Interfaces and public methods - c++

I have a struct that I use a pure abstract interface (only public methods and they're all =0), an abstract class to hide implementation details and two child classes that inherit from it.
I'd like to expose some public methods in those child classes as they only make sense in that context but marking them as public doesn't work as the compiler only seems to be able to see public methods in the interface. How can I make public methods in the child classes accessible?
Update
Interface:
class Result {
public:
virtual ~Result() noexcept = default;
protected:
Result() = default;
};
Abstract class:
template <typename T>
class AbstractResult : public Result {
public:
AbstractResult();
virtual ~AbstractResult() noexcept = default;
};
First child:
class AResult : public AbstractResult<PGResult> {
public:
PGResult() = default;
virtual ~PGResult() noexcept = default;
void add_server_status(const char status) noexcept;
void add_command_complete(const CommandComplete command_complete) noexcept;
void add_columns(const vector<Column> columns) noexcept;
void add_error(const Error error) noexcept;
void add_notification(const Notification notification) noexcept;
};
I'd like to create an instance of Result and call add_columns(...) on it which is forbidden by the compiler:
unique_ptr<Result> result.reset(new AResult);
result->add_columns(...)

It looks to me like when you create it you know the type, so stash that off before assigning it into the unique_ptr:
std::unique_ptr<AResult> temp(new AResult);
temp->add_columns(...);
unique_ptr<Result> result(std::move(temp));

Related

How can I override inherited functions from a template class?

I'm trying to override an inherited function from a base class which is also a class template, but I can't get it to work.
Up to now the base class is:
template<typename T, typename instrument>
class Probe {
private:
instrument probe;
public:
Probe(instrument _probe) : probe{_probe} {}
virtual T read() const;
instrument getProbe() const {return this->probe;}
};
While the derived class is:
class TestProbe : public Probe<int,int> {
public:
TestProbe(int _probe) : Probe(_probe) {}
virtual int read() const override {return getProbe();} // later will have a more complex expression
};
The error I get whenever I try to compile is: undefined reference to Probe<int, int>::read() const

How to call private virtual base class implementation when overriding in child class

I have a class hierarchy like this:
class Base
{
public:
void start() { init(); }
private:
virtual void init() = 0;
};
class Default : public Base
{
private:
virtual void init() override {/*default implementation*/};
};
class Special : public Default
{
private:
virtual void init() override final {/*specialized implementation*/};
}
Which works alright if I call start() on an object of type Special;
Now I have a case where in the implementation in the Special class I want to call the implementation of the Default class.
Normally that would work with Default::init();, but will fail here due to the Defaults declaration of this is private.
Obviously one solution is to change this from private to protected, but I'd like to ask if there is another way? Rather than allowing any child to call this function directly, I'd like to limit this to calls that are initiated via virtual functions already defined in the Base or Default class.
Is there some option or modifier that would allow member function calls to be only allowed from child classes if they are within (the same) overriding virtual member functions?
C++ doesn't provide means to achieve this directly, so you'd have to work around, e. g. in piece of code below.
Well, if you absolutely want to. I personally would rather just fall back to making the functions protected, document what they are intended for and when to be called, and then just trust the deriving classes to do the stuff right. That in the end keeps the interfaces cleaner and doesn't rely on a rather unusual (and perhaps ugly) pattern (actually passing this twice).
class Base
{
public:
virtual ~Base() { }
void start()
{
InitProxy p(*this);
init(p);
}
protected:
class InitProxy
{
public:
InitProxy(InitProxy const&) = delete;
void init()
{
m_base.Base::init(*this);
}
private:
friend class Base;
Base& m_base;
InitProxy(Base& base)
: m_base(base)
{ }
};
private:
virtual void init(InitProxy& proxy) { }
};
class Derived : public Base
{
void init(InitProxy& proxy) override
{
proxy.init();
}
};
You could let the proxy accept a member function pointer, if you want to apply this constraint to more than one function, so you wouldn't have to re-write the proxy for every function separately. Possibly you'd need to make a template from then, if function parameters differ.
Forward declare Special, and make it a friend of Default:
class Base
{
public:
void start() { init(); }
private:
virtual void init() = 0;
};
class Special; // Forward declaration
class Default : public Base
{
private:
virtual void init() override {/*default implementation*/}
friend class Special; // Friend declaration
};
class Special : public Default
{
private:
virtual void init() override final {
Default::init();
/*Other implementation*/
}
};

