I'm using a deque in one of my C++ programs, and was reading the documentation for insert on cppreference.com. Most of it made sense except this bit:
All iterators, including the past-the-end iterator, are invalidated.
References are invalidated too, unless pos == begin() or pos == end(),
in which case they are not invalidated.
What does this mean? Is this saying that references to the deque itself are invalidated, or references to its elements, or references to the iterators? Or something else entirely?
Here's a link the doc in question: http://en.cppreference.com/w/cpp/container/deque/insert
A deque is an object. It is a container, therefore it contains other objects within it's internal storage. Those are elements stored in a deque.
You can access those elements. Accessing an element is basically getting a reference back from the container. If you check it, all of the methods under element access section return a reference type.
You can make a copy of accessed element, but you can store the reference itself. T foo = d.front(); vs T& bar = d.front();. (Let d be some std::deque<T>)
A reference to a deque would be auto& ref_d = &d;. This is something else.
So:
1. What effect does “insert” have on references to deques?
None. references to d are fine.
2. What does this mean?
A deque is designed in such a way that inserting at the beginning or at the end of it does not invalidate the references to the elements which you might have already stored. Though if you insert in the middle, the elements might move in memory. Note that the bar is not touched. Precisely because it cannot be, it gets invalidated. Previously obtained reference (or iterator) doesn't point to anything meaningful anymore, thus dereferencing it is illegal.
3. Is this saying that references to the deque itself are invalidated?
Nope, as in 1.
4. or references to its elements [are invalidated]?
Yes, as in 2.
5. or references to the iterators [are invalidated]?
You again seem to confuse what is what. A reference to an iterator would be std::deque<T>::iterator& iter_ref;, if you obtain an iterator from a deque. E.g. auto iter = d.begin(); and make a reference to it iter_ref = &iter;, an insert doesn't make *iter_ref illegal, it invalidates the iterator, so *iter is illegal (or **ref_iter).
Note: I am not saying that something like std::deque<T>& ref_d or std::deque<T>::iterator& iter_ref make sense, but this is semantical meaning of "reference to a deque" and "reference to an interator".
Related
Let's look at the following example:
set<int> candidates;
for (int candidate : candidates) {
if (candidate == target) {
candidates.erase(target);
}
}
I would like to know if the iterators gets invalidated, and wonder if it does affect the for-each loop.
because according to the standards, in the insert function it says:
No iterators or references are invalidated.
If the insertion is successful, pointers and references to the element obtained while it is held in the node handle are invalidated, and pointers and references obtained to that element before it was extracted become valid. (since C++17)
I would like to know if the iterators gets invalidated,
Yes. std::set::erase invalidates iterators to the erased element.
and wonder if it does affect the for-each loop.
Yes. The behaviour is undefined if the erase is called in the example.
The loop is entirely unnecessary. You can instead use just a single call to candidates.erase(target).
according to the standards, in the insert function it says:
What the standard says about insert function is largely irrelevant when you don't insert.
std::list iterators have some very nice properties - they remain valid when any other element is removed, when a new element is added and even when 2 lists are swapped (Iterator invalidation rules)!
Considering following code behaviour and that the iterators are implement by a form of pointer to the actual node which doesn't change when the list is moved, my guess is that the iterators are still valid in the new container when a std::list is moved, but also I can be in the UB area here by accessing invalid memory which actually has the "expected" value.
std::list<int> l1{3, 2, 1};
std::list<int> l2;
auto it = std::prev(l1.end());
std::cout<<l1.size()<<" "<<l2.size()<<" "<<*it<<std::endl;
l2 = std::move(l1);
std::cout<<l2.size()<<" "<<*it<<std::endl;
3 0 1
3 1
Is it guaranteed by the standard if the iterators remain valid when std::list is moved? What about other containers?
For containers in general, only swap guarantees that iterators remain valid (and point into the swapped containers).
For std::list, the special member function splice() guarantees that iterators retain their expected meaning.
In general, constructing a container from an rvalue doesn't make guarantees about iterators; the only general requirement is that the new container has the "same value" as the container it was constructed from had originally.
(You can imagine debug iterator implementations that store a reference to the container, and that reference would become dangling after a move.)
STL iterators are used with container classes and are conceptually similar to pointers to specific elements stored in the container.
One of the statements below is true. Which one?
An iterator typically holds an address (pointer), and operator++ applied to the iterator always increases that address.
When iterator it goes out of scope in a program, it gets destructed, which automatically invokes delete it;.
For a valid STL container myC, when the expression myC.end()-myC.begin() is well-defined, it returns the same value as myC.size().
When a container goes out of scope, all iterators that point to it are automatically modified.
