I would like to write a class that wraps around std::thread and behaves like a std::thread but without actually allocating a thread every time I need to process something async. The reason is that I need to use multi threading in a context where I'm not allow to dynamically allocate and I also don't want to have the overhead of creating a std::thread.
Instead, I want a thread to run in a loop and wait until it can start processing. The client calls invoke which wakes up the thread. The Thread locks a mutex, does it's processing and falls asleep again. A function join behaves like std::thread::join by locking until the thread frees the lock (i.e. falls asleep again).
I think I got the class to run but because of a general lack of experience in multi threading, I would like to ask if anybody can spot race conditions or if the approach I used is considered "good style". For example, I'm not sure if temporary locking the mutex is a decent way to "join" the thread.
EDIT
I found another race condition: when calling join directly after invoke, there is no reason the thread already locked the mutex and thus locks the caller of join until the thread goes to sleep. To prevent this, I had to add a check for the invoke counter.
Header
#pragma once
#include <thread>
#include <atomic>
#include <mutex>
class PersistentThread
{
public:
PersistentThread();
~PersistentThread();
// set function to invoke
// locks if thread is currently processing _func
void set(const std::function<void()> &f);
// wakes the thread up to process _func and fall asleep again
// locks if thread is currently processing _func
void invoke();
// mimics std::thread::join
// locks until the thread is finished with it's loop
void join();
private:
// intern thread loop
void loop(bool *initialized);
private:
bool _shutdownRequested{ false };
std::mutex _mutex;
std::unique_ptr<std::thread> _thread;
std::condition_variable _cond;
std::function<void()> _func{ nullptr };
};
Source File
#include "PersistentThread.h"
PersistentThread::PersistentThread()
{
auto lock = std::unique_lock<std::mutex>(_mutex);
bool initialized = false;
_thread = std::make_unique<std::thread>(&PersistentThread::loop, this, &initialized);
// wait until _thread notifies, check bool initialized to prevent spurious wakeups
_cond.wait(lock, [&] {return initialized; });
}
PersistentThread::~PersistentThread()
{
{
std::lock_guard<std::mutex> lock(_mutex);
_func = nullptr;
_shutdownRequested = true;
// wake up and let join
_cond.notify_one();
}
// join thread,
if (_thread->joinable())
{
_thread->join();
}
}
void PersistentThread::set(const std::function<void()>& f)
{
std::lock_guard<std::mutex> lock(_mutex);
this->_func = f;
}
void PersistentThread::invoke()
{
std::lock_guard<std::mutex> lock(_mutex);
_cond.notify_one();
}
void PersistentThread::join()
{
bool joined = false;
while (!joined)
{
std::lock_guard<std::mutex> lock(_mutex);
joined = (_invokeCounter == 0);
}
}
void PersistentThread::loop(bool *initialized)
{
std::unique_lock<std::mutex> lock(_mutex);
*initialized = true;
_cond.notify_one();
while (true)
{
// wait until we get the mutex again
_cond.wait(lock, [this] {return _shutdownRequested || (this->_invokeCounter > 0); });
// shut down if requested
if (_shutdownRequested) return;
// process
if (_func) _func();
_invokeCounter--;
}
}
You are asking about potential race conditions, and I see at least one race condition in the shown code.
After constructing a PersistentThread, there is no guarantee that the new thread will acquire its initial lock in its loop() before the main execution thread returns from the constructor and enters invoke(). It is possible that the main execution thread enters invoke() immediately after the constructor is complete, ends up notifying nobody, since the internal execution thread hasn't locked the mutex yet. As such, this invoke() will not result in any processing taking place.
You need to synchronize the completion of the constructor with the execution thread's initial lock acquisition.
EDIT: your revision looks right; but I also spotted another race condition.
As documented in the description of wait(), wait() may wake up "spuriously". Just because wait() returned, doesn't mean that some other thread has entered invoke().
You need a counter, in addition to everything else, with invoke() incrementing the counter, and the execution thread executing its assigned duties only when the counter is greater than zero, decrementing it. This will guard against spurious wake-ups.