Calling the right free function from a base pointer/reference

Let a class hierarchy :
class Base { virtual ~Base() throw(); };
class DerivedA : public Base { };
class DerivedB : public Base { };
I would like to have some code specific to each of these derived classes. However that code also being specific to the application that makes use of this class hierarchy, I do not want to embbed this derived-class-specific code into these derived classes. To avoid doing so, I thought about writing free functions :
void DerivedASpecificWork( DerivedA da );
void DerivedBSpecificWork( DerivedB db );
However, when given an instance of a derived class through a reference/pointer to a Base, I do not have access to the actual type of the instance, and thus cannot call the proper Derived*SpecificWork() function.
I would like to know if there is nome kind of design pattern that would allow me to call a derived-class-specific function without knowing the actual type of the instance, i.e having the same mechanism as virtual functions provide, but without having these virtual functions that would require me to embbed application-specific code into that class hierarchy.
Actually, why I want to do that is to provide informations about an exception that occured within a natively implemented function called by a Lua script. Each exception carrying its own set of information, the way I want to represent the error within the script depends on the type of the exception. I could create a pure virtual method in the base class that would be implemented by derived classes, but this would require me to embbed Lua-related code into my exception hierarchy, which I do not want to do since the Lua is specific to one of the application using that exception hierarchy.
Also I cannot use C++11.
Thank you.
May be Brigde pattern can help you.
This pattern can be used when you want to avoid a permanent binding between an abstraction and it's implementation.
(I don't see your comment about your restriction in using c++11, but you can remove std::unique_ptr, std::move and override keyword)
class AppSpecificImp
{
public:
virtual void DoWork() = 0;
};
class Base
{
public:
virtual ~Base() throw();
virtual DoWork() = 0;
};
class DerivedA : public Base
{
public:
DerivedA(std::unique_ptr<AppSpecificImp> appImp)
: imp(std::move(appImp))
{
}
void DoWork() override
{
// DerivedA specific code
imp->DoWork();
}
private:
std::unique_ptr<AppSpecificImp> imp;
};
class DerivedB : public Base
{
public:
DerivedB(std::unique_ptr<AppSpecificImp> appImp)
: imp(std::move(appImp))
{
}
void DoWork() override
{
// DerivedB specific code
imp->DoWork();
}
private:
std::unique_ptr<AppSpecificImp> imp;
};
Edit to show Visitor pattern usage:
With visitor pattern you can do what you want but with more Effort.
class Visitor
{
public:
virtual void VisitDerivedA(DerivedA* object) = 0;
virtual void VisitDerivedB(DerivedB* object) = 0;
};
class Base
{
public:
virtual void Visit(Visitor* visitor) = 0;
};
class DerivedA : public Base
{
public:
virtual void Visit(Visitor* visitor)
{
visitor->VisitDerivedA(this);
}
};
class DerivedB : public Base
{
public:
virtual void Visit(Visitor* visitor)
{
visitor->VisitDerivedB(this);
}
};
class AppSpecificVisitor : public Visitor
{
public:
void VisitDerivedA(DerivedA* object)
{
// Do any work related to DerivedA class
}
void VisitDerivedB(DerivedB* object)
{
// Do any work related to DerivedB class
}
}
int main()
{
AppSpecificVisitor myVisitor;
Base* myBase = // any class in your hierarchy
myBase->Visit(&myVisitor);
}
As I said in comments with Visitor pattern you can add new functionally without changing the main hierarchy(Base->Derived types). You just define a new visitor implementation and write your logic for every class in main hierarchy. In your example you can pack app specific logic in an object and reference that in your derived objects that is an easier approach.
Why not using a new set of hierarchy for application specific implementation ?
class AppBase
{
public:
virtual ~AppBase() throw();
virtual void work_with_app() = 0;
};
class Base
{
public:
Base(AppBase& app) : m_app(app) {}
virtual ~Base() throw();
protected:
AppBase& m_app;
};
class DerivedA : public Base { DerivedA(AppBase& app) : Base(app) {} };
class DerivedB : public Base { DerivedA(AppBase& app) : Base(app) {} };
// Application specific implementation :
class AppLuaSpecific : public AppBase
{
public:
void work_with_app() { /* Lua app specific */ }
};
This way, your 1st hierarchy : Base, DerivedA, DerivedB can live without knowing anything about the app specific code implemented in AppLuaSpecific.
You can implement your own app-specific dispatch as follows (check it live on Coliru):
#include <iostream>
#include <typeinfo>
struct Base { virtual ~Base() {} };
struct DerivedA : public Base { };
struct DerivedB : public Base { };
namespace AppSpecific
{
template<class F>
void dispatch(const Base& b)
{
const std::type_info& t = typeid(b);
if ( t == typeid(DerivedA) )
F::doit(static_cast<const DerivedA&>(b));
else if ( t == typeid(DerivedB) )
F::doit(static_cast<const DerivedB&>(b));
}
struct Foo
{
static void doit(const DerivedA& da) { std::cout << "Foo(DerivedA)\n"; }
static void doit(const DerivedB& db) { std::cout << "Foo(DerivedB)\n"; }
};
struct Bar
{
static void doit(const DerivedA& da) { std::cout << "Bar(DerivedA)\n"; }
static void doit(const DerivedB& db) { std::cout << "Bar(DerivedB)\n"; }
};
} // namespace AppSpecific
int main()
{
DerivedA da;
DerivedB db;
Base& b1 = da;
Base& b2 = db;
AppSpecific::dispatch<AppSpecific::Foo>(b1);
AppSpecific::dispatch<AppSpecific::Foo>(b2);
AppSpecific::dispatch<AppSpecific::Bar>(b1);
AppSpecific::dispatch<AppSpecific::Bar>(b2);
}