For a valid STL container myC, the iterator returned by myC.end() refers to the last valid element in myC.
Apparently the solution is 3. but I don't understand why. Can someone elaborate on why this is the case, and possibly show why the others are false as well?
Think of the requirements of the addresses of items in a linked-list (list). They don't need to be sequential in memory.
delete is something that's manually done on pointers, it wouldn't happen automatically (even if the pointer goes out of scope) (unless done in some API). Iterators are (generally) classes, so delete would not even apply. The iterator would get destructed though.
You can also probably classify a pointer as an iterator. But delete will still not be called automatically.
Note that this only applies to random access iterators. You can calculate the number of items in a container as follows:
int count = 0;
for (iterator it = begin(); it != end(); ++it, ++count) { }
so you increment begin() count times to get to end(),
so begin() + count = end(),
so end() - begin() = count, and count = size(),
so end() - begin() = size()
This is not the way C++ works. Although there are design patterns to achieve this behaviour, usually when modifying a class, it's your responsibility to ensure any dependent classes are updated if invalidated. When you'd try to use an iterator of a container that went out of scope, this would result in undefined behaviour.
end() is past the last element, probably with something like this in mind: (I'm sure among other reasons)
for (iterator it = begin(); it != end(); ++it)
I have a collection of elements in a std::vector that are sorted in a descending order starting from the first element. I have to use a vector because I need to have the elements in a contiguous chunk of memory. And I have a collection holding many instances of vectors with the described characteristics (always sorted in a descending order).
Now, sometimes, when I find out that I have too many elements in the greater collection (the one that holds these vectors), I discard the smallest elements from these vectors some way similar to this pseudo-code:
grand_collection: collection that holds these vectors
T: type argument of my vector
C: the type that is a member of T, that participates in the < comparison (this is what sorts data before they hit any of the vectors).
std::map<C, std::pair<T::const_reverse_iterator, std::vector<T>&>> what_to_delete;
iterate(it = grand_collection.begin() -> grand_collection.end())
{
iterate(vect_rit = it->rbegin() -> it->rend())
{
// ...
what_to_delete <- (vect_rit->C, pair(vect_rit, *it))
if (what_to_delete.size() > threshold)
what_to_delete.erase(what_to_delete.begin());
// ...
}
}
Now, after running this code, in what_to_delete I have a collection of iterators pointing to the original vectors that I want to remove from these vectors (overall smallest values). Remember, the original vectors are sorted before they hit this code, which means that for any what_to_delete[0 - n] there is no way that an iterator on position n - m would point to an element further from the beginning of the same vector than n, where m > 0.
When erasing elements from the original vectors, I have to convert a reverse_iterator to iterator. To do this, I rely on C++11's §24.4.1/1:
The relationship between reverse_iterator and iterator is
&*(reverse_iterator(i)) == &*(i- 1)
Which means that to delete a vect_rit, I use:
vector.erase(--vect_rit.base());
Now, according to C++11 standard §23.3.6.5/3:
iterator erase(const_iterator position); Effects: Invalidates
iterators and references at or after the point of the erase.
How does this work with reverse_iterators? Are reverse_iterators internally implemented with a reference to a vector's real beginning (vector[0]) and transforming that vect_rit to a classic iterator so then erasing would be safe? Or does reverse_iterator use rbegin() (which is vector[vector.size()]) as a reference point and deleting anything that is further from vector's 0-index would still invalidate my reverse iterator?
Edit:
Looks like reverse_iterator uses rbegin() as its reference point. Erasing elements the way I described was giving me errors about a non-deferenceable iterator after the first element was deleted. Whereas when storing classic iterators (converting to const_iterator) while inserting to what_to_delete worked correctly.
Now, for future reference, does The Standard specify what should be treated as a reference point in case of a random-access reverse_iterator? Or this is an implementation detail?
Thanks!
In the question you have already quoted exactly what the standard says a reverse_iterator is:
The relationship between reverse_iterator and iterator is &*(reverse_iterator(i)) == &*(i- 1)
Remember that a reverse_iterator is just an 'adaptor' on top of the underlying iterator (reverse_iterator::current). The 'reference point', as you put it, for a reverse_iterator is that wrapped iterator, current. All operations on the reverse_iterator really occur on that underlying iterator. You can obtain that iterator using the reverse_iterator::base() function.
If you erase --vect_rit.base(), you are in effect erasing --current, so current will be invalidated.
