I am having troubles refactoring the following code to use proper Dependency injection.
That is because I don't have access on the State Class constructors
My main limitation now is that the inject implementation mapping is done with strings and in case of a typo there will be a nice fat exception.
How can I:
have compile time checks that the implementation indeed exists?
having dynamic map and get rid of the strings
Central point of configuration
here is some sample code to demonstrate the issue
struct IState
{
virtual void Entry() = 0;
virtual void Update() = 0;
};
struct ABase :IState
{
void Entry() override { /* Default implementation..*/ }
void Update() override { /* Default implementation..*/}
};
struct A1 : ABase
{
void Entry() override { /*...*/ }
void Update() override { /*...*/ }
};
struct A2 :ABase
{
void Entry() override { /*...*/ }
};
struct BBase :IState
{
void Entry() override { /* Default implementation..*/ }
void Update() override { /* Default implementation..*/ }
};
struct B1 :BBase
{
void Entry() override { /*...*/ }
};
// This is to return the desired implementation based on a key string
struct SFactory
{
SFactory()
{
// This is the binding of the implementations and the States.
// I don't really like it,
// but I could live with it IF it was the only place
// that the keys "A" "B" were mentioned.
mImplementedStates.insert(std::make_pair("A", std::shared_ptr<IState>(new A2())));
mImplementedStates.insert(std::make_pair("B", std::shared_ptr<IState>(new B1())));
}
static SFactory& GetInstance()
{
static SFactory msInstance;
return msInstance;
}
std::shared_ptr<IState> GetState(std::string implementation) {
auto it = mImplementedStates.find(implementation);
if (it == mImplementedStates.end())
{
throw std::invalid_argument("Unregistered Implementation: " + implementation);
}
return it->second;
}
private:
std::map<std::string, std::shared_ptr<IState>> mImplementedStates;
};
// this is the class that I want to inject functionality. This is a wrapper of the actual implementation.
struct AStateConcrete : ThirdPartyLink
{
// Cannot have my onw constructor because of the library
// The library instantiate me.
private: std::shared_ptr<IState> mState;
public:
// This is how I pick the once by the 3rd party library
void Entry()
{
// this is the ugly part. This "A" wont change however someone
// that wants to create a new implementation has to visit this code
// to know which "id" he should use in the factory. IF he makes a typo
// this will an throw an exception
mState = SFactory::GetInstance().GetState("A");
mState->Entry();
}
void Update()
{
mState->Update();
}
void GoB()
{
//...
}
};
// this is another class that I want to inject functionality. This is a wrapper of the actual implementation.
struct BStateConcrete : ThirdPartyLink
{
// Cannot have my onw constructor because of the library
// The library instantiate me.
private: std::shared_ptr<IState> mState;
public:
// This is how I pick the functionalityCalled once by the 3rd party library
void Entry()
{
mState = SFactory::GetInstance().GetState("B");
mState->Entry();
}
void Update()
{
mState->Update();
}
void GoA()
{
//...
}
};
int main()
{
SFactory::GetInstance();
ThirdPartyStateMachine<ThirdPartyLink, AStateConcrete /*As initial State*/> sm; // D
// A::Entry() is called;
sm->Update(); // A::Update() is called (thus A2::Update();)
sm->GoB();
// B::Entry() is called (Thus B1::Entry();)
sm->Update(); // B::Update() is called (thus B1::Update();)
}
having dynamic map and get rid of the strings
Central point of configuration
Currently you have this mapping/relation:
---> --->
AStateConcrete "A" A2
BStateConcrete "B" B1
You could leave out that intermediate step and directly map:
--->
AStateConcrete A2
BStateConcrete B1
For this, you could replace your map in the factory with
std::map<std::type_info, std::shared_ptr<IState>> mImplementedViews;
and use the typeid operator (which returns the needed std::type_info) to populate it.
Though this won't help you for your first point:
have compile time checks that the implementation indeed exists?
For that you need to encode the information about the available implementations in some type (otherwise the compiler cannot check it). This is some metaprogramming that's a lot of fun, or you use for example boost MPL set.
Related
I use a third party engine, that has a class "Sprite". My classes use sprite, and call its methods.
There is a probability that "Sprite" will be replaced in the future by some other game engine. I would like to have a layer between my class, and Sprite, so that it is easy to swap out Sprite in future.
