Advice for best approach at extending class capability - c++

I want to extend a class to include extra data and capabilities (I want polymorphic behavior). It seemed obvious to use inheritance and multiple inheritance.
Having read various posts that inheritance (and especially multiple inheritance) can be problematic, I've begun looking into other options:
Put all data and functions in one class and not use inheritance
Composite pattern
mixin
Is there a suggested approach for the following inheritance example? Is this a case where inheritance is reasonable? (but I don't like having to put default functions in the base-class)
#include <iostream>
//================================
class B {
public:
virtual ~B() { }
void setVal(int val) { val_ = val; }
// I'd rather not have these at base class level but want to use
// polymorphism on type B:
virtual void setColor(int val) { std::cout << "setColor not implemented" << std::endl; }
virtual void setLength(int val) { std::cout << "setLength not implemented" << std::endl; }
private:
int val_;
};
//================================
class D1 : virtual public B {
public:
void setColor(int color) {
std::cout << "D1::setColor to " << color << std::endl;
color_ = color;
}
private:
int color_;
};
//================================
class D2 : virtual public B {
public:
void setLength(int length) {
std::cout << "D2::setLength to " << length << std::endl;
length_ = length;
}
private:
int length_;
};
//================================
// multi-inheritance diamond - have fiddled with mixin
// but haven't solved using type B polymorphically with mixins
class M1 : public D1, public D2 {
};
//================================
int main() {
B* d1 = new D1;
d1->setVal(3);
d1->setColor(1);
B* m1 = new M1;
m1->setVal(4);
m1->setLength(2);
m1->setColor(4);
return 0;
}

Suspected problems with the original example code
There are a number of issues with your example.
In the first place, you don't have to supply function bodies in the base class. Use pure virtual functions instead.
Secondly, both your classes D1 and D2 miss functionality, so they should be abstract (which will prevent you from creating deprived objects from them). This second issue will become clear if you indeed use pure virtual functions for your base class. The compiler will start to issue warnings then.
Instantiating D1 as you do with new D1, is bad design, because D1 has no truly functional implementation of the setLength method, even if you give it a 'dummy' body. Giving it a 'dummy' body (one that doesn't do anything useful) so masks your design error.
So your remark (but I don't like having to put default functions in the base-class) testifies of a proper intuition. Having to do that signals flawed design. A D1 object cannot understand setLength, while its inherited public interface promises it can.
And: There's nothing wrong with multiple inheritance, if used correctly. It is very powerful and elegant. But you have to use it where appropiate. D1 and D2 are partial implementations of B, so abstract, and inheriting from both will indeed give you a complete implementation, so concrete.
Maybe a good rule to start with is: Use multiple inheritance only if you see a compelling need for it. But if you do, as said, it's very useful. It can prevent quite some ugly asymmetry and code duplication, compared to e.g. a language like Java, that has banned it.
I am not a tree doctor. When I use a chainsaw I endanger my leg. But that is not to say chainsaws ain't useful.
Where to put the dummy: Nowhere please, do not disinherit...
[EDIT after first comment of OP]
If you derive a class D1 from B that would print 'setLength not implemented' if you call its setLength method, how should the caller react? It shouldn't have called it in the first place, which the caller could have known if D1 did not derive from a B that has this methods, pure virtual or not. Then it would have been clear that it just doesn't support this method. Having the B baseclass makes D1 feel at home in a polymorphic datastructure who'se element type, B* or B&, promises its users that its objects properly support getLength, which they don't.
While this is not the case in your example (but maybe you left things out), there may of course be a good reason to derive D1 and D2 from B. B could hold a part of the eventual interface or implementation of its derived classes that both D1 an D2 need.
Suppose B had a method setAny (key, value) (setting a value in a dictionary), which D1 and D2 both use, D1 calls it in setColor and D2 calls it in setLength.
In that case use of a common base class is justified. In that case B should not have virtual methods setColor or setLength at all, neither dummies nor pure. You should just have a setColor in your D1 class and a setLength in your D2 class, but neither of both in your B class.
There's a basic rule in Object Oriented Design:
Do not disinherit
By introducing the concept of a "method that's not applicable" in a concrete class that's just what you're doing. Now rules like this aren't dogma's. But violating this rule almost always points to a design flaw.
All B's in one datastructure is only useful to have them do a trick that they all understand...
[EDIT2 after second coment of OP]
OP wants to have a map that can hold objects of any class derived from B.
This is exactly where the problem starts. To find out how to store pointers and references to our objects, we have to ask: what is the storage used for. If a map, say mapB is used to store pointers to B, there must be some point in that. With data storage the fun is in retrieving the data and doing something useful with it.
Let's make this a bit simpler by working with lists from everyday life. Suppose I have a personList of say 1000 persons, each with their fullName and phoneNumber. And now say I have a problem with the kitchen sink. I could in fact read through the list, call every single Person on it and ask: can you repair my kitchen sink. In other words: do you support the repairKitchenSink method. Or: are you by any chance an instance of class Plumber (are you a Plumber). But then I spend quite some time calling, and maybe after 500 calls or so, I'll be lucky.
Now all 1000 persons on my personList do support the talkToMe method. So whenever I feel lonely I can call any person from that list and invokate that Person's talkToMe method. But they should not all have a repairKitchenSink method, even not a pure virtual or a dummy variation that does something else, because if I would call this method for a person of class Burglar, he'd probably respond to the call, but in an unexpected way.
So class Person shouldn't contain a method repairKitchenSink, even not a pure virtual one. Because it should never called as part of iteration of personList. It should be called when iterating plumberList. This lists only holds objects that support the repairKitchenSink method.
Use pure virtual functions only where appropriate
They may support it in different ways though. In other words, in class Plumber, method repairKitchenSink can e.g. be pure virtual. There may e.g. be 2 derived classes, PvcPlumber and CopperPlumber. CopperPlumber would implement (code) the repairKitchenSink method by calling lightFlame, followed by a call to solderDrainToSink whereas PvcPlumber would implement it as successive calls to applyGlueToPvcTube and glueTubeToSinkOutlet. But both plumber subclasses implement repairKitchenSink, only in different ways. This and only this justifies having the pure virtual function repairKitchenSink in their base class Plumber. Now of course a class may be derived from Plumber that doesn't implement that method, say class WannabePlumber. But since it will be abstract, you cannot instantiate objects from it, which is good, unless you want wet feet.
There may be many different subclasses of Person. They e.g. represent different professions, or different political preferences, or different religions. If a Person is a Democrat Budhist Plumber, than he (M/F) may be in a derived class that inherits from classes Democrat, Budhist and Plumber. Using inheritance or even typing for something so volatile as political preferences or religious beliefs, or even profession and the endless amount of combinations of those, would not be handy in practice, but it's just an example. In reality profession, religion and politicalPreference would probably be attributes. But that doesn't change the point that matters here. IF something is of a class does not support a certain operation, THEN it shouldn't be in a datastructure that suggests it does.
