I am looking for a least time-complex algorithm that would solve a variant of the perfect sum problem (initially: finding all variable size subset combinations from an array [*] of integers of size n that sum to a specific number x) where the subset combination size is of a fixed size k and return the possible combinations without direct and also indirect (when there's a combination containing the exact same elements from another in another order) duplicates.
I'm aware this problem is NP-hard, so I am not expecting a perfect general solution but something that could at least run in a reasonable time in my case, with n close to 1000 and k around 10
Things I have tried so far:
Finding a combination, then doing successive modifications on it and its modifications
Let's assume I have an array such as:
s = [1,2,3,3,4,5,6,9]
So I have n = 8, and I'd like x = 10 for k = 3
I found thanks to some obscure method (bruteforce?) a subset [3,3,4]
From this subset I'm finding other possible combinations by taking two elements out of it and replacing them with other elements that sum the same, i.e. (3, 3) can be replaced by (1, 5) since both got the same sum and the replacing numbers are not already in use. So I obtain another subset [1,5,4], then I repeat the process for all the obtained subsets... indefinitely?
The main issue as suggested here is that it's hard to determine when it's done and this method is rather chaotic. I imagined some variants of this method but they really are work in progress
Iterating through the set to list all k long combinations that sum to x
Pretty self explanatory. This is a naive method that do not work well in my case since I have a pretty large n and a k that is not small enough to avoid a catastrophically big number of combinations (the magnitude of the number of combinations is 10^27!)
I experimented several mechanism related to setting an area of research instead of stupidly iterating through all possibilities, but it's rather complicated and still work in progress
What would you suggest? (Snippets can be in any language, but I prefer C++)
[*] To clear the doubt about whether or not the base collection can contain duplicates, I used the term "array" instead of "set" to be more precise. The collection can contain duplicate integers in my case and quite much, with 70 different integers for 1000 elements (counts rounded), for example
With reasonable sum limit this problem might be solved using extension of dynamic programming approach for subset sum problem or coin change problem with predetermined number of coins. Note that we can count all variants in pseudopolynomial time O(x*n), but output size might grow exponentially, so generation of all variants might be a problem.
Make 3d array, list or vector with outer dimension x-1 for example: A[][][]. Every element A[p] of this list contains list of possible subsets with sum p.
We can walk through all elements (call current element item) of initial "set" (I noticed repeating elements in your example, so it is not true set).
Now scan A[] list from the last entry to the beginning. (This trick helps to avoid repeating usage of the same item).
If A[i - item] contains subsets with size < k, we can add all these subsets to A[i] appending item.
After full scan A[x] will contain subsets of size k and less, having sum x, and we can filter only those of size k
Example of output of my quick-made Delphi program for the next data:
Lst := [1,2,3,3,4,5,6,7];
k := 3;
sum := 10;
3 3 4
2 3 5 //distinct 3's
2 3 5
1 4 5
1 3 6
1 3 6 //distinct 3's
1 2 7
To exclude variants with distinct repeated elements (if needed), we can use non-first occurence only for subsets already containing the first occurence of item (so 3 3 4 will be valid while the second 2 3 5 won't be generated)
I literally translate my Delphi code into C++ (weird, I think :)
int main()
{
vector<vector<vector<int>>> A;
vector<int> Lst = { 1, 2, 3, 3, 4, 5, 6, 7 };
int k = 3;
int sum = 10;
A.push_back({ {0} }); //fictive array to make non-empty variant
for (int i = 0; i < sum; i++)
A.push_back({{}});
for (int item : Lst) {
for (int i = sum; i >= item; i--) {
for (int j = 0; j < A[i - item].size(); j++)
if (A[i - item][j].size() < k + 1 &&
A[i - item][j].size() > 0) {
vector<int> t = A[i - item][j];
t.push_back(item);
A[i].push_back(t); //add new variant including current item
}
}
}
//output needed variants
for (int i = 0; i < A[sum].size(); i++)
if (A[sum][i].size() == k + 1) {
for (int j = 1; j < A[sum][i].size(); j++) //excluding fictive 0
cout << A[sum][i][j] << " ";
cout << endl;
}
}
Here is a complete solution in Python. Translation to C++ is left to the reader.