I figure there are at least two ways to do this:
Implement a wrapper class that has a bridge method for every method in sprite, and that my code uses to access the sprite.
For Example:
Wrapper{
private:
Sprite* foo;
public:
void method1(){
foo->method1();
}
int method2(){
return foo->method2();
}
}
The downside with this approach is that there is a lot of work to write a method for each method in Sprite, even though all it is doing is just calling the method and returning whatever result. It is also a lot of maintenance work each time there is a change in sprite.
Alternative 2 : Some kind of magic by overloading the -> operator.
struct LoggingFoo : public Sprite {
void log() const { } //Just a method for logging.Doesn't matter.
Foo const *operator -> () const { log(); return this; }
Foo *operator -> () { log(); return this; }
};
Not very sure of all the things to keep in mind with this option ? For example, what happens to class methods ? Does it make sense to publicly inherit Sprite for this use case ?
Note: In practice, there is no object that is intended to inherit from Sprite in my code.
EDIT:
What would be the most concise way to create the wrapper, yet expose all public member variables and functions? For example, not having to specify each and every variable and function to expose ?
You just need to create a Wrapper class that publicly inherits from Sprite and use it. It automatically fully inherits all the methods and variables of the Sprite class in the Wrapper class with the same level of visibility:
class Sprite
{
public:
void foo(){};
void bar(){};
int mode = 0;
};
class Wrapper : public Sprite
{
};
int main()
{
Wrapper w;
w.foo();
w.mode = 5;
w.bar();
}
If in the future you switch to another library, you will inherit Wrapper from the new class and implement only removed or changed methods:
class NewSprite
{
public:
void foo(){}; // same interface
void new_bar(int mode){};
};
class Wrapper : public NewSprite
{
public:
void bar() // wrap new method
{
new_bar(mode);
}
int mode = 0;
};
But a better approach would be to build a higher-level Wrapper interface so that when you completely change the library API, you don't have to rewrite every method:
class Wrapper
{
public:
void do_operation() // high-level interface
{
s_.foo();
s_.mode = 5;
s_.bar();
}
protected:
Sprite s_;
};
class Wrapper
{
public:
void do_operation() // high-level interface
{
s_.foo();
mode = 5;
s_.new_bar(mode);
}
int mode = 0;
protected:
NewSprite s_;
};
int main()
{
Wrapper w;
w.do_operation();
}
You could also consider a slightly different implementation to your wrapper using private (i.e., is implemented in terms of) inheritance.
This implementation removes the burden of wrapping every function and instead just add a using statement for every function you want to expose.
#include <iostream>
class Sprite
{
public:
Sprite() : d_value(0) {}
void method1() { std::cout << "Sprite::method1()\n"; }
void method2() { std::cout << "Sprite::method2()\n"; }
int d_value;
};
class Wrapper : private Sprite
{
public:
using Sprite::method1;
using Sprite::method2;
using Sprite::d_value;
};
int main()
{
Wrapper w;
w.method1();
w.method2();
w.d_value = 3;
return 0;
}
Live Example
In Java you can create an object whilst at the same time providing (or overloading) abstract functions within the object, thus:
ActionListener al = new ActionListener() {
public void actionPerformed(ActionEvent e) {
// Whatever in here
}
};
I really like that way of doing it, and was wondering if there was some similar construct in C++.
Basically I want a base class with a couple of PV functions declared in it (amongst other stuff), and the user to create an instance of that class whilst at the same time providing the body of the PV functions.
I know I could create child classes, but that seems a little clunky for what I need, where each child class would be unique and only be used to make one instance each.
I have thought about providing lamdas to the constructor and using those instead of actual member functions, but that really seems messy and hard for a novice user to get their head around - not to mention that it would be too rigid (I'd also like to be able to override some non-pure virtual functions optionally).
So is child classes the only way to go, or is there some lesser-known construct in some newer C++ standard that I don't know about that could do what I want?
To expand a little - the idea is to have a class like:
class Thread {
// other stuff
public:
virtual void setup() = 0;
virtual void loop() = 0;
// other functions, some virtual but not pure
};
Thread threadOne {
void setup() {
// Init code for this thread
}
void loop() {
// Run code for this thread
}
};
Thread threadTwo {
void setup() {
// Init code for this thread
}
void loop() {
// Run code for this thread
}
};
Obviously not that syntax, but it gives you an idea of how I'd like to use the class.
