 seconds to send all data to the client.
3. All sockets used by the client are blocking. All sockets used by the server are non-blocking.
Regarding #2, I think timeouts are the reason why #2 takes much more time then #1, and I wonder why there would be so many timeouts when the client is busy in receiving data.
[UPDATE2]
Thanks for comments from #Duck, #ebrob, #EJP, #ja_mesa , I will do more investigation today
then update this post.
Regarding why I send 512 bytes per loop in the server thread, it is because I found the server thread sends data much faster than the client thread receiving them. I am very confused that why timeout happened to the client thread.
Consider this more of a long comment than an answer but as several people have noted the network is orders of magnitude slower than your processor. The point of non-blocking i/o is that the difference is so great that you can actually use it to do real work rather than blocking. Here you are just pounding on the elevator button hoping that makes a difference.
I'm not sure how much of your code is real and how much is chopped up for posting but in the server you don't account for (ret == 0) i.e. normal shutdown by the peer.
The select in the client is wrong. Again, not sure if that was sloppy editing or not but if not then the number of parameters are wrong but, more concerning, the first parameter - i.e. should be the highest file descriptor for select to look at plus one - is zero. Depending on the implementation of select I wonder if that is in fact just turning select into a fancy sleep statement.
You should be calling recv() first and then call select() only if recv() tells you to do so. Don't call select() first, that is a waste of processing. recv() knows if data is immediately available or if it has to wait for data to arrive:
void *RecvFileThread(void *param){
int sockfd = (int) param; //blocking socket
set_sock_rcvbuf(sockfd, 1024 * 256); //set the send buffer to 256
char buffer[1024 * 256];
while (1){
int ret = 0;
int len = recv(sockfd, buffer, sizeof(buffer), 0);
if (len == -1) {
if (WSAGetLastError() != WSAEWOULDBLOCK) {
//handle error
break;
}
struct timeval timeout;
timeout.tv_sec = 1;
timeout.tv_usec = 0;
fd_set rds;
FD_ZERO(&rds);
FD_SET(sockfd, &rds)'
//actually, the first parameter of select() is
//ignored on windows, though on linux this parameter
//should be (maximum socket value + 1)
int ret = select(sockfd + 1, &rds, NULL, &timeout );
if (ret == -1) {
// handle error
break;
}
if (ret == 0) {
// log that timer expires
break;
}
// socket is readable so try read again
continue;
}
if (len == 0) {
// handle graceful disconnect
break;
}
//log the number of data it received
process_tcp_data(buffer, len);
}
}
Do something similar on the sending side as well. Call send() first, and then call select() waiting for writability only if send() tells you to do so.

What is the proper process for ICMP echo request/reply on unreachable destinations?

Goal:
I need to be able to ping a network switch to determine whether or not it is available. This is meant to tell the user that either the network cabling is unplugged, the network switch is unavailable, or some other problem lies within the network communication pathway. I realize this is not a comprehensive diagnosis tool, but something is better than nothing.
Design:
I planned on using ICMP with raw sockets to send five (5) ping messages to a particular address in IPv4 dot-notation. I will setup an ICMP filter on the socket and will not be creating my own IP header. Transmission of the ICMP will be through the sendto method and reception through the recvfrom method. This will occur on a single thread (though another thread can be used to break transmission and reception apart). Reception of a message will further be filtered by matching the ID of the received message to the ID that was transmitted. The ID stored will be the running process ID of the application. If an ICMP_ECHOREPLY message is received and the ID of the message and the stored ID match, then a counter is incremented until five (4) has been reached (the counter is zero-based). I will attempt to send a ping, wait for its reply, and repeat this process five (5) times.
The Problem:
After having implemented my design, whenever I ping a particular valid network address (say 192.168.11.15) with an active network participant, I receive ICMP_ECHOREPLY messages for each of the five (5) pings. However, whenever I ping a valid network address (say 192.168.30.30) with inactive network participants (meaning no device is connected to the particular address), I get one (1) ICMP_DEST_UNREACH, and four (4) ICMP_ECHOREPLY messages. The ID in the reply messages match the ID stored within the software. Whenever I perform a 'ping 192.168.30.30' from the commandline, I get 'From 192.168.40.50 icmp_seq=xx Destination Host Unreachable'. Am I not supposed to be receiving ICMP_DEST_UNREACH messages instead of ICMP_ECHOREPLY messages?