wrapper to template class inherited by another class

template <class CollectionItem>
class Collection
{
void A();
// Many other utility functions
}
class ICollection
{
virtual void B() = 0;
}
class Base : public Collection<BaseItem>, public IBase
{
virtual void B();
}
Is there any way of offering Collection functions via ICollection interface without wrapping all the functions in Base class? ICollection : public Collection<CollectionItem> is not an option.
Bounty Update:
OK, so the original idea was to have Interface to all Collection classes. Before we continue, every CollectionItem also has Interface, let's call it ICollectionItem and ICollection only knows about ICollectionItem.
So what I did was create another template class as Interface to Collection template class - ICollection (pure virtual) accepting ICollectionItem(s). Collection class inherits this interface.
Every Collection class (inheriting Collection<CollectionItem> class) would also inherit it's Interface Collection class. That Interface then virtual inherits ICollection<ICollectionItem>. I'll just post the code :)
Here is the code:
template <class ICollectionItem>
class ICollection
{
public:
virtual const ICollectionItem* At(const int idx) = 0;
};
template <class CollectionItem, class ICollectionItem>
class Collection
: public ICollection,
public virtual ICollection<ICollectionItem> // Weak point
{
private:
List<CollectionItem*> fContainer;
public:
Collection(void) {}
virtual ~Collection() {}
virtual const ICollectionItem* At(const int idx); // Casting GetAt result
virtual const TCollectionItem& GetAt(const int idx) const
virtual ListIterator<TCollectionItem> >* GetIterator(void) const;
virtual ListIterator<ICollectionItem> >* Iterator(void) const; // Weak point
}
Example usage:
class IBaseItem
{
public:
virtual int Number() = 0;
{
class BaseItem
: public IBaseItem
{
public:
virtual int Number();
void SetNumber(int value);
}
class IBase
: public virtual ICollection<IBaseItem>
{
public:
virtual IBaseItem* ItemByName(String name) = 0;
virtual ~IBase() {}
}
class Base
: public Collection<BaseItem, IBaseItem>,
public IBase
{
public:
BaseItem* GetItemByName(String name);
virtual IBaseItem* ItemByName(String name);
}
Weak points:
First is at using virtual inheritance ... lots written about it, not much to talk about, or is it?
Unable to access Iterator using ICollection interface. See ListIterator function, only first one can be implemented, the second one would require some kind of new List of IBaseItem. I decided to live with that and just use for loop.
Even tho I somehow managed to get what I wanted (With wrapping and casting), I would still like to hear an second opinion. I don't like using virtual inheritance, specially in such delicate situations - using Collections for application Base creation.
I can not see any other solution than calling some Collection method in Base implementation of IBase virtual methods.
class Base : public Collection<BaseItem>, public IBase
{
virtual void B()
{
A();
}
}
You say, and I quote:
I want to call Collection functions using IBase pointer
I really don't see what is to be done here besides dynamic_cast. It does exactly what you want it to do.
void fun(IBase * base) {
auto * coll = dynamic_cast<Collection<BaseItem>*>(base);
if (coll) {
coll->A();
}
}
Your Collection class must have a virtual destructor.
You can, of course, offer a templated version, if you'd need different baseitems in different, scenarios for some reasons. This has bad code smell and I think your architecture is bad at this point, but oh well.
template <typename T> void fun(IBase * base) {
auto * coll = dynamic_cast<Collection<T>*>(base);
if (coll) {
coll->A();
}
}
void test(IBase * p) {
fun<BaseItem5>(p);
}
If you have some other specific scenario in mind, please edit your question to say what you mean.
Hmm...So you wanna to reuse the Collection class's utility functions, and you want to design a class which will implement an interface defined by IBase. As you mentioned above,"wrapping all the functions in Base class" is a way to offer Collection functions.
(1) Via inheritance,derived class has a good knowledge of Collection
class Derived:public Collection<DerivedType>,public IBase{};
or
template <typename T>
class Derived:public Collection<T>,public IBase{};
(2) Via inheritance,derived class knows little about Collection,but through IBase
class IBase : public Collection<BaseItem>{};
class Derived:public IBase{};