It's intended to be run on an embedded system with a slimmed-down C++ implementation (it's g++ but without the full STL). End users aren't the brightest bunch, so it has to be kept as simple to understand as possible.
Anonymous child classes are the closest to what I'd like (though still not perfect). I can use CPP macros to help abstract some of the class implementation syntactic sugar which would help.
Here's a compilable construct I have come up with. Is there anything "wrong" with this approach given the constraints above?
#define THREAD(NAME, CONTENT) class : public Thread {\
public:\
CONTENT\
} NAME;
class Thread {
private:
uint32_t stack[256]; // 1kB stack
volatile bool _running;
public:
virtual void setup() = 0;
virtual void loop() = 0;
void start();
void stop();
uint8_t state();
static void spawn(Thread *thr);
void threadRunner();
};
void Thread::spawn(Thread *thread) {
thread->threadRunner();
}
void Thread::start() {
Thread::spawn(this);
}
void Thread::threadRunner() {
_running = true;
setup();
while (_running) {
loop();
}
}
void Thread::stop() {
_running = false;
}
uint8_t Thread::state() {
return 0;
}
THREAD(myThread,
void setup() override {
}
void loop() override {
}
)
void setup() {
myThread.start();
}
void loop() {
}
Obviously it doesn't actually do anything yet - the whole of the threading back-end is a separate issue, and will be ported over from some existing code I wrote a few years back. I am mainly interested in simplifying the interface for the end user.
There is multiple possibilities, but I'd stick with something simple and versatile: callbacks and lambdas instead of virtual function and inheritance.
class ActionListener
{
std::function<void(int)> _action_performed;
public:
template<class CB>
ActionListener(CB cb) : _action_performed(cb) {}
void click() { _action_performed(0); }
};
int main()
{
ActionListener al([](int n) { std::cout << "Action Performed #" << n << "\n"; });
al.click(); // prints "Action Performed #0"
}
live demo
I'd also like to be able to override some non-pure virtual functions optionally
Which, semantically speaking, means providing a default behavior. This is possible:
ActionListener(CB cb) : _action_performed(cb) {} // construct an AL with the given callback
ActionListener() : _action_performed(default_action_performed) {} // construct an AL with a default callback
void default_action_performed(int n) { /*...*/ }
well, as you already mentioned, one way would be child classes.
another way would be providing some std::functions (or lambdas), either in the constructor or have some set functions.
store the function as a member and call this once your "virtual" member function is called: If you want it optional:
class MyBase
{
public:
MyBase();
void SetFunc(const std::function<int()>& myFun)
{
m_myFun = myFun;
}
int MyVirtFunc()
{
if(m_myFun)
{
return m_myFun();
}
else
{
return 42;
}
}
private:
std::function<int()> m_myFun;
}
if you want the functions given mandatory, put them in the constructor:
class MyBase
{
public:
MyBase(const std::function<int()>& myFun)
: m_myFun(myFun) {}
int MyVirtFun() { return m_myFun(); }
private:
const std::function<int()> m_myFun;
}
I was wondering whether there's a way to override a function for a specific instance only. For ex,
class A
{
public:
...
void update();
...
}
int main()
{
...
A *first_instance = new A();
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A *second_instance = new A();
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A *third_instance = new A();
// ....so on.
...
}
Is there a way to achieve this?
I think virtual function is just what you want, with virtual function, different instances of the same type can have different functions, but you need to inherit the base class. for example
class A
{
public:
...
virtual void update()
{
std::cout << "Class A\n";
}
...
};
class B: public A
{
public:
virtual void update()
{
std::cout << "Class B\n";
}
};
class C: public A
{
public:
virtual void update()
{
std::cout << "Class C\n";
}
};
int main()
{
...
A *first_instance = new A();
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A *second_instance = new B();
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A *third_instance = new C();
// ....so on.
...
}
each instance in the above code will bind different update functions.
Besides, you can also use function pointer to implement your requirement, but it is not recommended. For example
class A
{
public:
A(void(*u)())
{
this->update = u;
}
...
void (*update)();
};
void a_update()
{
std::cout << "update A\n";
}
void b_update()
{
std::cout << "update B\n";
}
void c_update()
{
std::cout << "update C\n";
}
int main()
{
...