I would also have the execution thread check the counter before entering wait(), and enter wait() only if it is 0. Otherwise, it decrements the counter, executes its function, and loops back.
This should plug up all the potential race conditions in this area.
P.S. The spurious wake-up also applies to the initial notification, in your correction, that the execution thread has entered the loop. You'll need to do something similar for that situation, too.
I don't understand what you're trying to ask exactly. It's a nice style you used.
It would be much safer using bools and check the single routines because void returns nothing so you could be maybe stuck caused by bugs. Check everything you can since the thread runs under the hood. Make sure the calls are running correctly, if the process had really success. Also you could read some stuff about "Thread Pooling".
Related
We have implemented TaskRunner whose functions will be called by different threads to start, stop and post tasks. TaskRunner will internally create a thread and if the queue is not empty, it will pop the task from queue and executes it. Start() will check if the thread is running. If not creates a new thread. Stop() will join the thread. The code is as below.
bool TaskRunnerImpl::PostTask(Task* task) {
tasks_queue_.push_back(task);
return true;
}
void TaskRunnerImpl::Start() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
if(is_running_) {
return;
}
is_running_ = true;
runner_thread_ = std::thread(&TaskRunnerImpl::Run, this);
}
void TaskRunnerImpl::Run() {
while(is_running_) {
if(tasks_queue_.empty()) {
continue;
}
Task* task_to_run = tasks_queue_.front();
task_to_run->Run();
tasks_queue_.pop_front();
delete task_to_run;
}
}
void TaskRunnerImpl::Stop() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
is_running_ = false;
if(runner_thread_.joinable()) {
runner_thread_.join();
}
}
We want to use conditional variables now otherwise the thread will be continuously checking whether the task queue is empty or not. We implemented as below.
Thread function (Run()) will wait on condition variable.
PostTask() will signal if some one posts a task.
Stop() will signal if some one calls stop.
Code is as below.
bool TaskRunnerImpl::PostTask(Task* task) {
std::lock_guard<std::mutex> taskGuard(m_task_mutex);
tasks_queue_.push_back(task);
m_task_cond_var.notify_one();
return true;
}
void TaskRunnerImpl::Start() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
if(is_running_) {
return;
}
is_running_ = true;
runner_thread_ = std::thread(&TaskRunnerImpl::Run, this);
}
void TaskRunnerImpl::Run() {
while(is_running_) {
Task* task_to_run = nullptr;
{
std::unique_lock<std::mutex> mlock(m_task_mutex);
m_task_cond_var.wait(mlock, [this]() {
return !(is_running_ && tasks_queue_.empty());
});
if(!is_running_) {
return;
}
if(!tasks_queue_.empty()) {
task_to_run = tasks_queue_.front();
task_to_run->Run();
tasks_queue_.pop_front();
}
}
if(task_to_run)
delete task_to_run;
}
}
void TaskRunnerImpl::Stop() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
is_running_ = false;
m_task_cond_var.notify_one();
if(runner_thread_.joinable()) {
runner_thread_.join();
}
}
I have couple of questions as below. Can some one please help me to understand these.
Condition variable m_task_cond_var is linked with mutex m_task_mutex. But Stop() already locks mutex is_running_mutex to gaurd 'is_running_'. Do I need to lock m_task_mutex before signaling? Here I am not convinced why to lock m_task_mutex as we are not protecting any thing related to task queue.
In Thread function(Run()), we are reading is_running_ without locking is_running_mutex. Is this correct?
Do I need to lock m_task_mutex before signaling [In Stop]?
When the predicate being tested in condition_variable::wait method depends on something happening in the signaling thread (which is almost always), then you should obtain the mutex before signaling. Consider the following possibility if you are not holding the m_task_mutex:
The watcher thread (TaskRunnerImpl::Run) wakes up (via spurious wakeup or being notified from elsewhere) and obtains the mutex.
The watcher thread checks its predicate and sees that it is false.
The signaler thread (TaskRunnerImpl::Stop) changes the predicate to return true (by setting is_running_ = false;).
The signaler thread signals the condition variable.
The watcher thread waits to be signaled (bad)
the signal has already come and gone
the predicate was false, so the watcher begins waiting, possibly indefinitely.