By (1),If you want to call Collection functions using IBase pointer,you have to wrap the functions.
By (2), any Derived instance is " a kind of " IBase which is "a kind of " Collection. So you can use IBase pointer to call Collection functions.
So,the key point is that the objects pointed by the IBase pointer should have the method you want to call.Wrap it or inherit it. I can not see any other solution than these two ways.
Edit: the idea is refined based on your example:
Here is an idea:
//generic interface can be kept as it is
template <class ICollectionItem>
class ICollection
{
public:
virtual const ICollectionItem* At(const int idx) = 0;
};
class Empty
{
};
template <class CollectionItem , class BaseClass = Empty>
class GenericCollection
: public BaseClass
{
public:
const CollectionItem* At(const int idx);
// At and ItemByName are standard functions for a collection
CollectionItem* ItemByName(String name);
//note that here nothing has to be declared as virtual
};
//example usage:
class IBase
: public virtual ICollection<IBaseItem>
{
public:
virtual IBaseItem* ItemByName(String name) = 0;
virtual ~IBase() {}
};
class Base
: public GenericCollection<BaseItem, IBase >
{
public:
//nothing to be implemented here, all functions are implemented in GenericCollection and defined as virtual in IBase
//The definition of the functions has to be the same:
};
In collection you can implement whatever and in the interface you can define what ever you want to be virtual from your collection. The only thing is that you need to have some standard in naming convention for functions.
Hope this helps,
Raxvan.
From your comments in another answer, it seems you want a collection of interfaces, and an implementation of this interface. The simplest I can advise you is the following:
template<typename T>
class ICollection
{
public:
virtual iterator<T>* begin() const = 0;
};
template<typename T, typename TBase>
class Collection : public ICollection<TBase>
{
public:
iterator_impl<T>* begin() const { return whatever; }
};
Example:
class IItem {};
class Item : public IItem {};
class Base : public Collection<Item, IItem> {};
old answer:
Is there any way of offering Collection functions via IBase interface without wrapping all the functions in Base class ?
If I understood your problem, you want to use it like this:
void myfunc()
{
// ...
IBase* obj = ...;
obj->A();
obj->B();
}
I think here is a misunderstanding here: if you want A() to be callable from an IBase, then you have to add it to Ibase declaration.
If you want to use the Collection functions on an object, then you should cast this object to a Collection, via dynamic_cast for example.
Furthermore, if you have such a funcion:
void fun(IBase* base) { /* ... */ }
you cannot cast to a Collection*, since there are no relationship between these two classes, unless you have another way to be sure base is a Collection:
void fun(IBase* base)
{
if(base && base->isABaseItemCollection())
{
// Valid, since the real type was checked before
Collection* collection = (Collection*)base;
// ...
}
}
On a side note: you can generate bases almost automatically:
template
class Base : public Collection, public U {};
typedef Base BaseCollection;
According to comment/chat:
You have something like:
class IAnimal { /*...*/ };
class Cat : public IAnimal { /*...*/ };
class Dog : public IAnimal { /*...*/ };
class Cats
{
std::vector<Cat*> cats;
public:
Cat* at(size_t index) { return cats[index]; }
/*...*/
};
class Dogs
{
std::vector<Dog*> dogs;
public:
Dog* at(size_t index) { return dogs[index]; }
/*...*/
};
And you want to factorize some code using something like
class IAnimals
{
public:
std::vector<IAnimals*> animals; // or getter/setter which works with IAnimals.
/* some common factorized code */
};
// And so
class Cats : public IAnimals { /**/ };
class Dogs : public IAnimals { /**/ };
I propose, instead of creating class IAnimals, to use template functions as:
template <typename TAnimals>
void foo(TAnimals& animals)
{
Ianimals* animal = animals.at(42);
// ...
animal->eat(food);
// ...
}
You have to give compatible "interface" (names) to the type used in template.
Maybe you could have an operator() in IBase that would be delegated to Base?
class CollectionBase {};
template <class Item> class Collection: public CollectionBase {};
class IBase
{
public:
virtual CollectionBase* operator()() = 0;
};
class Base : public Collection<BaseItem>, public IBase
{
public:
virtual Collection<BaseItem>* operator()() { return this; }
};