As a side note, the expression --vect_rit.base() might not always compile. If the iterator is actually just a raw pointer (as might be the case for a vector), then vect_rit.base() returns an rvalue (a prvalue in C++11 terms), so the pre-decrement operator won't work on it since that operator needs a modifiable lvalue. See "Item 28: Understand how to use a reverse_iterator's base iterator" in "Effective STL" by Scott Meyers. (an early version of the item can be found online in "Guideline 3" of http://www.drdobbs.com/three-guidelines-for-effective-iterator/184401406).
You can use the even uglier expression, (++vect_rit).base(), to avoid that problem. Or since you're dealing with a vector and random access iterators: vect_rit.base() - 1
Either way, vect_rit is invalidated by the erase because vect_rit.current is invalidated.
However, remember that vector::erase() returns a valid iterator to the new location of the element that followed the one that was just erased. You can use that to 're-synchronize' vect_rit:
vect_rit = vector_type::reverse_iterator( vector.erase(vect_rit.base() - 1));
From a standardese point of view (and I'll admit, I'm not an expert on the standard): From §24.5.1.1:
namespace std {
template <class Iterator>
class reverse_iterator ...
{
...
Iterator base() const; // explicit
...
protected:
Iterator current;
...
};
}
And from §24.5.1.3.3:
Iterator base() const; // explicit
Returns: current.
Thus it seems to me that so long as you don't erase anything in the vector before what one of your reverse_iterators points to, said reverse_iterator should remain valid.
Of course, given your description, there is one catch: if you have two contiguous elements in your vector that you end up wanting to delete, the fact that you vector.erase(--vector_rit.base()) means that you've invalidated the reverse_iterator "pointing" to the immediately preceeding element, and so your next vector.erase(...) is undefined behavior.
Just in case that's clear as mud, let me say that differently:
std::vector<T> v=...;
...
// it_1 and it_2 are contiguous
std::vector<T>::reverse_iterator it_1=v.rend();
std::vector<T>::reverse_iterator it_2=it_1;
--it_2;
// Erase everything after it_1's pointee:
// convert from reverse_iterator to iterator
std::vector<T>::iterator tmp_it=it_1.base();
// but that points one too far in, so decrement;
--tmp_it;
// of course, now tmp_it points at it_2's base:
assert(tmp_it == it_2.base());
// perform erasure
v.erase(tmp_it); // invalidates all iterators pointing at or past *tmp_it
// (like, say it_2.base()...)
// now delete it_2's pointee:
std::vector<T>::iterator tmp_it_2=it_2.base(); // note, invalid iterator!
// undefined behavior:
--tmp_it_2;
v.erase(tmp_it_2);
In practice, I suspect that you'll run into two possible implementations: more commonly, the underlying iterator will be little more than a (suitably wrapped) raw pointer, and so everything will work perfectly happily. Less commonly, the iterator might actually try to track invalidations/perform bounds checking (didn't Dinkumware STL do such things when compiled in debug mode at one point?), and just might yell at you.
The reverse_iterator, just like the normal iterator, points to a certain position in the vector. Implementation details are irrelevant, but if you must know, they both are (in a typical implementation) just plain old pointers inside. The difference is the direction. The reverse iterator has its + and - reversed w.r.t. the regular iterator (and also ++ and --, > and < etc).
This is interesting to know, but doesn't really imply an answer to the main question.
If you read the language carefully, it says:
Invalidates iterators and references at or after the point of the erase.
References do not have a built-in sense of direction. Hence, the language clearly refers to the container's own sense of direction. Positions after the point of the erase are those with higher indices. Hence, the iterator's direction is irrelevant here.
std::vector<int> ints;
// ... fill ints with random values
for(std::vector<int>::iterator it = ints.begin(); it != ints.end(); )
{
if(*it < 10)
{
*it = ints.back();
ints.pop_back();
continue;
}
it++;
}
This code is not working because when pop_back() is called, it is invalidated. But I don't find any doc talking about invalidation of iterators in std::vector::pop_back().
Do you have some links about that?
The call to pop_back() removes the last element in the vector and so the iterator to that element is invalidated. The pop_back() call does not invalidate iterators to items before the last element, only reallocation will do that. From Josuttis' "C++ Standard Library Reference":
Inserting or removing elements
invalidates references, pointers, and
iterators that refer to the following
element. If an insertion causes
reallocation, it invalidates all
references, iterators, and pointers.
Here is your answer, directly from The Holy Standard:
23.2.4.2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1).
23.1.1.12 Table 68
expressiona.pop_back()
return typevoid
operational semanticsa.erase(--a.end())
containervector, list, deque
Notice that a.pop_back is equivalent to a.erase(--a.end()). Looking at vector's specifics on erase:
23.2.4.3.3 - iterator erase(iterator position) - effects - Invalidates all the iterators and references after the point of the erase
Therefore, once you call pop_back, any iterators to the previously final element (which now no longer exists) are invalidated.
