Is deadlock possible in this simple scenario? - c++

Please see the following code:
std::mutex mutex;
std::condition_variable cv;
std::atomic<bool> terminate;
// Worker thread routine
void work() {
while( !terminate ) {
{
std::unique_lock<std::mutex> lg{ mutex };
cv.wait(lg);
// Do something
}
// Do something
}
}
// This function is called from the main thread
void terminate_worker() {
terminate = true;
cv.notify_all();
worker_thread.join();
}
Is the following scenario can happen?
Worker thread is waiting for signals.
The main thread called terminate_worker();
The main thread set the atomic variable terminate to true, and then signaled to the worker thread.
Worker thread now wakes up, do its job and load from terminate. At this step, the change to terminate made by the main thread is not yet seen, so the worker thread decides to wait for another signal.
Now deadlock occurs...
I wonder this is ever possible. As I understood, std::atomic only guarantees no race condition, but memory order is a different thing. Questions:
Is this possible?
If this is not possible, is this possible if terminate is not an atomic variable but is simply bool? Or atomicity has nothing to do with this?
If this is possible, what should I do?
Thank you.

I don't believe, what you describe is possible, as cv.notify_all() afaik (please correct me if I'm wrong) synchronizes with wait(), so when the worker thread awakes, it will see the change to terminate.
However:
A deadlock can happen the following way:
Worker thread (WT) determines that the terminate flag is still false.
The main thread (MT) sets the terminate flag and calls cv.notify_all().
As no one is curently waiting for the condition variable that notification gets "lost/ignored".
MT calls join and blocks.
WT goes to sleep ( cv.wait()) and blocks too.
Solution:
While you don't have to hold a lock while you call cv.notify, you
have to hold a lock, while you are modifying terminate (even if it is an atomic)
have to make sure, that the check for the condition and the actual call to wait happen while you are holding the same lock.
This is why there is a form of wait that performs this check just before it sends the thread to sleep.
A corrected code (with minimal changes) could look like this:
// Worker thread routine
void work() {
while( !terminate ) {
{
std::unique_lock<std::mutex> lg{ mutex };
if (!terminate) {
cv.wait(lg);
}
// Do something
}
// Do something
}
}
// This function is called from the main thread
void terminate_worker() {
{
std::lock_guard<std::mutex> lg(mutex);
terminate = true;
}
cv.notify_all();
worker_thread.join();
}

Related

Is it mandatory to lock mutex before signaling on condition variable?