C++ Inheritance with pure virtual functions

I'm trying to create a class that serves as a base object, which will then be sub-classed (=implemented) to serve various purposes.
I want to define one or more pure virtual functions, so that however subclasses the base class, is required and does not forget to implement them.
There is one caveat, the pure virtual function's signature includes the type of the base object. Once sub-classed, the function definition doesn't match the base classes definition anymore of course. E.g.:
class BaseItem
{
public:
virtual std::string getDifferences(const BaseItem& item) = 0;
}
So, in the derived class I'd like to do:
class DerivedClass : public BaseItem
{
public:
virtual std::string getDifferences(const DerivedClass& item) = 0;
private:
std::string derivedItemCustomObject;
}
which of course the compiler won't accept. I could make it a BaseItem of course, but then I can't utilize any objects in the derived class.
Do I have to use casting to accomplish this?
Please let me know if my intent/question is not clear.
There is NO need to change the function signature. Look at following:
class BaseItem
{public:
virtual std::string getDifferences(const BaseItem& item) = 0;
};
class DerivedClass : public BaseItem
{public:
virtual std::string getDifferences(const BaseItem& item) // keep it as it's
{
const DerivedClass& derivedItem = static_cast<const DerivedClass&>(item);
}
};
Can use static_cast<> without any fear because, DerivedClass::getDifferences() is called only for DerivedClass object. To illustrate,
BaseItem *p = new DerivedClass;
DerivedClass obj;
p->getDifferences(obj); // this always invoke DerivedClass::getDifferences
If you worry that sometime you might end up passing any other derived class object as an argument to the method, then use dynamic_cast<> instead and throw exception if that casting fails.
It's unclear what you're trying to achieve. Suppose that the compiler allowed you to do this (or you do this by the means of a cast), then it would open the following hole in the type system:
class BaseItem
{
public:
virtual std::string getDifferences(const BaseItem& item) = 0;
};
class DerivedClass : public BaseItem
{
public:
virtual std::string getDifferences(const DerivedClass& item)
{
item.f();
// ...
}
void f() const {}
};
class DerivedClass2 : public BaseItem
{
public:
virtual std::string getDifferences(const DerivedClass2& item) { ... }
};
void g()
{
BaseItem* x = new DerivedClass;
// oops, calls DerivedClass::f on an instance of DerivedClass2
x->getDifferences(DerivedClass2());
}
Your design is probably wrong.
I assume that the compiler accept but DerivedClass::getDifferences doesn't override BaseItem::getDifferences. Here is a way to achieve what you apparently want
template <typename T>
class DerivedHelper: public BaseItem {
public:
virtual std::string getDifferences(const BaseItem& item) {
getDifferences(dynamic_cast<const T&>(item));
}
virtual std::string getDifferences(const T& item) = 0;
};
class DerivedClass : public DerivedHelper<DerivedClass>
{
public:
// not more needed but providing it will hide getDifferences(const BaseItem& item)
// helping to statically catch some cases where a bad argument type is used.
virtual std::string getDifferences(const DerivedClass& item) = 0;
private:
std::string derivedItemCustomObject;
};
but be aware that there is a runtime check which will throw exceptions if the argument isn't of the correct class.
One way to accomplish this is to use a template and have the parameter be the type of the derived type
template <typename T>
class BaseItem {
public:
virtual std::string getDifferences(const T& item) = 0;
};
class DerivedClass : public BaseItem<DerivedClass> {
public:
virtual std::string getDifferences(const DerivedClass& item) {
// Implement it here
}
};
You should use cast from BaseItem to DerivedClass + runtime check if given BaseItem is a DerivedClass instance.