Like the usual subset sum, generation of the doubly linked summary of the solutions is pseudo-polynomial. It is O(count_values * distinct_sums * depths_of_sums). However actually iterating through them can be exponential. But using generators the way I did avoids using a lot of memory to generate that list, even if it can take a long time to run.
from collections import namedtuple
# This is a doubly linked list.
# (value, tail) will be one group of solutions. (next_answer) is another.
SumPath = namedtuple('SumPath', 'value tail next_answer')
def fixed_sum_paths (array, target, count):
# First find counts of values to handle duplications.
value_repeats = {}
for value in array:
if value in value_repeats:
value_repeats[value] += 1
else:
value_repeats[value] = 1
# paths[depth][x] will be all subsets of size depth that sum to x.
paths = [{} for i in range(count+1)]
# First we add the empty set.
paths[0][0] = SumPath(value=None, tail=None, next_answer=None)
# Now we start adding values to it.
for value, repeats in value_repeats.items():
# Reversed depth avoids seeing paths we will find using this value.
for depth in reversed(range(len(paths))):
for result, path in paths[depth].items():
for i in range(1, repeats+1):
if count < i + depth:
# Do not fill in too deep.
break
result += value
if result in paths[depth+i]:
path = SumPath(
value=value,
tail=path,
next_answer=paths[depth+i][result]
)
else:
path = SumPath(
value=value,
tail=path,
next_answer=None
)
paths[depth+i][result] = path
# Subtle bug fix, a path for value, value
# should not lead to value, other_value because
# we already inserted that first.
path = SumPath(
value=value,
tail=path.tail,
next_answer=None
)
return paths[count][target]
def path_iter(paths):
if paths.value is None:
# We are the tail
yield []
else:
while paths is not None:
value = paths.value
for answer in path_iter(paths.tail):
answer.append(value)
yield answer
paths = paths.next_answer
def fixed_sums (array, target, count):
paths = fixed_sum_paths(array, target, count)
return path_iter(paths)
for path in fixed_sums([1,2,3,3,4,5,6,9], 10, 3):
print(path)
Incidentally for your example, here are the solutions:
[1, 3, 6]
[1, 4, 5]
[2, 3, 5]
[3, 3, 4]
You should first sort the so called array. Secondly, you should determine if the problem is actually solvable, to save time... So what you do is you take the last k elements and see if the sum of those is larger or equal to the x value, if it is smaller, you are done it is not possible to do something like that.... If it is actually equal yes you are also done there is no other permutations.... O(n) feels nice doesn't it?? If it is larger, than you got a lot of work to do..... You need to store all the permutations in an seperate array.... Then you go ahead and replace the smallest of the k numbers with the smallest element in the array.... If this is still larger than x then you do it for the second and third and so on until you get something smaller than x. Once you reach a point where you have the sum smaller than x, you can go ahead and start to increase the value of the last position you stopped at until you hit x.... Once you hit x that is your combination.... Then you can go ahead and get the previous element so if you had 1,1,5, 6 in your thingy, you can go ahead and grab the 1 as well, add it to your smallest element, 5 to get 6, next you check, can you write this number 6 as a combination of two values, you stop once you hit the value.... Then you can repeat for the others as well.... You problem can be solved in O(n!) time in the worst case.... I would not suggest that you 10^27 combinations, meaning you have more than 10^27 elements, mhmmm bad idea do you even have that much space??? That's like 3bits for the header and 8 bits for each integer you would need 9.8765*10^25 terabytes just to store that clossal array, more memory than a supercomputer, you should worry about whether your computer can even store this monster rather than if you can solve the problem, that many combinations even if you find a quadratic solution it would crash your computer, and you know what quadratic is a long way off from O(n!)...
A brute force method using recursion might look like this...
For example, given variables set, x, k, the following pseudo code might work:
setSumStructure find(int[] set, int x, int k, int setIdx)
{
int sz = set.length - setIdx;
if (sz < x) return null;
if (sz == x) check sum of set[setIdx] -> set[set.size] == k. if it does, return the set together with the sum, else return null;
for (int i = setIdx; i < set.size - (k - 1); i++)
filter(find (set, x - set[i], k - 1, i + 1));
return filteredSets;
}
problem link from leetcode
I came up with two solutions wrote in Python but did not pass and do not know why.
Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array),
some elements appear twice and others appear once.
Find all the elements of [1, n] inclusive that do not appear in this
array.
Here is my first solution:
class Solution(object):
def findDisappearedNumbers(self, nums):
nums=sorted(list(set(nums)))
for x in range(1, nums[-1] + 1):
if x in nums:
nums.remove(x)
else:
nums.append(x)
return nums
the result is " Runtime Error Message: Line 4: IndexError: list index out of range". But I did not get it.