By, besides personList, having plumberList, animistList and democratList, you're sure to call a person that understands your call to method inviteBillToPlayInMyJazzBand, or worshipTheTreeInMyBackyard.
Lists don't contain objects, they only contain pointers or references to objects. So there's nothing wrong with our Democratic Budhist Plumber being contained in personList, democratList, budhistList and plumberList. Lists are like database indexes. The don't contain the records, they just refer to them. You can have many indexes on one table, and you should, because indexes are small and make your database fast.
The same holds for polymorphic datastructures. At the moment that even personList, democratList, budhistList and plumberList become so large that you're running out of memory, the solution is generally NOT to only have a personList. Because then you exchange your memory problem for a perfomance problem and a code complexity problem that, in general, is far worse.
So, back to your comment: You say you want all your derived classes to be in a list of B's. Fine, but still the interface of a B should only contain methods that are implemented for everything in the list, so no dummy methods. That would be like going through the library and going through all books, in search for one that supports the teachMeAboutTheLovelifeOfGoldfishes method.
To be honest, in telling you all this, I've been committing a capital sin. I've been selling general truths. But in software design these don't exist. I've been trying to sell them to you because I've been teaching OO design for some 30 years now, and I think I recognize the point where your stuck. But to every rule there are many exceptions. Still, if I've properly fathomed your problem, in this case I think you should go for separate datastructures, each holding only references or pointers to objects that really can do trick that you were after when you iterated through that particular datastructure.
A point is a square circle
Part of the confusion in properly using polymorphic datastructures (datastructures holding pointers or references to different object types) comes for the world of relational databases. RDB's work with tables of flat records, each record having the same fields. Since some fields may not apply, something called 'constraint' was invented. In C++ class Point would contain field x and y. Class Circle could inherit from it and additionally contain field 'radius'. Class Square could also inherit from Point, but contain field 'side' in addition to x and y. In the RDB world constraints, not fields, are inherited. So a Circle would have constraint radius == 0. And a Square would have constraint side == 0. And a Point would inherit both constraints, so it would meet the conditions for both being a square and a circle: A point is a square circle, which in mathematics indeed is the case. Note that the constraint inheritance hierarchy is 'upside down', compared to C++. Which can be confusing.
What doesn't help either is the generally held belief that inheritance goes hand in hand with specialization. While this is often the case it isn't always. In many cases in C++ inheritance is extension rather than specialization. The two often coincide, but the Point, Square, Circle example shows that this isn't a general truth.
If inheritance is used, in C++ Circle should derive from Point, since it has extra fields. But a Circle certainly isn't a special type of Point, it's the other way round. In many practical libraries, by the way, Circle will contain an object of class Point, holding x and y, rather than inherit from it, bypassing the whole problem.
Welcome to the world of design choices
What you bumped into is a real design choice, and an important one. Thinking very carefully about things like this, as you are doing, and trying them all in practice, including the allegedly 'wrong' ones, will make you a programmer, rather than a coder.

Let me first state that what you are trying to do is a design smell: Most probably what you are actually trying to achieve could be achieved in a better way. Unfortunately we can't know what it is you actually want to achieve since you only told us how you want to achieve it.
But anyway, your implementation is bad, as the methods report "not implemented" to the users of the program, rather than to the caller. There is no way for the caller to react on the method not doing what is intended. Even worse, you don't even output it to the error stream, but to the regular output stream, so if you use that class in any program that produces regular output, that output will be interrupted by your error message, possibly confusing a program further on in a pipeline).
Here's a better way to do it:
#include <iostream>
#include <cstdlib> // for EXIT_FAILURE
//================================
class B {
public:
virtual ~B() { }
void setVal(int val) { val_ = val; }
// note: No implementation of methods not making sense to a B
private:
int val_;
};
//================================
class D1 : virtual public B {
public:
void setColor(int color) {
std::cout << "D1::setColor to " << color << std::endl;
color_ = color;
}
private:
int color_;
};
//================================
class D2 : virtual public B {
public:
void setLength(int length) {
std::cout << "D2::setLength to " << length << std::endl;
length_ = length;
}
private:
int length_;
};
class M1 : public virtual D1, public virtual D2 {
};
//================================
int main() {
B* d1 = new D1;
p->setVal(3);
if (D1* p = dynamic_cast<D1*>(d1))
{
p->setColor(1);
}
else
{
// note: Use std::cerr, not std::cout, for error messages
std::cerr << "Oops, this wasn't a D1!\n";
// Since this should not have happened to begin with,
// better exit immediately; *reporting* the failure
return EXIT_FAILURE;
}
B* m1 = new M1;
m1->setVal(4);
if (D2* p = dynamic_cast<D2*>(m1))
{
p->setLength(2);
}
else
{
// note: Use std::cerr, not std::cout, for error messages
std::cerr << "Oops, this wasn't a D1!\n";
// Since this should not have happened to begin with,
// better exit immediately; *reporting* the failure
return EXIT_FAILURE;
}
if (D1* p = dynamic_cast<D1*>(m1))
{
p->setColor(4);
}
else
{
// note: Use std::cerr, not std::cout, for error messages
std::cerr << "Oops, this wasn't a D1!\n";
// Since this should not have happened to begin with,
// better exit immediately; *reporting* the failure
return EXIT_FAILURE;
}
return 0;
}
Alternatively, you could make use of the fact that your methods share some uniformity, and use a common method to set all:
#include <iostream>
#include <stdexcept> // for std::logic_error
#include <cstdlib>
#include <string>
enum properties { propValue, propColour, propLength };
std::string property_name(property p)
{
switch(p)
{
case propValue: return "Value";
case propColour: return "Colour";
case propLength: return "Length";
default: return "<invalid property>";
}
}
class B
{
public:
virtual ~B() {}
// allow the caller to determine which properties are supported
virtual bool supportsProperty(property p)
{
return p == propValue;
}
void setProperty(property p, int v)
{
bool succeeded = do_set_property(p,v);
// report problems to the _caller_
if (!succeeded)
throw std::logic_error(property_name(p)+" not supported.");
}
private:
virtual bool do_set_property(property p)
{
if (p == propValue)
{
value = v;
return true;
}
else
return false;
}
int value;
};
class D1: public virtual B
{
public:
virtual bool supportsProperty(property p)
{
return p == propColour || B::supportsProperty(p);
}
private:
virtual bool do_set_property(property p, int v)
{
if (p == propColour)
{
colour = v;
return true;
}
else
return B::do_set_property(p, v);
}
int colour;
};
class D2: public virtual B
{
public:
virtual bool supportsProperty(property p)
{
return p == propLength || B::supportsProperty(p);
}
private:
virtual bool do_set_property(property p, int v)
{
if (p == propLength)
{
length = v;
return true;
}
else
return B::do_set_property(p, v);
}
int length;
};
class M1: public virtual D1, public virtual D2
{
public:
virtual bool supportsProperty(property p)
{
return D1::supportsProperty(p) || D2::supportsProperty(p);
}
private:
bool do_set_property(property p, int v)
{
return D1::do_set_property(p, v) || D2::do_set_property(p, v);
}
};

Related

Base class vector filled with sub-classes not working

I'm trying to have a vector of different subclass pointers that have a common base class. The vector is set to the base class pointer but anything that is added to the vector doesn't get the full functionality of the subclass it is.