A first_instance(a_update);
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A second_instance(b_update);
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A third_instance(c_update);
// ....so on.
...
}
Hope helps!
Hold a function in the class.
#include <iostream>
#include <functional>
using namespace std;
class Foo
{
public:
Foo(const function<void ()>& f) : func(f)
{
}
void callFunc()
{
func();
}
private:
function<void ()> func;
};
void printFoo() { cout<<"foo"<<endl; }
void printBar() { cout<<"bar"<<endl; }
int main()
{
Foo a(printFoo);
Foo b(printBar);
a.callFunc();
b.callFunc();
}
You may have noticed that the end brace of a class is often followed by a semicolon, whereas the end braces of functions, while loops etc don't. There's a reason for this, which relates to a feature of struct in C. Because a class is almost identical to a struct, this feature exists for C++ classes too.
Basically, a struct in C may declare a named instance instead of (or as well as) a named "type" (scare quotes because a struct type in C isn't a valid type name in itself). A C++ class can therefore do the same thing, though AFAIK there may be severe limitations on what else that class can do.
I'm not in a position to check at the moment, and it's certainly not something I remember using, but that may mean you can declare a named class instance inheriting from a base class without giving it a class name. There will still be a derived type, but it will be anonymous.
If valid at all, it should look something like...
class : public baseclass // note - no derived class name
{
public:
virtual funcname ()
{
...
}
} instancename;
Personally, even if this is valid, I'd avoid using it for a number of reasons. For example, the lack of a class name means that it's not possible to define member functions separately. That means that the whole class declaration and definition must go where you want the instance declared - a lot of clutter to drop in the middle of a function, or even in a list of global variables.
With no class name, there's presumably no way to declare a constructor or destructor. And if you have non-default constructors from the base class, AFAIK there's no way to specify constructor parameters with this.
And as I said, I haven't checked this - that syntax may well be illegal as well as ugly.
Some more practical approaches to varying behaviour per-instance include...
Using dependency injection - e.g. providing a function pointer or class instance (or lambda) for some part of the behavior as a constructor parameter.
Using a template class - effectively compile-time dependency injection, with the dependency provided as a function parameter to the template.
I think it will be the best if you'll tell us why do you need to override a function for a specific instance.
But here's another approach: Strategy pattern.
Your class need a member that represent some behaviour. So you're creating some abstract class that will be an interface for different behaviours, then you'll implement different behaviours in subclasses of that abstract class. So you can choose those behaviours for any object at any time.
class A;//forward declaration
class Updater
{
public:
virtual ~Updater() {};//don't forget about virtual destructor, though it's not needed in this case of class containing only one function
virtual void update(A&) = 0;
}
class SomeUpdater
{
public:
virtual void update(A & a);//concrete realisation of an update() method
}
class A
{
private:
Updater mUpdater;
public:
explicit A(Updater updater);//constructor takes an updater, let's pretend we want to choose a behaviour once for a lifetime of an object - at creation
void update()
{
mUpdater.update(this);
}
}
You can use local classes, yet, personally, I consider the "hold function in the class" approach mentioned in the other answer better. I'd recommend the following approach only if doFunc must access internals of your base class, which is not possible from a function held in a member variable:
class ABase {
public:
void Func () { this->doFunc (); }
private:
virtual void doFunc () = 0;
public:
virtual ~ABase () { }
};
ABase* makeFirstA () {
class MyA : public ABase {
virtual void doFunc () { std::cout << "First A"; }
};
return new MyA;
}
ABase* makeSecondA () {
class MyA : public ABase {
virtual void doFunc () { std::cout << "Second A"; }
};
return new MyA;
}
int main () {
std::shared_ptr<ABase> first (makeFirstA ());
std::shared_ptr<ABase> second (makeSecondA ());
first->Func ();
second->Func ();
}
From a design patterns point of view, the "local classes" approach implements the template method pattern, while the "hold a function(al) in a member variable" approach reflects the strategy pattern. Which one is more appropriate depends on what you need to achieve.
I am learning C++ and I am stuck with a problem. I need a way to use a specific subclass within base class. Does it make sense or I am using a wrong approach? SelectBrand should select the subclass, how can I do it?