We have implemented TaskRunner whose functions will be called by different threads to start, stop and post tasks. TaskRunner will internally create a thread and if the queue is not empty, it will pop the task from queue and executes it. Start() will check if the thread is running. If not creates a new thread. Stop() will join the thread. The code is as below.
bool TaskRunnerImpl::PostTask(Task* task) {
tasks_queue_.push_back(task);
return true;
}
void TaskRunnerImpl::Start() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
if(is_running_) {
return;
}
is_running_ = true;
runner_thread_ = std::thread(&TaskRunnerImpl::Run, this);
}
void TaskRunnerImpl::Run() {
while(is_running_) {
if(tasks_queue_.empty()) {
continue;
}
Task* task_to_run = tasks_queue_.front();
task_to_run->Run();
tasks_queue_.pop_front();
delete task_to_run;
}
}
void TaskRunnerImpl::Stop() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
is_running_ = false;
if(runner_thread_.joinable()) {
runner_thread_.join();
}
}
We want to use conditional variables now otherwise the thread will be continuously checking whether the task queue is empty or not. We implemented as below.
Thread function (Run()) will wait on condition variable.
PostTask() will signal if some one posts a task.
Stop() will signal if some one calls stop.
Code is as below.
bool TaskRunnerImpl::PostTask(Task* task) {
std::lock_guard<std::mutex> taskGuard(m_task_mutex);
tasks_queue_.push_back(task);
m_task_cond_var.notify_one();
return true;
}
void TaskRunnerImpl::Start() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
if(is_running_) {
return;
}
is_running_ = true;
runner_thread_ = std::thread(&TaskRunnerImpl::Run, this);
}
void TaskRunnerImpl::Run() {
while(is_running_) {
Task* task_to_run = nullptr;
{
std::unique_lock<std::mutex> mlock(m_task_mutex);
m_task_cond_var.wait(mlock, [this]() {
return !(is_running_ && tasks_queue_.empty());
});
if(!is_running_) {
return;
}
if(!tasks_queue_.empty()) {
task_to_run = tasks_queue_.front();
task_to_run->Run();
tasks_queue_.pop_front();
}
}
if(task_to_run)
delete task_to_run;
}
}
void TaskRunnerImpl::Stop() {
std::lock_guard<std::mutex> lock(is_running_mutex_);
is_running_ = false;
m_task_cond_var.notify_one();
if(runner_thread_.joinable()) {
runner_thread_.join();
}
}
I have couple of questions as below. Can some one please help me to understand these.
Condition variable m_task_cond_var is linked with mutex m_task_mutex. But Stop() already locks mutex is_running_mutex to gaurd 'is_running_'. Do I need to lock m_task_mutex before signaling? Here I am not convinced why to lock m_task_mutex as we are not protecting any thing related to task queue.
In Thread function(Run()), we are reading is_running_ without locking is_running_mutex. Is this correct?
Do I need to lock m_task_mutex before signaling [In Stop]?
When the predicate being tested in condition_variable::wait method depends on something happening in the signaling thread (which is almost always), then you should obtain the mutex before signaling. Consider the following possibility if you are not holding the m_task_mutex:
The watcher thread (TaskRunnerImpl::Run) wakes up (via spurious wakeup or being notified from elsewhere) and obtains the mutex.
The watcher thread checks its predicate and sees that it is false.
The signaler thread (TaskRunnerImpl::Stop) changes the predicate to return true (by setting is_running_ = false;).
The signaler thread signals the condition variable.
The watcher thread waits to be signaled (bad)
the signal has already come and gone
the predicate was false, so the watcher begins waiting, possibly indefinitely.
The worst that can happen if you are holding the mutex when you signal is that, the blocked thread (TaskRunnerImpl::Run) wakes up and is immediately blocked when trying to obtain the mutex. This can have some performance implications.
In [TaskRunnerImpl::Run] , we are reading is_running_ without locking is_running_mutex. Is this correct?
In general no. Even if it's of type bool. Because a boolean is typically implemented as a single byte, it's possible that one thread is writing to the byte while you are reading, resulting in a partial read. In practice, however, it's safe. That said, you should obtain the mutex before you read (and then release immediately afterwards).
In fact, it may be preferable to use std::atomic<bool> instead of a bool + mutex combination (or std::atomic_flag if you want to get fancy) which will have the same effect, but be easier to work with.
Do I need to lock m_task_mutex before signaling [In Stop]?
Yes you do. You must change condition under the same mutex and send signal either after the mutex is locked or unlocked after the change. If you do not use the same mutex, or send signal before that mutex is locked you create race condition that std::condition_variable is created to solve.
Logic is this:
Watching thread locks mutex and checks watched condition. If it did not happen it goes to sleep and unlocks the mutex atomically. So signaling thread lock the mutex, change condition and signal. If signalling thread does that before watching one locks the mutex, then watchiong one would see condition happen and would not go to sleep. If it locks before, it would go to sleep and woken when signalling thread raise the signal.
Note: you can signal condition variable before or after mutex is unlocked, both cases is correct but may affect performance. But it is incorrect to signal before locking the mutex.
Condition variable m_task_cond_var is linked with mutex m_task_mutex. But Stop() already locks mutex is_running_mutex to gaurd 'is_running_'. Do I need to lock m_task_mutex before signaling? Here I am not convinced why to lock m_task_mutex as we are not protecting any thing related to task queue.
You overcomlicated your code and made things worse. You should use only one mutex in this case and it would work as intended.
In Thread function(Run()), we are reading is_running_ without locking is_running_mutex. Is this correct?
On x86 hardware it may "work", but from language point of view this is UB.