It can be seen in the error log it is being treated as a base class so not getting the extended functionality.
I've looked on loads of questions and people are saying to do it the way I am doing it, but for whatever reason, it's not working.
The code is on a public repo.it:
https://repl.it/#cubingminer8/inheritance-with-vectors-testing
Any help would be greatly appreciated!
edit: ok so I'm going to use this for a sprite group system in a c++ sdl2 game engine. There will be a base sprite class that has some basic things like render and move, while any sprites I need will be their own classes that inherit from Sprite, they will have their own unique behaviors so virtual functions would be impractical. There will be a sprite group object, that objects that inherit from Sprite can be stored in. So they can all be rendered at once and such.
If you have ever used pygame then it is almost identical to the sprite and spritegroup system used there.
https://www.pygame.org/docs/tut/SpriteIntro.html
#include <iostream>
#include <vector>
class Base {
public:
char A = 'A';
};
class Sub : public Base {
public:
char B = 'B';
};
class Sub2 : public Base {
public:
char C = 'C';
};
int main() {
std::vector<Base*> List;
List.push_back(new Sub());
List.push_back(new Sub2());
std::cout << List[0]->B << std::endl; // it should be able to print B
std::cout << List[1]->C << std::endl; // but it is being set as a base class and
// not getting the functionality of the subclass it is.
}
Usually, this is achieved by virtual functions. In the given case it should be a virtual getter function which returns the char members of each class.
class Base {
char A = 'A';
public:
virtual char getChar()const /*noexcept*/ { return A; }
virtual Base () = default;
};
class Sub : public Base {
char B = 'B';
public:
char getChar()const /*noexcept*/ override { return B; }
};
class Sub2 : public Base {
char C = 'C';
public:
char getChar()const /*noexcept*/ override { return C; }
};
now in the main
std::cout << List[0]->getChar() << std::endl;
As a side note, I suggest you to have a look at smart pointers, instead of the row pointers, by which you can avoid manual memory management.
A good starting would be:
#include <memory>
std::vector<std::unique_ptr<Base>> List;
List.emplace_back(std::make_unique<Sub>());
So you want this to work:
// your code version 1
std::cout<< List[0]->B << std::endl; //it should be able to print B
std::cout<< List[1]->C << std::endl; //but it is being set as a base class
But what should happen if you write this instead?
// your code version 2
std::cout<< List[0]->C << std::endl;
std::cout<< List[1]->B << std::endl;
List[0] doesn't have any C and List[1] doesn't have any B. How do you propose to treat this code?
There are several ways to approach this.
The compiler should know at compilation time that version 1 is right, and version 2 is wrong. Unfortuantely this is generally impossible because the compiler cannot keep track of what object pointer goes to which slot in the array. So this has to be dismissed.
The run time system should detect the error at run time. This is a possible approach, but not one taken by C++. C++ is a statically typed language. Dynamically typed languages can handle this case. If you want a dynamically typed language, try e.g. Python.
The compiler should not try to detect anything, and the runtime system should not try to detect anything either, but go ahead and perforrm the operation anyway, and let it produce wrong results or crash. This is also a possible approach, but not one taken by any modern high-level programming language. C++ and other modern languages are typed. It is possible to circumvent the type system of C++ by using reinterpret_cast and the like, but this is very dangerous and is not recommended.
The compiler should treat both versions as wrong. This is what C++ does.
As others have mentioned, the (only) right way to extend functionality of a class is via virtual functions. This requires some planning ahead. The base should at least declare which operations are needed, though it doesn't need to know how derived classes will implement them.

return a Type, or how to preserve a type of an object pointer?

I have a very complicated code structure, but the important bits are:
typical setup: I have a base class and two classes that derive from this base class and each has own members, and which don't have a standard constructor
class BaseSolver{
...
};
class SolverA : BaseSolver{
public:
std::string a;
SolverA(TypeA objectA);
};
class SolverB : BaseSolver{
public:
int b;
SolverB(TypeB objectB);
};
Now I have a config xml file from which I read whether I have to use SolverA or SolverB. Therefore I have an IOService:
template<class T>
class IOService
{
BaseSolver* getSolver()
{
std::string variableThatIReadFromXML;
/* here I have to perform many actions before I can create a solver object
* to retrieve the data needed for the constructors */
TypeA variableIConstrucedWithDataFromXML;
TypeB anotherVariableIConstrucedWithDataFromXML;
if (variableThatIReadFromXML == "a")
return new SolverA(variableIConstrucedWithDataFromXML); // I know that this can leak memory
else if (variableThatIReadFromXML == "b")
return new SolverB(anotherVariableIConstrucedWithDataFromXML);
}
};
And somewhere in my application (for simplicity let's say it's the main.cpp):
int main(){
IOService ioService;
BaseSolver* mySolver = ioService.getSolver();
}
That is absolutely fine.
But now, in the main I have to access the members of the derived classes a and b respectively.
How can I do this?
I thought of retreving only the type of the Solver from the IOService:
class IOService
{
decltype getSolverType()
{
std::string variableThatIReadFromXML;
/* here I have to perform many actions before I can create a solver object
* to retrieve the data needed for the constructors */
TypeA variableIConstrucedWithDataFromXML;
TypeB anotherVariableIConstrucedWithDataFromXML;
if (variableThatIReadFromXML == "a")
return new SolverA(variableIConstrucedWithDataFromXML); // I know that this can leak memory
else if (variableThatIReadFromXML == "b")
return new SolverB(anotherVariableIConstrucedWithDataFromXML);
}
TypeA getConstructorDataForSolverA()
{
/* here I have to perform many actions before I can create a solver object
* to retrieve the data needed for the constructors */
return variableIConstrucedWithDataFromXML;
}
TypeB getConstructorDataForSolverB()
{
/* here I have to perform many actions before I can create a solver object
* to retrieve the data needed for the constructors */
return anotherVariableIConstrucedWithDataFromXML;
}
};
But of course I can't specify decltype as return value.