The worst that can happen if you are holding the mutex when you signal is that, the blocked thread (TaskRunnerImpl::Run) wakes up and is immediately blocked when trying to obtain the mutex. This can have some performance implications.
In [TaskRunnerImpl::Run] , we are reading is_running_ without locking is_running_mutex. Is this correct?
In general no. Even if it's of type bool. Because a boolean is typically implemented as a single byte, it's possible that one thread is writing to the byte while you are reading, resulting in a partial read. In practice, however, it's safe. That said, you should obtain the mutex before you read (and then release immediately afterwards).
In fact, it may be preferable to use std::atomic<bool> instead of a bool + mutex combination (or std::atomic_flag if you want to get fancy) which will have the same effect, but be easier to work with.
Do I need to lock m_task_mutex before signaling [In Stop]?
Yes you do. You must change condition under the same mutex and send signal either after the mutex is locked or unlocked after the change. If you do not use the same mutex, or send signal before that mutex is locked you create race condition that std::condition_variable is created to solve.
Logic is this:
Watching thread locks mutex and checks watched condition. If it did not happen it goes to sleep and unlocks the mutex atomically. So signaling thread lock the mutex, change condition and signal. If signalling thread does that before watching one locks the mutex, then watchiong one would see condition happen and would not go to sleep. If it locks before, it would go to sleep and woken when signalling thread raise the signal.
Note: you can signal condition variable before or after mutex is unlocked, both cases is correct but may affect performance. But it is incorrect to signal before locking the mutex.
Condition variable m_task_cond_var is linked with mutex m_task_mutex. But Stop() already locks mutex is_running_mutex to gaurd 'is_running_'. Do I need to lock m_task_mutex before signaling? Here I am not convinced why to lock m_task_mutex as we are not protecting any thing related to task queue.
You overcomlicated your code and made things worse. You should use only one mutex in this case and it would work as intended.
In Thread function(Run()), we are reading is_running_ without locking is_running_mutex. Is this correct?
On x86 hardware it may "work", but from language point of view this is UB.
Since I have recently started coding multi threaded programs this might be a stupid question. I found out about the awesome mutex and condition variable usage. From as far as I can understand there use is:
Protect sections of code/shared resources from getting corrupted by multiple threads access. Hence lock that portion thus one can control which thread will be accessing.
If a thread is waiting for a resource/condition from another thread one can use cond.wait() instead of polling every msec
Now Consider the following class example:
class Queue {
private:
std::queue<std::string> m_queue;
boost::mutex m_mutex;
boost::condition_variable m_cond;
bool m_exit;
public:
Queue()
: m_queue()
, m_mutex()
, m_cond()
, m_exit(false)
{}
void Enqueue(const std::string& Req)
{
boost::mutex::scoped_lock lock(m_mutex);
m_queue.push(Req);
m_cond.notify_all();
}
std::string Dequeue()
{
boost::mutex::scoped_lock lock(m_mutex);
while(m_queue.empty() && !m_exit)
{
m_cond.wait(lock);
}
if (m_queue.empty() && m_exit) return "";
std::string val = m_queue.front();
m_queue.pop();
return val;
}
void Exit()
{
boost::mutex::scoped_lock lock(m_mutex);
m_exit = true;
m_cond.notify_all();
}
}
In the above example, Exit() can be called and it will notify the threads waiting on Dequeue that it's time to exit without waiting for more data in the queue.
My question is since Dequeue has acquired the lock(m_mutex), how can Exit acquire the same lock(m_mutex)? Isn't unless the Dequeue releases the lock then only Exit can acquire it?
I have seen this pattern in Destructor implementation too, using same class member mutex, Destructor notifies all the threads(class methods) thats it time to terminate their respective loops/functions etc.
As Jarod mentions in the comments, the call
m_cond.wait(lock)
is guaranteed to atomically unlock the mutex, releasing it for the thread, and starts listening to notifications of the condition variable (see e.g. here).
This atomicity also ensures any code in the thread is executed after the listening is set up (so no notify calls will be missed). This assumes of course that the thread first locks the mutex, otherwise all bets are off.