Looking at your code, the problem is that when you remove the final element and the list becomes empty, you still increment it and walk off the end of the list.
(I use the numbering scheme as used in the C++0x working draft, obtainable here
Table 94 at page 732 says that pop_back (if it exists in a sequence container) has the following effect:
{ iterator tmp = a.end();
--tmp;
a.erase(tmp); }
23.1.1, point 12 states that:
Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container
member function or passing a container as an argument to a library function shall not invalidate iterators to, or change
the values of, objects within that container.
Both accessing end() as applying prefix-- have no such effect, erase() however:
23.2.6.4 (concerning vector.erase() point 4):
Effects: Invalidates iterators and references at or after the point of the erase.
So in conclusion: pop_back() will only invalidate an iterator to the last element, per the standard.
Here is a quote from SGI's STL documentation (http://www.sgi.com/tech/stl/Vector.html):
[5] A vector's iterators are invalidated when its memory is reallocated. Additionally, inserting or deleting an element in the middle of a vector invalidates all iterators that point to elements following the insertion or deletion point. It follows that you can prevent a vector's iterators from being invalidated if you use reserve() to preallocate as much memory as the vector will ever use, and if all insertions and deletions are at the vector's end.
I think it follows that pop_back only invalidates the iterator pointing at the last element and the end() iterator. We really need to see the data for which the code fails, as well as the manner in which it fails to decide what's going on. As far as I can tell, the code should work - the usual problem in such code is that removal of element and ++ on iterator happen in the same iteration, the way #mikhaild points out. However, in this code it's not the case: it++ does not happen when pop_back is called.
Something bad may still happen when it is pointing to the last element, and the last element is less than 10. We're now comparing an invalidated it and end(). It may still work, but no guarantees can be made.
Iterators are only invalidated on reallocation of storage. Google is your friend: see footnote 5.
Your code is not working for other reasons.
pop_back() invalidates only iterators that point to the last element. From C++ Standard Library Reference:
Inserting or removing elements
invalidates references, pointers, and
iterators that refer to the following
element. If an insertion causes
reallocation, it invalidates all
references, iterators, and pointers.
So to answer your question, no it does not invalidate all iterators.
However, in your code example, it can invalidate it when it is pointing to the last element and the value is below 10. In which case Visual Studio debug STL will mark iterator as invalidated, and further check for it not being equal to end() will show an assert.
If iterators are implemented as pure pointers (as they would in probably all non-debug STL vector cases), your code should just work. If iterators are more than pointers, then your code does not handle this case of removing the last element correctly.
Error is that when "it" points to the last element of vector and if this element is less than 10, this last element is removed. And now "it" points to ints.end(), next "it++" moves pointer to ints.end()+1, so now "it" running away from ints.end(), and you got infinite loop scanning all your memory :).
The "official specification" is the C++ Standard. If you don't have access to a copy of C++03, you can get the latest draft of C++0x from the Committee's website: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2723.pdf
The "Operational Semantics" section of container requirements specifies that pop_back() is equivalent to { iterator i = end(); --i; erase(i); }. the [vector.modifiers] section for erase says "Effects: Invalidates iterators and references at or after the point of the erase."
If you want the intuition argument, pop_back is no-fail (since destruction of value_types in standard containers are not allowed to throw exceptions), so it cannot do any copy or allocation (since they can throw), which means that you can guess that the iterator to the erased element and the end iterator are invalidated, but the remainder are not.
pop_back() will only invalidate it if it was pointing to the last item in the vector. Your code will therefore fail whenever the last int in the vector is less than 10, as follows:
*it = ints.back(); // Set *it to the value it already has
ints.pop_back(); // Invalidate the iterator
continue; // Loop round and access the invalid iterator
You might want to consider using the return value of erase instead of swapping the back element to the deleted position an popping back. For sequences erase returns an iterator pointing the the element one beyond the element being deleted. Note that this method may cause more copying than your original algorithm.
for(std::vector<int>::iterator it = ints.begin(); it != ints.end(); )
{
if(*it < 10)
it = ints.erase( it );
else
++it;
}
std::remove_if could also be an alternative solution.
struct LessThanTen { bool operator()( int n ) { return n < 10; } };
ints.erase( std::remove_if( ints.begin(), ints.end(), LessThanTen() ), ints.end() );
std::remove_if is (like my first algorithm) stable, so it may not be the most efficient way of doing this, but it is succinct.
Check out the information here (cplusplus.com):
Delete last element
Removes the last element in the vector, effectively reducing the vector size by one and invalidating all iterators and references to it.