I'm really helpless. I would appreciate any hint into the right direction, or even a solution for this problem.
[Edit]: The derived solver classes need more than only the information from the xml file to work properly. That means, that I have to set some more properties which come from a mesh file. So I could give the meshfile to the IOService, so that the IOService could set the appropriate members this way:
class IOService
{
BaseSolver* getSolver(MeshType myMesh)
{
std::string variableThatIReadFromXML;
/* here I have to perform many actions before I can create a solver object
* to retrieve the data needed for the constructors */
TypeA variableIConstrucedWithDataFromXML;
TypeB anotherVariableIConstrucedWithDataFromXML;
if (variableThatIReadFromXML == "a")
{
auto solverA = new SolverA(variableIConstrucedWithDataFromXML); // I know that this can leak memory
solverA.a = mesh.a;
}
else if (variableThatIReadFromXML == "b")
{
auto solverB = new SolverB(anotherVariableIConstrucedWithDataFromXML);
solverB.b = mesh.b;
}
}
};
But then the IOService needs to know the class MeshType, what I want to avoid, because I think that it breaks encapsulation.
So I wanted to set the member a and b, respectively, in another part of my program (here for simplicity in the main).
Taking this into account, only the answer from Daniel Daranas seems like a solution for me. But I wanted to avoid dynamic casts.
So a reformulated question could be: How should I change my design to ensure encapsulation and avoid dynamic casts? [/Edit]
I am using clang 3.4 ob ubuntu 12.04 lts.
Use dynamic_cast to try to cast a pointer-to-base-class to pointer-to-derived-class. It will return NULL if the pointed-to object of the base class does not exist (NULL value of the base pointer), or is not actually a derived class object. If the result, instead, is not NULL, you have a valid pointer-to-derived-class.
int main(){
IOService ioService;
BaseSolver* mySolver = ioService.getSolver();
SolverB* bSolver = dynamic_cast<SolverB*>(mySolver);
if (bSolver != NULL)
{
int finallyIGotB = bSolver->b;
cout << finallyIGotB;
}
}
Note that there may be some better design solutions than using dynamic_cast. But at least this is one possibility.
The funny thing about polymorphism is that it points out to you when you are not using it.
Inheriting a base class in the way you are serves 1 purpose: to expose a uniform interface for objects with different behaviors. Basically, you want the child classes to look the same. If I have classes B and C that inherit from A, I want to say "do foo" to the class, and it'll do foob or fooc.
Essentially, you're flipping it around: I have a B and C of type A, and if it is B i want to do foob and if it is C I want to do fooc. While this may seem scary, usually the best way to solve the problem is to rephrase the question.
So to your example, you are currently saying "OK, so I have an XML file, and I will read data from it one way if I'm making an A, or another way if I'm making a B." But the polymorphic way would be "I have an XML file. It tells me to make an A or a B, and then I tell the instance to parse the XML file".
So one of the ways to solve this to change your solver interface:
class BaseSolver
{
public:
virtual void ReadXMLFile(string xml) = 0;
...
};
While this does rephrase the problem in a way that uses polymorphism, and removes the need for you to see what you've created, you probably don't like that for the same reason I don't: you'd have to supply a default constructor, which leaves the class in an unknown state.
So rather than enforce it at the interface level, you could enforce it at the constructor level, and make both SolverA and SolverB have to take in the XML string as part of the constructor.
But what if the XML string is bad? Then you'd get an error state in the constructor, which is also a no-no. So I'd deal with this using the factory pattern:
class SolverFactory;
class BaseSolver
{
public:
virtual void solve() = 0;
protected:
virtual int ReadXML(std::string xml) = 0;
friend class SolverFactory;
};
class A : public BaseSolver
{
public:
virtual void solve() {std::cout << "A" << std::endl;}
protected:
A(){}
virtual int ReadXML(std::string xml) {return 0;}
friend class SolverFactory;
};
class B : public BaseSolver
{
public:
virtual void solve() {std::cout << "B" << std::endl;}
protected:
B(){}
virtual int ReadXML(std::string xml) {return 0;}
friend class SolverFactory;
};
class SolverFactory
{
public:
static BaseSolver* MakeSolver(std::string xml)
{
BaseSolver* ret = NULL;
if (xml=="A")
{
ret = new A();
}
else if (xml=="B")
{
ret = new B();
}
else
{
return ret;
}
int err = ret->ReadXML(xml);
if (err)
{
delete ret;
ret = NULL;
}
return ret;
}
};
I didn't put any actual XML processing in here because I am lazy, but you could have the factory get the type from the main tag and then pass the rest of the node in. This method ensures great encapsulation, can catch errors in the xml file, and safely separates the behaviors you are trying to get. It also only exposes the dangerous functions (the default constructor and ReadXMLFile) to the SolverFactory, where you (supposedly) know what you are doing.
Edit: in response to the question
The problem you've stated is "I have a B and C of type A, and if is B i want to set "b" settings and if it is C i want to set "c" settings".
Taking advantage of polymorphism, you say "I have a B and C of type A. I tell them to get their settings."
There a couple of ways to do this. If you don't mind mangling your IO with the class, you can simply expose the method:
class BaseSolver
{
public:
virtual void GetSettingsFromCommandLine() = 0;
};
And then create the individual methods for each class.
If you do want to create them separate, then what you want is polymorphism in the io. So expose it that way:
class PolymorphicIO
{
public:
virtual const BaseSolver& get_base_solver() const = 0;
virtual void DoSettingIO() = 0;
};
an example implmentation
class BaseSolverBIO : PolymorphicIO
{
public:
virtual const BaseSolver& get_base_solver() const {return b;}
virtual void DoSettingIO() { char setting = get_char(); b.set_b(setting);}
private:
BaseSolverB b;
};
At first glance this seems like a lot of code (we've doubled the number of classes, and probably need to supply a factory class for both BaseSolver and the IO interface). Why do it?
It is the issue of scaleability/maintainability. Lets say you have figured out a new solver you want to add (D). If you are using dynamic cast, you have to find all the places in your top level and add a new case statement. If there is only 1 place, then this is pretty easy, but if it is 10 places, you could easily forget one and it would be hard to track down. Instead, with this method you have a separate class that has all the specific IO functionality for the solver.
Lets also think of what happens to those dynamic_cast checks as the number of solvers grows. You've been maintaining this software for years now with a large team, and lets say you've come up with solvers up to the letter Z. Each of those if-else statements are hundreds-a tousand of lines long now: if you have an error in O you have to scroll through A-M just to find the bug. Also, the overhead for using the polymorphism is constant, while reflection just grows and grows and grows.
The final benefit for doing it this way is if you have a class BB : public B. You probably have all the old settings from B, and want to keep them, just make it a little bigger. Using this model, you can extend the IO class as well for the io for BB and reuse that code.