C++ : How to use an std::condition_variable between UI thread & worker std::thread

I am trying to use an std::condition_variable from C++11 for a data transaction between between UI thread & worker thread.
Situation:
m_calculated_value is a value which calculated after a complex logic. This is required on a trigger of a event from the UI thread. UI thread calls MyClass::GetCalculatedValue to fetch the value of m_calculated_value which needs to be calculated by the worker thread function that is MyClass::ThreadFunctionToCalculateValue.
Code:
std::mutex m_mutex;
std::condition_variable m_my_condition_variable;
bool m_value_ready;
unsigned int m_calculated_value;
// Gets called from UI thread
unsigned int MyClass::GetCalculatedValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_value_ready = false;
m_my_condition_variable.wait(lock, std::bind(&MyClass::IsValueReady, this));
return m_calculated_value;
}
bool MyClass::IsValueReady() {
return m_value_ready;
}
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
m_my_condition_variable.notify_one();
}
Problem:
But the problem is that m_my_condition_variable.wait never returns.
Question:
What am I doing wrong here?
Is it a correct approach to make UI thread wait on a condition variable signal from worker thread? How do I get out of a situation where the condition_variable never triggers due to an error in the worker thread function? Is there a way I can somehow use a timeout here?
Trying to understand how it works:
I see in many examples they use a while loop checking the state of a boolean variable around a condition_var.wait. Whats the point of loop around on a variable? Cant I expect m_my_condition_variable to return out of wait when notify_one is called from other thread ?
What is most likely to happen:
Your worker thread owns and holds the mutex until it's done with the calculation. The main thread has to wait until it can acquire the lock. The worker will signal the CV before it releases the lock (in the destructor), by which time no other thread that would want to wait on the condition variable could have been acquired the lock that it still occupied by the notifying thread. Therefore the other thread never got a chance to wait on the condition variable at the time it gets notified as it just managed to acquire the lock after the notification event took place, causing it to wait infinitely.
The solution would be to remove the lock-acquisition in MyClass::ThreadFunctionToCalculateValue(), it is not required there at all, or at least, shouldn't be.
But anyways, why do you want to re-invent the wheel? For such problems, std::future has been created:
auto future = std::async(std::launch::async, ComplexLogicToCalculateValue);
bool is_ready = future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
auto result = future.get();
Here, you can easily define timeouts, you don't have to worry about condition_variables and alike.
Cant I expect m_my_condition_variable to return out of wait when notify_one is called from other thread ?
No, not exclusively. Spurious wakeups still may occur.
Take a look at this example here:
http://en.cppreference.com/w/cpp/thread/condition_variable
Changes to the code in question noted in comments in the example code below. You might want to consider using the same "handshake" as used in the cppreference.com example to synchronize when it's safe to calculate a new value (the UI thread has a wait / notify, the worker thread has a notify / wait).
Before condition variable wait, the lock needs to be locked. The wait will unlock, wait for a notify, then lock and with the predicate function, check for ready and if not ready (spurious wake up), repeat the cycle.
Before notify_one, the lock should be unlocked, else the wait gets woke up, but fails to get a lock (since it's still locked).
std::mutex m_mutex;
std::condition_variable m_my_condition_variable;
bool m_value_ready = false; // init to false
unsigned int m_calculated_value;
// Gets called from UI thread
unsigned int MyClass::GetCalculatedValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_my_condition_variable.wait(lock, std::bind(&MyClass::IsValueReady, this));
m_value_ready = false; // don't change until after wait
return m_calculated_value;
} // auto unlock after leaving function scope
bool MyClass::IsValueReady() {
return m_value_ready;
}
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
std::unique_lock<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
lock.unlock(); // unlock before notify
m_my_condition_variable.notify_one();
}
or alternative:
// Gets called from an std::thread or worker thread
void MyClass::ThreadFunctionToCalculateValue() {
{ // auto unlock after leaving block scope
std::lock_guard<std::mutex> lock(m_mutex);
m_calculated_value = ComplexLogicToCalculateValue();
m_value_ready = true;
} // unlock occurs here
m_my_condition_variable.notify_one();
}