Here below my simplified classes:
-----
class Protocol {
public:
Protocol() {};
~Protocol() {};
int openPort();
int readPort(char *buffer);
.....
private:
Protocol (const Protocol&);
};
int Protocol::openPort() {......};
int Protocol::readPort() {.........};
/***********************************************************************************/
class Device{
public:
Device(Protocol& port):_protocol(port){}
~Device();
virtual int getEvent(char *buffer) { return -1; }
int Device::selectBrand();
..............
protected:
Protocol& _protocol;
private:
int brand;
Device(const Device&orig);
};
Device::~Device() {}
int Device::selectBrand() {
......
switch (X)
case 1:
"use subclass Brand_B"
case 2:
"use subclass Brand_B"
.......
}
/***********************************************************************************/
class Brand_A:public Device {
public:
Brand_A(Protocol& port);
~Brand_A();
int getEvent(void *rawData);
private:
Brand_A(const Brand_A&);
};
Brand_A::Brand_A(Protocol& port):Device(port) {}
Brand_A::~Brand_A() {}
int Brand_A::getEvent(void *rawData) {
.... readPort(......);
}
/***********************************************************************************/
class Brand_B:public Device {
public:
Brand_B(Protocol& port);
~Brand_B();
int getEvent(void *rawData);
private:
Brand_B(const Brand_B&);
};
Brand_B::Brand_B(Protocol& port):Device(port) {}
Brand_B::~Brand_B() {}
int Brand_B::getEvent(void *rawData) {
.... readPort(......);
}
/* main **********************************************************/
int main(int argc, char **argv) {
Device *mydev;
char *buffer;
..............
mydev->selectBrand();
..........
mydev->getEvent(buffer);
...........
}
This is not a good idea.
Generally the answer is dynamic_cast, but invoking specific behavior of descendants from a base class is usually a bad design sign.
You can try inverting the class hierarchy and using templates.
I figured I should flesh out the comment I made above. First of all, you can check out the Wikipedia page for more information on the abstract factory pattern. Basically it allows you to access different implementations of an interface, with the implementation used determined at runtime. However, you still don't know which implementation you're getting as that is decided in the factory method that returns the implementation of the interface. As a result, you can only ever use the members in the interface and not a specific implementation. An example that uses your classes above would be something like:
class Device
{
virtual int getEvent(void *rawData) = 0;
}
class BrandA : public Device
{
// define constructors/destructors etc.
int getEvent(void *rawData)
{
// BrandA's implementation for getEvent
}
}
class BrandB : public Device
{
// define constructors/destructors etc.
int getEvent(void *rawData)
{
// BrandB's implementation for getEvent
}
}
class DeviceFactory
{
static Device *CreateDevice(/*any parameters for determining the device?*/)
{
// You probably don't want to randomly determine which implementation you use...
if ((rand() % 2) == 0)
{
return new BrandA();
}
else
{
return new BrandB();
}
}
}
int main()
{
// CreateDevice will decide which type of device we use, however we can only
// explicitly reference the members of the base class (Device).
Device *myDevice = DeviceFactory::CreateDevice();
myDevice->getEvent();
return 0;
}
It looks like you might be trying to implement something like polymorphism when C++ will do that for you. If you define virtual methods in your base class and override them in your sub classes, calls to those methods on a pointer or reference to the base type should result in the sub class' implementation being called.
For example:
class BaseClass
{
virtual void DoSomething()
{
printf("base");
}
};
class SubClass : public BaseClass
{
void DoSomething()
{
printf("sub");
}
};
int main()
{
BaseClass *myBase = new SubClass();
myBase->DoSomething(); // should print "sub" to stdout
return 0;
}
You have to know what derived type (type of subclass) you want to use when you create it so that the instance has the added functionality of the derived type. If you don't, all you get is the functionality of the base class, and you cannot treat it as anything but the base class (or anything further up the inheritance hierarchy if your base class inherits from something).
You may even want to use a member to differentiate between different instances if they're not actually doing anything different. It's hard to tell from the code example exactly what you want to do. Maybe a more specific example of what you're trying to achieve rather than how you're trying to achieve it would help.
please, let me reformulate the problem. I have 1 baseClass and some subclasses; Brand_A....Brand_N
Now, in the main() I don't know in advance which subclass I will use; this selection is demanded to a function in the baseClass which I called selectBrand. What I need is a mechanism to select and use the right subclass based on internal conditions. I want to masquerade to the main() the selected subclass. How to get this?