One way to achieve this is to add an interface method into the base class:
class BaseSolver{
virtual void SolverMethodToCallFromMain() = 0;
...
};
class SolverA : BaseSolver{
public:
std::string a;
SolverA(TypeA objectA);
virtual void SolverMethodToCallFromMain() {/*SolverA stuff here*/};
};
class SolverB : BaseSolver{
public:
int b;
SolverB(TypeB objectB);
virtual void SolverMethodToCallFromMain() {/*SolverB stuff here*/};
};
And in main:
int main(){
IOService ioService;
BaseSolver* mySolver = ioService.getSolver();
mySolver->SolverMethodToCallFromMain();
}

Practical use of dynamic_cast?

I have a pretty simple question about the dynamic_cast operator. I know this is used for run time type identification, i.e., to know about the object type at run time. But from your programming experience, can you please give a real scenario where you had to use this operator? What were the difficulties without using it?
Toy example
Noah's ark shall function as a container for different types of animals. As the ark itself is not concerned about the difference between monkeys, penguins, and mosquitoes, you define a class Animal, derive the classes Monkey, Penguin, and Mosquito from it, and store each of them as an Animal in the ark.
Once the flood is over, Noah wants to distribute animals across earth to the places where they belong and hence needs additional knowledge about the generic animals stored in his ark. As one example, he can now try to dynamic_cast<> each animal to a Penguin in order to figure out which of the animals are penguins to be released in the Antarctic and which are not.
Real life example
We implemented an event monitoring framework, where an application would store runtime-generated events in a list. Event monitors would go through this list and examine those specific events they were interested in. Event types were OS-level things such as SYSCALL, FUNCTIONCALL, and INTERRUPT.
Here, we stored all our specific events in a generic list of Event instances. Monitors would then iterate over this list and dynamic_cast<> the events they saw to those types they were interested in. All others (those that raise an exception) are ignored.
Question: Why can't you have a separate list for each event type?
Answer: You can do this, but it makes extending the system with new events as well as new monitors (aggregating multiple event types) harder, because everyone needs to be aware of the respective lists to check for.
A typical use case is the visitor pattern:
struct Element
{
virtual ~Element() { }
void accept(Visitor & v)
{
v.visit(this);
}
};
struct Visitor
{
virtual void visit(Element * e) = 0;
virtual ~Visitor() { }
};
struct RedElement : Element { };
struct BlueElement : Element { };
struct FifthElement : Element { };
struct MyVisitor : Visitor
{
virtual void visit(Element * e)
{
if (RedElement * p = dynamic_cast<RedElement*>(e))
{
// do things specific to Red
}
else if (BlueElement * p = dynamic_cast<BlueElement*>(e))
{
// do things specific to Blue
}
else
{
// error: visitor doesn't know what to do with this element
}
}
};
Now if you have some Element & e;, you can make MyVisitor v; and say e.accept(v).
The key design feature is that if you modify your Element hierarchy, you only have to edit your visitors. The pattern is still fairly complex, and only recommended if you have a very stable class hierarchy of Elements.
Imagine this situation: You have a C++ program that reads and displays HTML. You have a base class HTMLElement which has a pure virtual method displayOnScreen. You also have a function called renderHTMLToBitmap, which draws the HTML to a bitmap. If each HTMLElement has a vector<HTMLElement*> children;, you can just pass the HTMLElement representing the element <html>. But what if a few of the subclasses need special treatment, like <link> for adding CSS. You need a way to know if an element is a LinkElement so you can give it to the CSS functions. To find that out, you'd use dynamic_cast.
The problem with dynamic_cast and polymorphism in general is that it's not terribly efficient. When you add vtables into the mix, it only get's worse.
When you add virtual functions to a base class, when they are called, you end up actually going through quite a few layers of function pointers and memory areas. That will never be more efficient than something like the ASM call instruction.
Edit: In response to Andrew's comment bellow, here's a new approach: Instead of dynamic casting to the specific element type (LinkElement), instead you have another abstract subclass of HTMLElement called ActionElement that overrides displayOnScreen with a function that displays nothing, and creates a new pure virtual function: virtual void doAction() const = 0. The dynamic_cast is changed to test for ActionElement and just calls doAction(). You'd have the same kind of subclass for GraphicalElement with a virtual method displayOnScreen().
Edit 2: Here's what a "rendering" method might look like:
void render(HTMLElement root) {
for(vector<HTLMElement*>::iterator i = root.children.begin(); i != root.children.end(); i++) {
if(dynamic_cast<ActionElement*>(*i) != NULL) //Is an ActionElement
{
ActionElement* ae = dynamic_cast<ActionElement*>(*i);
ae->doAction();
render(ae);
}
else if(dynamic_cast<GraphicalElement*>(*i) != NULL) //Is a GraphicalElement
{
GraphicalElement* ge = dynamic_cast<GraphicalElement*>(*i);
ge->displayToScreen();
render(ge);
}
else
{
//Error
}
}
}
Operator dynamic_cast solves the same problem as dynamic dispatch (virtual functions, visitor pattern, etc): it allows you to perform different actions based on the runtime type of an object.
However, you should always prefer dynamic dispatch, except perhaps when the number of dynamic_cast you'd need will never grow.
Eg. you should never do:
if (auto v = dynamic_cast<Dog*>(animal)) { ... }
else if (auto v = dynamic_cast<Cat*>(animal)) { ... }
...
for maintainability and performance reasons, but you can do eg.
for (MenuItem* item: items)
{
if (auto submenu = dynamic_cast<Submenu*>(item))
{
auto items = submenu->items();
draw(context, items, position); // Recursion
...
}
else
{
item->draw_icon();
item->setup_accelerator();
...
}
}
which I've found quite useful in this exact situation: you have one very particular subhierarchy that must be handled separately, this is where dynamic_cast shines. But real world examples are quite rare (the menu example is something I had to deal with).
dynamic_cast is not intended as an alternative to virtual functions.
dynamic_cast has a non-trivial performance overhead (or so I think) since the whole class hierarchy has to be walked through.
dynamic_cast is similar to the 'is' operator of C# and the QueryInterface of good old COM.
So far I have found one real use of dynamic_cast:
(*) You have multiple inheritance and to locate the target of the cast the compiler has to walk the class hierarchy up and down to locate the target (or down and up if you prefer). This means that the target of the cast is in a parallel branch in relation to where the source of the cast is in the hierarchy. I think there is NO other way to do such a cast.
In all other cases, you just use some base class virtual to tell you what type of object you have and ONLY THEN you dynamic_cast it to the target class so you can use some of it's non-virtual functionality. Ideally there should be no non-virtual functionality, but what the heck, we live in the real world.
Doing things like:
if (v = dynamic_cast(...)){} else if (v = dynamic_cast(...)){} else if ...
is a performance waste.