Writing a thread that stays alive

I would like to write a class that wraps around std::thread and behaves like a std::thread but without actually allocating a thread every time I need to process something async. The reason is that I need to use multi threading in a context where I'm not allow to dynamically allocate and I also don't want to have the overhead of creating a std::thread.
Instead, I want a thread to run in a loop and wait until it can start processing. The client calls invoke which wakes up the thread. The Thread locks a mutex, does it's processing and falls asleep again. A function join behaves like std::thread::join by locking until the thread frees the lock (i.e. falls asleep again).
I think I got the class to run but because of a general lack of experience in multi threading, I would like to ask if anybody can spot race conditions or if the approach I used is considered "good style". For example, I'm not sure if temporary locking the mutex is a decent way to "join" the thread.
EDIT
I found another race condition: when calling join directly after invoke, there is no reason the thread already locked the mutex and thus locks the caller of join until the thread goes to sleep. To prevent this, I had to add a check for the invoke counter.
Header
#pragma once
#include <thread>
#include <atomic>
#include <mutex>
class PersistentThread
{
public:
PersistentThread();
~PersistentThread();
// set function to invoke
// locks if thread is currently processing _func
void set(const std::function<void()> &f);
// wakes the thread up to process _func and fall asleep again
// locks if thread is currently processing _func
void invoke();
// mimics std::thread::join
// locks until the thread is finished with it's loop
void join();
private:
// intern thread loop
void loop(bool *initialized);
private:
bool _shutdownRequested{ false };
std::mutex _mutex;
std::unique_ptr<std::thread> _thread;
std::condition_variable _cond;
std::function<void()> _func{ nullptr };
};
Source File
#include "PersistentThread.h"
PersistentThread::PersistentThread()
{
auto lock = std::unique_lock<std::mutex>(_mutex);
bool initialized = false;
_thread = std::make_unique<std::thread>(&PersistentThread::loop, this, &initialized);
// wait until _thread notifies, check bool initialized to prevent spurious wakeups
_cond.wait(lock, [&] {return initialized; });
}
PersistentThread::~PersistentThread()
{
{
std::lock_guard<std::mutex> lock(_mutex);
_func = nullptr;
_shutdownRequested = true;
// wake up and let join
_cond.notify_one();
}
// join thread,
if (_thread->joinable())
{
_thread->join();
}
}
void PersistentThread::set(const std::function<void()>& f)
{
std::lock_guard<std::mutex> lock(_mutex);
this->_func = f;
}
void PersistentThread::invoke()
{
std::lock_guard<std::mutex> lock(_mutex);
_cond.notify_one();
}
void PersistentThread::join()
{
bool joined = false;
while (!joined)
{
std::lock_guard<std::mutex> lock(_mutex);
joined = (_invokeCounter == 0);
}
}
void PersistentThread::loop(bool *initialized)
{
std::unique_lock<std::mutex> lock(_mutex);
*initialized = true;
_cond.notify_one();
while (true)
{
// wait until we get the mutex again
_cond.wait(lock, [this] {return _shutdownRequested || (this->_invokeCounter > 0); });
// shut down if requested
if (_shutdownRequested) return;
// process
if (_func) _func();
_invokeCounter--;
}
}
You are asking about potential race conditions, and I see at least one race condition in the shown code.
After constructing a PersistentThread, there is no guarantee that the new thread will acquire its initial lock in its loop() before the main execution thread returns from the constructor and enters invoke(). It is possible that the main execution thread enters invoke() immediately after the constructor is complete, ends up notifying nobody, since the internal execution thread hasn't locked the mutex yet. As such, this invoke() will not result in any processing taking place.
You need to synchronize the completion of the constructor with the execution thread's initial lock acquisition.
EDIT: your revision looks right; but I also spotted another race condition.
As documented in the description of wait(), wait() may wake up "spuriously". Just because wait() returned, doesn't mean that some other thread has entered invoke().
You need a counter, in addition to everything else, with invoke() incrementing the counter, and the execution thread executing its assigned duties only when the counter is greater than zero, decrementing it. This will guard against spurious wake-ups.
I would also have the execution thread check the counter before entering wait(), and enter wait() only if it is 0. Otherwise, it decrements the counter, executes its function, and loops back.
This should plug up all the potential race conditions in this area.
P.S. The spurious wake-up also applies to the initial notification, in your correction, that the execution thread has entered the loop. You'll need to do something similar for that situation, too.
I don't understand what you're trying to ask exactly. It's a nice style you used.
It would be much safer using bools and check the single routines because void returns nothing so you could be maybe stuck caused by bugs. Check everything you can since the thread runs under the hood. Make sure the calls are running correctly, if the process had really success. Also you could read some stuff about "Thread Pooling".