I implemented and tested this code; it works fine. Is it good design or can be done better?
class BehaviorBase
{
public:
virtual ~BehaviorBase() {}
virtual void DoSomethingOn(Object* obj) {}
};
class Object
{
public:
BehaviorBase* behavior;
void DoSomething();
void ChangeBehavior(int param);
~Object();
}
class BehaviorA: public BehaviorBase
{
void DoSomethingOn(Object* obj)
{
printf("Behavior A\n");
}
};
class BehaviorB: public BehaviorBase
{
string other_data;
void DoSomethingOn(Object* obj)
{
printf("Behavior B\n");
}
};
void Object::DoSomething()
{
behavior->DoSomethingOn(this);
}
Object::~Object()
{
delete behavior;
}
void Object::ChangeBehavior(int param)
{
delete behavior;
switch(param)
{
case 1: behavior = new BehaviorA; break;
case 2: behavior = new BehaviorB; break;
}
}
int main(int argc, char **argv) {
int param=1;
Object *obj;
obj= new Object;
obj->ChangeBehavior(param);
obj->DoSomething();
delete obj;
return(0);
}
I've recently returned to C++ development after a hiatus, and have a question regarding
implementation of the State Design Pattern. I'm using the vanilla pattern, exactly as
per the GoF book.
My problem is that the state machine itself is based on some hardware used as part of
an embedded system - so the design is fixed and can't be changed. This results in a
circular dependency between two of the states (in particular), and I'm trying to
resolve this. Here's the simplified code (note that I tried to resolve this by using
headers as usual but still had problems - I've omitted them in this code snippet):
#include <iostream>
#include <memory>
using namespace std;
class Context
{
public:
friend class State;
Context() { }
private:
State* m_state;
};
class State
{
public:
State() { }
virtual void Trigger1() = 0;
virtual void Trigger2() = 0;
};
class LLT : public State
{
public:
LLT() { }
void Trigger1() { new DH(); }
void Trigger2() { new DL(); }
};
class ALL : public State
{
public:
ALL() { }
void Trigger1() { new LLT(); }
void Trigger2() { new DH(); }
};
// DL needs to 'know' about DH.
class DL : public State
{
public:
DL() { }
void Trigger1() { new ALL(); }
void Trigger2() { new DH(); }
};
class HLT : public State
{
public:
HLT() { }
void Trigger1() { new DH(); }
void Trigger2() { new DL(); }
};
class AHL : public State
{
public:
AHL() { }
void Trigger1() { new DH(); }
void Trigger2() { new HLT(); }
};
// DH needs to 'know' about DL.
class DH : public State
{
public:
DH () { }
void Trigger1() { new AHL(); }
void Trigger2() { new DL(); }
};
int main()
{
auto_ptr<LLT> llt (new LLT);
auto_ptr<ALL> all (new ALL);
auto_ptr<DL> dl (new DL);
auto_ptr<HLT> hlt (new HLT);
auto_ptr<AHL> ahl (new AHL);
auto_ptr<DH> dh (new DH);
return 0;
}
The problem is basically that in the State Pattern, state transitions are made by
invoking the the ChangeState method in the Context class, which invokes the
constructor of the next state.
Because of the circular dependency, I can't invoke the constructor because it's
not possible to pre-define both of the constructors of the 'problem' states.
I had a look at this article, and the template method which seemed to be the ideal solution - but it doesn't compile and my knowledge of templates is a rather limited...
The other idea I had is to try and introduce a Helper class to the subclassed states,
via multiple inheritance, to see if it's possible to specify the base class's constructor
and have a reference to the state subclasse's constructor. But I think that was rather
ambitious...
Finally, would a direct implmentation of the Factory Method Design Pattern be the best way
to resolve the entire problem?
You can define the member functions outside of the class definitions, e.g.,
class DL : public State
{
public:
void Trigger2();
};
inline void DL::Trigger2() { new DH(); }
Define the member functions that rely on later class definitions after those classes are defined. The inline keyword is only necessary if you define the member function outside of the class in the header file.
As an aside, why are you just using new DH() in your functions; you're leaking memory everywhere!