Casting should be avoided when possible, because it is basically saying to the compiler that you know better and it is usually a sign of some weaker design decission.
However, you might come in situations where the abstraction level was a bit too high for 1 or 2 sub-classes, where you have the choice to change your design or solve it by checking the subclass with dynamic_cast and handle it in a seperate branch. The trade-of is between adding extra time and risk now against extra maintenance issues later.
In most situations where you are writing code in which you know the type of the entity you're working with, you just use static_cast as it's more efficient.
Situations where you need dynamic cast typically arrive (in my experience) from lack of foresight in design - typically where the designer fails to provide an enumeration or id that allows you to determine the type later in the code.
For example, I've seen this situation in more than one project already:
You may use a factory where the internal logic decides which derived class the user wants rather than the user explicitly selecting one. That factory, in a perfect world, returns an enumeration which will help you identify the type of returned object, but if it doesn't you may need to test what type of object it gave you with a dynamic_cast.
Your follow-up question would obviously be: Why would you need to know the type of object that you're using in code using a factory?
In a perfect world, you wouldn't - the interface provided by the base class would be sufficient for managing all of the factories' returned objects to all required extents. People don't design perfectly though. For example, if your factory creates abstract connection objects, you may suddenly realize that you need to access the UseSSL flag on your socket connection object, but the factory base doesn't support that and it's not relevant to any of the other classes using the interface. So, maybe you would check to see if you're using that type of derived class in your logic, and cast/set the flag directly if you are.
It's ugly, but it's not a perfect world, and sometimes you don't have time to refactor an imperfect design fully in the real world under work pressure.
The dynamic_cast operator is very useful to me.
I especially use it with the Observer pattern for event management:
#include <vector>
#include <iostream>
using namespace std;
class Subject; class Observer; class Event;
class Event { public: virtual ~Event() {}; };
class Observer { public: virtual void onEvent(Subject& s, const Event& e) = 0; };
class Subject {
private:
vector<Observer*> m_obs;
public:
void attach(Observer& obs) { m_obs.push_back(& obs); }
public:
void notifyEvent(const Event& evt) {
for (vector<Observer*>::iterator it = m_obs.begin(); it != m_obs.end(); it++) {
if (Observer* const obs = *it) {
obs->onEvent(*this, evt);
}
}
}
};
// Define a model with events that contain data.
class MyModel : public Subject {
public:
class Evt1 : public Event { public: int a; string s; };
class Evt2 : public Event { public: float f; };
};
// Define a first service that processes both events with their data.
class MyService1 : public Observer {
public:
virtual void onEvent(Subject& s, const Event& e) {
if (const MyModel::Evt1* const e1 = dynamic_cast<const MyModel::Evt1*>(& e)) {
cout << "Service1 - event Evt1 received: a = " << e1->a << ", s = " << e1->s << endl;
}
if (const MyModel::Evt2* const e2 = dynamic_cast<const MyModel::Evt2*>(& e)) {
cout << "Service1 - event Evt2 received: f = " << e2->f << endl;
}
}
};
// Define a second service that only deals with the second event.
class MyService2 : public Observer {
public:
virtual void onEvent(Subject& s, const Event& e) {
// Nothing to do with Evt1 in Service2
if (const MyModel::Evt2* const e2 = dynamic_cast<const MyModel::Evt2*>(& e)) {
cout << "Service2 - event Evt2 received: f = " << e2->f << endl;
}
}
};
int main(void) {
MyModel m; MyService1 s1; MyService2 s2;
m.attach(s1); m.attach(s2);
MyModel::Evt1 e1; e1.a = 2; e1.s = "two"; m.notifyEvent(e1);
MyModel::Evt2 e2; e2.f = .2f; m.notifyEvent(e2);
}
Contract Programming and RTTI shows how you can use dynamic_cast to allow objects to advertise what interfaces they implement. We used it in my shop to replace a rather opaque metaobject system. Now we can clearly describe the functionality of objects, even if the objects are introduced by a new module several weeks/months after the platform was 'baked' (though of course the contracts need to have been decided on up front).

Testing a c++ class for features

I have a set of classes that describe a set of logical boxes that can hold things and do things to them. I have
struct IBox // all boxes do these
{
....
}
struct IBoxCanDoX // the power to do X
{
void x();
}
struct IBoxCanDoY // the power to do Y
{
void y();
}
I wonder what is the 'best' or maybe its just 'favorite' idiom for a client of these classes to deal with these optional capabilities
a)
if(typeid(box) == typeid(IBoxCanDoX))
{
IBoxCanDoX *ix = static_cast<IBoxCanDoX*>(box);
ix->x();
}
b)
IBoxCanDoX *ix = dynamic_cast<IBoxCanDoX*>(box);
if(ix)
{
ix->x();
}
c)
if(box->canDoX())
{
IBoxCanDoX *ix = static_cast<IBoxCanDoX*>(box);
ix->x();
}
d) different class struct now
struct IBox
{
void x();
void y();
}
...
box->x(); /// ignored by implementations that dont do x
e) same except
box->x() // 'not implemented' exception thrown
f) explicit test function
if(box->canDoX())
{
box->x();
}
I am sure there are others too.
EDIT:
Just to make the use case clearer
I am exposing this stuff to end users via interactive ui. They can type 'make box do X'. I need to know if box can do x. Or I need to disable the 'make current box do X' command
EDIT2: Thx to all answerers
as Noah Roberts pointed out (a) doesnt work (explains some of my issues !).
I ended up doing (b) and a slight variant
template<class T>
T* GetCurrentBox()
{
if (!current_box)
throw "current box not set";
T* ret = dynamic_cast<T*>(current_box);
if(!ret)
throw "current box doesnt support requested operation";
return ret;
}
...
IBoxCanDoX *ix = GetCurrentBox<IBoxCanDoX>();
ix->x();
and let the UI plumbing deal nicely with the exceptions (I am not really throwing naked strings).
I also intend to explore Visitor
I suggest the Visitor pattern for double-dispatch problems like this in C++:
class IVisitor
{
public:
virtual void Visit(IBoxCanDoX *pBox) = 0;
virtual void Visit(IBoxCanDoY *pBox) = 0;
virtual void Visit(IBox* pBox) = 0;
};
class IBox // all boxes do these
{
public:
virtual void Accept(IVisitor *pVisitor)
{
pVisitor->Visit(this);
}
};
class BoxCanDoY : public IBox
{
public:
virtual void Accept(IVisitor *pVisitor)
{
pVisitor->Visit(this);
}
};
class TestVisitor : public IVisitor
{
public:
// override visit methods to do tests for each type.