Another important bit to understand is that condition variables may suffer from "spurious wakeups", so it is important to have a second boolean condition (e.g. here, you could check the emptiness of your queue) so that you don't end up awoken with an empty queue. Something like this:
m_cond.wait(lock, [this]() { return !m_queue.empty() || m_exit; });
I am trying to use an std::condition_variable from C++11 for a data transaction between between UI thread & worker thread.
Situation:
m_calculated_value is a value which calculated after a complex logic. This is required on a trigger of a event from the UI thread. UI thread calls MyClass::GetCalculatedValue to fetch the value of m_calculated_value which needs to be calculated by the worker thread function that is MyClass::ThreadFunctionToCalculateValue.
Code:
std::mutex m_mutex;
std::condition_variable m_my_condition_variable;
bool m_value_ready;
unsigned int m_calculated_value;
// Gets called from UI thread
unsigned int MyClass::GetCalculatedValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_value_ready = false;
m_my_condition_variable.wait(lock, std::bind(&MyClass::IsValueReady, this));
return m_calculated_value;
}
bool MyClass::IsValueReady() {
return m_value_ready;
}
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
m_my_condition_variable.notify_one();
}
Problem:
But the problem is that m_my_condition_variable.wait never returns.
Question:
What am I doing wrong here?
Is it a correct approach to make UI thread wait on a condition variable signal from worker thread? How do I get out of a situation where the condition_variable never triggers due to an error in the worker thread function? Is there a way I can somehow use a timeout here?
Trying to understand how it works:
I see in many examples they use a while loop checking the state of a boolean variable around a condition_var.wait. Whats the point of loop around on a variable? Cant I expect m_my_condition_variable to return out of wait when notify_one is called from other thread ?
What is most likely to happen:
Your worker thread owns and holds the mutex until it's done with the calculation. The main thread has to wait until it can acquire the lock. The worker will signal the CV before it releases the lock (in the destructor), by which time no other thread that would want to wait on the condition variable could have been acquired the lock that it still occupied by the notifying thread. Therefore the other thread never got a chance to wait on the condition variable at the time it gets notified as it just managed to acquire the lock after the notification event took place, causing it to wait infinitely.
The solution would be to remove the lock-acquisition in MyClass::ThreadFunctionToCalculateValue(), it is not required there at all, or at least, shouldn't be.
But anyways, why do you want to re-invent the wheel? For such problems, std::future has been created:
auto future = std::async(std::launch::async, ComplexLogicToCalculateValue);
bool is_ready = future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
auto result = future.get();
Here, you can easily define timeouts, you don't have to worry about condition_variables and alike.
Cant I expect m_my_condition_variable to return out of wait when notify_one is called from other thread ?
No, not exclusively. Spurious wakeups still may occur.
Take a look at this example here:
http://en.cppreference.com/w/cpp/thread/condition_variable
Changes to the code in question noted in comments in the example code below. You might want to consider using the same "handshake" as used in the cppreference.com example to synchronize when it's safe to calculate a new value (the UI thread has a wait / notify, the worker thread has a notify / wait).
Before condition variable wait, the lock needs to be locked. The wait will unlock, wait for a notify, then lock and with the predicate function, check for ready and if not ready (spurious wake up), repeat the cycle.
Before notify_one, the lock should be unlocked, else the wait gets woke up, but fails to get a lock (since it's still locked).
std::mutex m_mutex;
std::condition_variable m_my_condition_variable;
bool m_value_ready = false; // init to false
unsigned int m_calculated_value;
// Gets called from UI thread
unsigned int MyClass::GetCalculatedValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_my_condition_variable.wait(lock, std::bind(&MyClass::IsValueReady, this));
m_value_ready = false; // don't change until after wait
return m_calculated_value;
} // auto unlock after leaving function scope
bool MyClass::IsValueReady() {
return m_value_ready;
}
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
lock.unlock(); // unlock before notify
m_my_condition_variable.notify_one();
}
or alternative:
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
{ // auto unlock after leaving block scope
std::lock_guard<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
} // unlock occurs here
m_my_condition_variable.notify_one();
}
I am using std::conditional_variable for timing a signal in a multi-threaded program for controlling the flow of various critical sections. The program works but during exit I am compelled to use a predicate (kill_ == true) to avoid destroying of threads which are still waiting on the std::conditional_variable ::wait(). I don't know if its the proper way to destroy all the waiting threads, advice solicited. Here's a code snippet:
class timer
{
// ...