The Code:
Ping.h:
#include <netinet/in.h>
#include <linux/ip.h>
#include <linux/ipmc.h>
#include <arpa/inet.h>
#include <cstdio>
#include <cstdlib>
#include <stdint.h>
#include <time.h>
#include <errno.h>
#include <string>
#include <cstring>
#include <netdb.h>
class Ping
{
public:
Ping(std::string host) : _host(host) {}
~Ping() {}
void start()
{
int sock = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
if(sock < 0)
{
printf("Failed to create socket!\n");
close(sock);
exit(1);
}
setuid(getuid());
sockaddr_in pingaddr;
memset(&pingaddr, 0, sizeof(sockaddr_in));
pingaddr.sin_family = AF_INET;
hostent *h = gethostbyname(_host.c_str());
if(not h)
{
printf("Failed to get host by name!\n");
close(sock);
exit(1);
}
memcpy(&pingaddr.sin_addr, h->h_addr, sizeof(pingaddr.sin_addr));
// Set the ID of the sender (will go into the ID of the echo msg)
int pid = getpid();
// Only want to receive the following messages
icmp_filter filter;
filter.data = ~((1<<ICMP_SOURCE_QUENCH) |
(1<<ICMP_DEST_UNREACH) |
(1<<ICMP_TIME_EXCEEDED) |
(1<<ICMP_REDIRECT) |
(1<<ICMP_ECHOREPLY));
if(setsockopt(sock, SOL_RAW, ICMP_FILTER, (char *)&filter, sizeof(filter)) < 0)
{
perror("setsockopt(ICMP_FILTER)");
exit(3);
}
// Number of valid echo receptions
int nrec = 0;
// Send the packet
for(int i = 0; i < 5; ++i)
{
char packet[sizeof(icmphdr)];
memset(packet, 0, sizeof(packet));
icmphdr *pkt = (icmphdr *)packet;
pkt->type = ICMP_ECHO;
pkt->code = 0;
pkt->checksum = 0;
pkt->un.echo.id = htons(pid & 0xFFFF);
pkt->un.echo.sequence = i;
pkt->checksum = checksum((uint16_t *)pkt, sizeof(packet));
int bytes = sendto(sock, packet, sizeof(packet), 0, (sockaddr *)&pingaddr, sizeof(sockaddr_in));
if(bytes < 0)
{
printf("Failed to send to receiver\n");
close(sock);
exit(1);
}
else if(bytes != sizeof(packet))
{
printf("Failed to write the whole packet --- bytes: %d, sizeof(packet): %d\n", bytes, sizeof(packet));
close(sock);
exit(1);
}
while(1)
{
char inbuf[192];
memset(inbuf, 0, sizeof(inbuf));
int addrlen = sizeof(sockaddr_in);
bytes = recvfrom(sock, inbuf, sizeof(inbuf), 0, (sockaddr *)&pingaddr, (socklen_t *)&addrlen);
if(bytes < 0)
{
printf("Error on recvfrom\n");
exit(1);
}
else
{
if(bytes < sizeof(iphdr) + sizeof(icmphdr))
{
printf("Incorrect read bytes!\n");
continue;
}
iphdr *iph = (iphdr *)inbuf;
int hlen = (iph->ihl << 2);
bytes -= hlen;
pkt = (icmphdr *)(inbuf + hlen);
int id = ntohs(pkt->un.echo.id);
if(pkt->type == ICMP_ECHOREPLY)
{
printf(" ICMP_ECHOREPLY\n");
if(id == pid)
{
nrec++;
if(i < 5) break;
}
}
else if(pkt->type == ICMP_DEST_UNREACH)
{
printf(" ICMP_DEST_UNREACH\n");
// Extract the original data out of the received message
int offset = sizeof(iphdr) + sizeof(icmphdr) + sizeof(iphdr);
if(((bytes + hlen) - offset) == sizeof(icmphdr))
{
icmphdr *p = reinterpret_cast<icmphdr *>(inbuf + offset);
id = ntohs(p->un.echo.id);
if(origid == pid)
{
printf(" IDs match!\n");
break;
}
}
}
}
}
}
printf("nrec: %d\n", nrec);
}
private:
int32_t checksum(uint16_t *buf, int32_t len)
{
int32_t nleft = len;
int32_t sum = 0;
uint16_t *w = buf;
uint16_t answer = 0;
while(nleft > 1)
{
sum += *w++;
nleft -= 2;
}
if(nleft == 1)
{
*(uint16_t *)(&answer) = *(uint8_t *)w;
sum += answer;
}
sum = (sum >> 16) + (sum & 0xFFFF);
sum += (sum >> 16);
answer = ~sum;
return answer;
}
std::string _host;
};
main.cpp:
#include "Ping.h"
int main()
{
// Ping ping("192.168.11.15");
Ping ping("192.168.30.30");
ping.start();
while(1) sleep(10);
}
In order to compile, just type 'g++ main.cpp -o ping' into the command-line of a Linux box, and it should compile (that is, if all of the source code is installed).
Conclusion:
Can anyone tell me why I am receiving one (1) ICMP_DEST_UNREACH and four (4) ICMP_ECHOREPLY messages from a device that isn't on that particular network address?
NOTE: You can change the network IP address from the main.cpp file. Just change the IP to a device that actually exists on your network or a device that doesn't exist on your network.
I'm also not interested in criticisms about coding style. I know it isn't pretty, has 'C' style casting mixed with C++ casts, has poor memory management, etc, but this is only prototype code. It isn't meant to be pretty.
Ok i found the error. Look at this two lines.
int bytes = sendto(sock, packet, sizeof(packet), 0, (sockaddr *)&pingaddr, sizeof(sockaddr_in));
bytes = recvfrom(sock, inbuf, sizeof(inbuf), 0, (sockaddr *)&pingaddr, (socklen_t *)&addrlen);
both functions uses pingaddr pointer as parameter, but this should avoided because in the sendto() function is used to point the destination IP of the icmp packet but in the recvfrom() is used to get back the IP of the host that's replying.
Let's say pingaddr is set with an IP not reachable. After your first ICMP_REQUEST the first gateway will reply to you with a ICMP_DEST_UNREACH and... here comes the error... when recvfrom is called, pingaddr structure will be overwritten with the IP of the gateway.
SO... from the second ping you'll be pointing to the gateway IP that, obviously, exists and will reply with a ICMP_ECHOREPLY.
SOLUTION:
avoid pass the same sockaddr_in structure pointer to both sendto() and recvfrom().