};
void Main()
{
BoxCanDoY y;
TestVisitor v;
y.Accept(&v);
}
Of the options you've given, I'd say that b or d are "best". However, the need to do a lot of this sort of thing is often indicative of a poor design, or of a design that would be better implemented in a dynamically typed language rather than in C++.
If you are using the 'I' prefix to mean "interface" as it would mean in Java, which would be done with abstract bases in C++, then your first option will fail to work....so that one's out. I have used it for some things though.
Don't do 'd', it will pollute your hierarchy. Keep your interfaces clean, you'll be glad you did. Thus a Vehicle class doesn't have a pedal() function because only some vehicles can pedal. If a client needs the pedal() function then it really does need to know about those classes that can.
Stay way clear of 'e' for the same reason as 'd' PLUS that it violates the Liskov Substitution Principle. If a client needs to check that a class responds to pedal() before calling it so that it doesn't explode then the best way to do that is to attempt casting to an object that has that function. 'f' is just the same thing with the check.
'c' is superfluous. If you have your hierarchy set up the way it should be then casting to ICanDoX is sufficient to check if x can do X().
Thus 'b' becomes your answer from the options given. However, as Gladfelter demonstrates, there are options you haven't considered in your post.
Edit note: I did not notice that 'c' used a static_cast rather than dynamic. As I mention in an answer about that, the dynamic_cast version is cleaner and should be preferred unless specific situations dictate otherwise. It's similar to the following options in that it pollutes the base interface.
Edit 2: I should note that in regard to 'a', I have used it but I don't use types statically like you have in your post. Any time I've used typeid to split flow based on type it has always been based on something that is registered during runtime. For example, opening the correct dialog to edit some object of unknown type: the dialog governors are registered with a factory based on the type they edit. This keeps me from having to change any of the flow control code when I add/remove/change objects. I generally wouldn't use this option under different circumstances.
A and B require run time type identification(RTTI) and might be slower if you are doing a lot checks. Personally I don't like the solutions of "canDoX" methods, if situations like this arise the design probably needs an upgrade because you are exposing information that is not relevant to the class.
If you only need to execute X or Y, depending on the class, I would go for a virtual method in IBox which get overridden in subclasses.
class IBox{
virtual void doThing();
}
class IBoxCanDoX: public IBox{
void doThing() { doX(); }
void doX();
}
class IBoxCanDoY: public IBox{
void doThing() { doY(); }
void doY();
}
box->doThing();
If that solution is not applicable or you need more complex logic, then look at the Visitor design pattern. But keep in mind that the visitor pattern is not very flexible when you add new classes regularly or methods change/are added/are removed (but that also goes true for your proposed alternatives).
If you are trying to call either of these classes actions from contingent parts of code, you I would suggest you wrap that code in a template function and name each class's methods the same way to implement duck typing, thus your client code would look like this.
template<class box>
void box_do_xory(box BOX){
BOX.xory();
}
There is no general answer to your question. Everything depends. I can say only that:
- don't use a), use b) instead
- b) is nice, requires least code, no need for dummy methods, but dynamic_cast is a little slow
- c) is similar to b) but it is faster (no dynamic_cast) and requires more memory
- e) has no sense, you still need to discover if you can call the method so the exception is not thrown
- d) is better then f) (less code to write)
- d) e) and f) produce more garbage code then others, but are faster and less memory consuming
I assume that you will not only be working with one object of one type here.
I would lay out the data that you are working with and try to see how you can lay it out in memory in order to do data-driven programming. A good layout in memory should reflect the way that you store the data in your classes and how the classes are layed out in memory. Once you have that basic design structured (shouldn't take more than a napkin), I would begin organizing the objects into lists dependent on the operations that you plan to do on the data. If you plan to do X() on a collection of objects { Y } in the subset X, I would probably make sure to have a static array of Y that I create from the beginning. If you wish to access the entire of X occasionally, that can be arranged by collecting the lists into a dynamic list of pointers (using std::vector or your favorite choice).
I hope that makes sense, but once implemented it gives simple straight solutions that are easy to understand and easy to work with.
There is a generic way to test if a class supports a certain concept and then to execute the most appropriate code. It uses SFINAE hack. This example is inspired by Abrahams and Gurtovoy's "C++ Template Metaprogramming" book. The function doIt will use x method if it is present, otherwise it will use y method. You can extend CanDo structure to test for other methods as well. You can test as many methods as you wish, as long as the overloads of doIt can be resolved uniquely.
#include <iostream>
#include <boost/config.hpp>
#include <boost/utility/enable_if.hpp>
typedef char yes; // sizeof(yes) == 1
typedef char (&no)[2]; // sizeof(no) == 2
template<typename T>
struct CanDo {
template<typename U, void (U::*)()>
struct ptr_to_mem {};
template<typename U>
static yes testX(ptr_to_mem<U, &U::x>*);
template<typename U>
static no testX(...);
BOOST_STATIC_CONSTANT(bool, value = sizeof(testX<T>(0)) == sizeof(yes));
};
struct DoX {
void x() { std::cout << "doing x...\n"; }
};
struct DoAnotherX {
void x() { std::cout << "doing another x...\n"; }
};
struct DoY {
void y() { std::cout << "doing y...\n"; }
};
struct DoAnotherY {
void y() { std::cout << "doing another y...\n"; }
};
template <typename Action>
typename boost::enable_if<CanDo<Action> >::type
doIt(Action* a) {
a->x();
}
template <typename Action>
typename boost::disable_if<CanDo<Action> >::type
doIt(Action* a) {
a->y();
}
int main() {
DoX doX;
DoAnotherX doAnotherX;
DoY doY;
DoAnotherY doAnotherY;
doIt(&doX);
doIt(&doAnotherX);
doIt(&doY);
doIt(&doAnotherY);
}

How to return different classes from one function?

I have a question, though it is not limited to C++. How to return totally different class from one function?
f() {
in case one: return A;
in case two: return B;
in case three: return C;
}
For example, I have two balls in the space, according to the position and the size, there are three situations for the two balls to intersect with each other, i.e, non-intersection, at point, a and circle. How can I return different class in one function?
Thanks.