timer(std::shared_ptr<parent_object> parent,const bool& kill)
:parent_(parent),kill_(kill){}
private:
std::condition_variable cv_command_flow_;
std::mutex mu_flow_;
const bool& kill_;
std::shared_ptr<parent_object> parent_;
};
void timer::section()
{
auto delay = get_next_delay();
std::unique_lock<std::mutex> lock(mu_flow_);
std::cv_command_flow_.wait_until(lock,delay,[] { return kill_ == true; });
if( kill_) return;
parent_->trigger();
std::cv_command_exec_.notify_all();
}
This is generally how I handle the destruction of my waiting threads. You'll want a code section such as this where you want to perform clean up (in a class destructor, the main thread before process exit, etc.):
{
std::lock_guard<std::mutex> lock(mu_flow);
kill_ = true;
}
cv_command_exec_.notify_all();
thread1.join();
I'm assuming that timer::section() was executing within some thread std::thread thread1.
Ownership duration of the mutex is controlled by the scoped block. You'll want the mutex held only when you set kill_ = true and released before you call .notify_all() (otherwise the woken thread might find the lock still held and go back to sleep).
Of course, std::unique_lock usage would look like:
std::unique_lock<std::mutex> lock(mu_flow);
kill_ = true;
lock.unlock();
cv_command_exec_.notify_all();
thread1.join();
It's personal preference to a large degree ... both code sections accomplish the same task.
Please see the following code:
std::mutex mutex;
std::condition_variable cv;
std::atomic<bool> terminate;
// Worker thread routine
void work() {
while( !terminate ) {
{
std::unique_lock<std::mutex> lg{ mutex };
cv.wait(lg);
// Do something
}
// Do something
}
}
// This function is called from the main thread
void terminate_worker() {
terminate = true;
cv.notify_all();
worker_thread.join();
}
Is the following scenario can happen?
Worker thread is waiting for signals.
The main thread called terminate_worker();
The main thread set the atomic variable terminate to true, and then signaled to the worker thread.
Worker thread now wakes up, do its job and load from terminate. At this step, the change to terminate made by the main thread is not yet seen, so the worker thread decides to wait for another signal.
Now deadlock occurs...
I wonder this is ever possible. As I understood, std::atomic only guarantees no race condition, but memory order is a different thing. Questions:
Is this possible?
If this is not possible, is this possible if terminate is not an atomic variable but is simply bool? Or atomicity has nothing to do with this?
If this is possible, what should I do?
Thank you.
I don't believe, what you describe is possible, as cv.notify_all() afaik (please correct me if I'm wrong) synchronizes with wait(), so when the worker thread awakes, it will see the change to terminate.
However:
A deadlock can happen the following way:
Worker thread (WT) determines that the terminate flag is still false.
The main thread (MT) sets the terminate flag and calls cv.notify_all().
As no one is curently waiting for the condition variable that notification gets "lost/ignored".
MT calls join and blocks.
WT goes to sleep ( cv.wait()) and blocks too.
Solution:
While you don't have to hold a lock while you call cv.notify, you
have to hold a lock, while you are modifying terminate (even if it is an atomic)
have to make sure, that the check for the condition and the actual call to wait happen while you are holding the same lock.
This is why there is a form of wait that performs this check just before it sends the thread to sleep.
A corrected code (with minimal changes) could look like this:
// Worker thread routine
void work() {
while( !terminate ) {
{
std::unique_lock<std::mutex> lg{ mutex };
if (!terminate) {
cv.wait(lg);
}
// Do something
}
// Do something
}
}
// This function is called from the main thread
void terminate_worker() {
{
std::lock_guard<std::mutex> lg(mutex);
terminate = true;
}
cv.notify_all();
worker_thread.join();
}