Not all threads notified of condition_variable.notify_all()

I have following scenario:
condition_variable cv;
mutex mut;
// Thread 1:
void run() {
while (true) {
mut.lock();
// create_some_data();
mut.unlock();
cv.notify_all();
}
}
// Thread 2
void thread2() {
mutex lockMutex;
unique_lock<mutex> lock(lockMutex);
while (running) {
cv.wait(lock);
mut.lock();
// copy data
mut.unlock();
// process data
}
}
// Thread 3, 4... - same as Thread 2
I run thread 1 all the time to get new data. Other threads wait with condition_variable until new data is available, then copy it and do some work on it. Work perfomed by threads differs in time needed to finish, the idea is that threads will get new data only when they finished with the old one. Data got in meantime is allowed to be "missed". I don't use shared mutex (only to access data) because I don't want threads to depend on each other.
Above code works fine on Windows, but now I run it on Ubuntu and I noticed that only one thread is being notified when notify_all() is called and the other ones just hangs on wait().
Why is that? Does Linux require different approach for using condition_variable?
Your code exhibits UB immediately as it relocks the unique lock that the cv has relocked when it exits wait.
There are other problems, like not detecting spurious wakeups.
Finally cv notify all onky notified currently waiting threads. If a thread shows up later, no dice.
It's working by luck.
The mutex and the condition variable are two parts of the same construct. You can't mix and match mutexes and cvs.
try this:
void thread2() {
unique_lock<mutex> lock(mut); // use the global mutex
while (running) {
cv.wait(lock);
// mutex is already locked here
// test condition. wakeups can be spurious
// copy data
lock.unlock();
// process data
lock.lock();
}
}
Per this documentation:
Any thread that intends to wait on std::condition_variable has to
acquire a std::unique_lock, on the same mutex as used to
protect the shared variable
execute wait, wait_for, or wait_until. The wait operations atomically release the mutex and suspend the execution of the
thread.
When the condition variable is notified, a timeout expires, or a spurious wakeup occurs, the thread is awakened, and the mutex is
atomically reacquired. The thread should then check the condition
and resume waiting if the wake up was spurious.
This code
void thread2() {
mutex lockMutex;
unique_lock<mutex> lock(lockMutex);
while (running) {
doesn't do that.

Is there a problem with this usage of boost condition code?

Will this code ever wait on the mutex inside the producer's void push(data)?
If so how do I get around that?
boost::mutex access;
boost::condition cond;
// consumer
data read()
{
boost::mutex::scoped_lock lock(access);
// this blocks until the data is ready
cond.wait(lock);
// queue is ready
return data_from_queue();
}
// producer
void push(data)
{
//<--- will a block ever happen here?
boost::mutex::scoped_lock lock(access);
// add data to queue
cond.notify_one();
}
Let's say I have a thread pool for(;;) loop and I have read() being called from a thread in this pool. Then I process data on it. And I call push() with some external thread. My question is, can that external thread ever block on its call to push(data)?
wait can return without notify ever being called. This is called a spurious wakeup. To handle this, code using a condition should always have a loop around the wait that checks that the expected condition really is in effect. For example:
queue data_queue;
boost::mutex access;
boost::condition cond;
// consumer
data read()
{
boost::mutex::scoped_lock lock(access);
while (queue.is_empty()) {
// this blocks until the data is ready
cond.wait(lock);
}
// queue is ready
return data_from_queue();
}
// producer
void push(data)
{
boost::mutex::scoped_lock lock(access);
// add data to queue
queue.push_back(data);
cond.notify_one();
}
Conceptually, "condition" is kind of misleading. Instead you can think of it as a signal. You are signalling another thread or threads to wake up, but you are not promising anything. Just, "Hey, maybe there's some data ready, why don't you go check eh?"
When .wait() is called it will block the calling thread in your thread pool and release the mutex. It will return when someone calls notify_one() or notify_all(). Before the thread that was blocked returns though, it will re-acquire the mutex and unblock the thread in your thread pool.
So the call to void push(data) by your external thread will only block temporarily up until .wait() is called.
See the boost documentation on the condition's wait function.