If you can afford Boost then this sounds like a perfect application for Boost.Variant.
struct NoIntersection {
// empty
};
struct Point {
// whatever
};
struct Circle {
// whatever
};
typedef boost::variant<NoIntersection, Point, Circle> IntersectionResult;
IntersectionResult intersection_test() {
if(some_condition){
return NoIntersection();
}
if(other_condition){
return Point(x, y);
}
if(another_condition){
return Circle(c, r);
}
throw std::runtime_error("unexpected");
}
You then process your result with a static visitor:
struct process_result_visitor : public boost::static_visitor<> {
void operator()(NoIntersection) {
std::cout << "there was no intersection\n";
}
void operator()(Point const &pnt) {
std::cout << "there was a point intersection\n";
}
void operator()(Circle const &circle) {
std::cout << "there was a circle intersection\n";
}
};
IntersectionResult result = intersection_test();
boost::apply_visitor(process_result_visitor(), result);
EDIT: The visitor class must derive from boost::static_visitor
UPDATE: Prompted by some critical comments I've written a little benchmark program. Four approaches are compared:
boost::variant
union
class hierarchy
boost::any
These are the results in my home computer, when I compile in release mode with default optimizations (VC08):
test with boost::variant took 0.011 microseconds
test with union took 0.012 microseconds
test with hierarchy took 0.227 microseconds
test with boost::any took 0.188 microseconds
Using boost::variant is faster than a union and leads (IMO) to the most elegant code. I'd guess that the extremely poor performance of the class hierarchy approach is due to the need to use dynamic memory allocations and dynamic dispatch. boost::any is neither fast nor especially elegant so I wouldn't consider it for this task (it has other applications though)
The classes you want to return should be derived from a common base class. So, you can return the base type. For Example (this is not a code, just marking the pattern, you can use an interface if your language supports this abstraction or abstract class for example. If you use C++ you will have to return a pointer of the common class):
class A : public Common
{
..
}
class B : public Common
{
..
}
class C : public Common
{
..
}
Common f() {
in case one: return A;
in case two: return B;
in case three: return C;
}
In addition to #Manuel's Boost.Variant suggestion, take a look at Boost.Any: has similar purpose as Boost.Variant but different tradeoffs and functionality.
boost::any is unbounded (can hold any type) while boost::variant is bounded (supported types is encoded in variant type, so it can hold only values of these types).
// from Beyond the C++ Standard Library: An Introduction to Boost
// By Björn Karlsson
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#include "boost/any.hpp"
class A {
public:
void some_function() { std::cout << "A::some_function()\n"; }
};
class B {
public:
void some_function() { std::cout << "B::some_function()\n"; }
};
class C {
public:
void some_function() { std::cout << "C::some_function()\n"; }
};
int main() {
std::cout << "Example of using any.\n\n";
std::vector<boost::any> store_anything;
store_anything.push_back(A());
store_anything.push_back(B());
store_anything.push_back(C());
// While we're at it, let's add a few other things as well
store_anything.push_back(std::string("This is fantastic! "));
store_anything.push_back(3);
store_anything.push_back(std::make_pair(true, 7.92));
void print_any(boost::any& a);
// Defined later; reports on the value in a
std::for_each(
store_anything.begin(),
store_anything.end(),
print_any);
}
void print_any(boost::any& a) {
if (A* pA=boost::any_cast<A>(&a)) {
pA->some_function();
}
else if (B* pB=boost::any_cast<B>(&a)) {
pB->some_function();
}
else if (C* pC=boost::any_cast<C>(&a)) {
pC->some_function();
}
}
In order to be able to do anything useful with the result, you have to return an object which has a common baseclass. In your case you might want to let A, B, and C inherit from a common "intersection-class"; a class which is common for all objects which represents some form of intersection. Your function f would then return an object of this type.
The classes you want to return should have a common parent class or interface.
If those classes do not have anything in common, that, I suppose, is untrue, you can return object.
This feature is also known as polymorphism.
In c++ base class pointer can point to derived class object. We can make use of this fact to code a function that meets your requirements:
class shape{};
class circle: public shape
{};
class square: public shape
{};
shape* function(int i){ // function returning a base class pointer.
switch(i) {
case 1: return new circle();
case 2: return new square();
}
}
There is one other option available. You can return a union of pointers to objects along with a tag that tells the caller which member of the union is valid. Something like:
struct result {
enum discriminant { A_member, B_member, C_member, Undefined } tag;
union result_data {
A *a_object;
B *b_object;
C *c_object;
} data;
result(): tag(Undefined) {}
explicit result(A *obj): tag(A_member) { data.a_object = obj; }
explicit result(B *obj): tag(B_member) { data.b_object = obj; }
explicit result(C *obj): tag(C_member) { data.c_object = obj; }
};
I would probably use Boost.variant as suggested by Manuel if you have the option.
You can't. You can only return a base pointer to different derived classes. If this is absolutely, 100% needed, you can use exceptions as a ugly hack, but that's obviously not recommended at all.
Even if you could return three different types of objects from the function, what would you do with the result? You need to do something like:
XXX ret_val = getIntersection();
If getIntersection returned three different types of objects, XXX would have to change based on what getIntersection was going to return. Clearly this is quite impossible.
To deal with this, you can define one type that defines enough to cover all the possibilities:
class Intersection {
enum { empty, point, circle, sphere};
point3D location;
size_t radius;
};
Now getIntersection() can return an Intersection that defines what kind of intersection you have (and BTW, you need to consider the fourth possibility: with two spheres of the same radius and same center point, the intersection will be a sphere) and the size and location of that intersection.
The limitation is based on the declared return type of your method. Your code states:
f() {
in case one: return A;
in case two: return B;
in case three: return C;
}
When in reality the compiler requires something like this:
FooType f() {
in case one: return A;
in case two: return B;
in case three: return C;
}
It must be possible to convert the A, B, and C to a FooType, typically through simple inheritance, though I won't get into the differences between subclasses vs subtyping.
There are approaches that can get around this. You could create a class or struct (C++) which has fields for each different type of possible return and use some flag field to indicate which field is the actual returned value.
class ReturnHolder {
public int fieldFlag;
public TypeA A;
public TypeB B;
public TypeC C;
}
The enum example in another answer is more of the same. The reason why that is a hack is that the code that handles the return from this method will have to have lots of code to handle each of the different possibilites, like so
main(){
FooType *x = new FooType();
ReturnHolder ret = x.f();
switch (ret.fieldFlag)
case: 1
//read ret.A
case: 2
//read ret.B
case: 3
//read ret.C
}
And that's without even going into trying to do it with Exceptions which introduce even bigger problems. Maybe I'll add that in later as an edit.
And by the way, as you said that question "is not limited to C++":
1) dynamic languages, of course, make it piece of cake:
# python
def func(i):
if i == 0:
return 0
elif i == 1:
return "zero"
else
return ()
2) some functional languages (Haskell, OCaml, Scala, F#) provide nice built-in variants that are called Algebraic Data Types (article has good samples).
In languages that reflection, it is easier to achieve. In cpp, if you have a standard set of classes to be returned (pointers), create an enumeration and return the enum value. Using this value you can infer the class type. This is a generic way in case there is no common parent class
You really shouldn't want to be doing that, and should really come up with a better design instead of forcing a square peg in a round hole. And with most languages you can't do it at all, by design. You will never really know what you are working with, and neither will the compiler ahead of time, ensuring extra bugs and weird behavior and incomprehensibility.