The second solution:
return [x for x in range(1, len(nums) + 1) if x not in nums]
The result is "Time Limit Exceeded",still,confused.
Both solutions works okay in my Pycharm with python 2.7.11.Maybe there are some test cases my solutions did not pass but I can not find it.
First of all, try to use xrange instead of range as this uses less space when the value of nums is very large. Also, you are trying to iterate as well as delete/append a value at the same time in the same array. This is most likely the reason why you are getting the error.
Also, removing a value in the list (if it is not at the end) takes a lot of time because all other elements before it need to moved.
From the first solution: DO NOT modify the list you are iterating. Always brings problems. Better copy the list and modify the list!
class Solution(object):
def findDisappearedNumbers(self, nums):
nums=sorted(list(set(nums)))
nums_copy = nums.copy(nums)
for x in range(1, nums[-1] + 1):
if x in nums:
nums_copy.remove(x)
else:
nums_copy.append(x)
return nums_copy
On the other hand, if num is very large (has many elemente)range can bring problems because it creates the list first (and VERY large lists occupy a LOT of memory). For me cases it is better to xrange than to return a generator.
This does not happen in python3, where the default range returns a generator.
You can use nums = set(nums) which will sort and remove all the duplicates. Then you can run a loop to append all the numbers not present in nums to output array.
Your first solution will fail if the test input is an empty list as num[-1] would give an index out of bound.
Your second solution will be slow as it has to iterate through the list. Would the below solution work? Set operations are optimised. But is the space complexity ok for you?
ret = set(range(1, len(nums)+1))
ret = ret - set(nums)
return list(ret)
a = [[1.0993455308580886, 1.9814814814814814, 1.2331369355392543, 1.646283618833137, 2.2736098709332486, 1.50035992597825]]
I have the list of lists above. How can i print it in order to have the number printed with 3 decimal numbers. I want this:
b = [[1.099, 1.981, 1.233, 1.646, 2.273, 1.500]]
Is there a way so that i can force all float numbers in my code to have 3 decimal numbers?
This is a dup of Change default float print format.
Long story short: you cannot change it globally. But you can write a function such that
return [[round(n, 3) for n in a[0]]]
or
return [['%.3f' % n for n in a[0]]]
Creating lists like this is called list comprehension. Alternatively, you can also use map:
return [map(lambda n: '%.3f' % n, a[0])]
But usually Python developers prefer list comprehension.
I have an array of integers and need to apply a variant of the subset sum algorithm on it, except that instead of finding a set of integers whose sum is 0 I am trying to find a set of integers whose sum is n. I am unclear as to how to adapt one of the standard subset sum algorithms to this variant and was hoping for any insight into the problem.
This is subset sum problem, which is NP-Complete (there is no known efficient solution to NP-Complete problems), but if your numbers are relatively small integers - there is an efficient pseudo polynomial solution to it that follows the recurrence:
D(x,i) = false x<0
D(0,i) = true
D(x,0) = false x != 0
D(x,i) = D(x,i-1) OR D(x-arr[i],i-1)
Later, you need to step back on your choices, see where you decided to "reduce" (take the element), and where you decided not to "reduce" (not take the element), on the generated matrix.
This thread and this thread discuss how to get the elements for similar problems.
Here is a python code (taken from the thread I linked to) that does the trick.
If you are not familiar with python - read it as pseudo code, it's pretty easy to understand python!.
arr = [1,2,4,5]
n = len(arr)
SUM = 6
#pre processing:
D = [[True] * (n+1)]
for x in range(1,SUM+1):
D.append([False]*(n+1))
#DP solution to populate D:
for x in range(1,SUM+1):
for i in range(1,n+1):
D[x][i] = D[x][i-1]
if x >= arr[i-1]:
D[x][i] = D[x][i] or D[x-arr[i-1]][i-1]
print D
#get a random solution:
if D[SUM][n] == False:
print 'no solution'
else:
sol = []
x = SUM
i = n
while x != 0:
possibleVals = []
if D[x][i-1] == True:
possibleVals.append(x)
if x >= arr[i-1] and D[x-arr[i-1]][i-1] == True:
possibleVals.append(x-arr[i-1])
#by here possibleVals contains 1/2 solutions, depending on how many choices we have.
#chose randomly one of them
from random import randint
r = possibleVals[randint(0,len(possibleVals)-1)]
#if decided to add element:
if r != x:
sol.append(x-r)
#modify i and x accordingly
x = r
i = i-1
print sol
You can solve this by using dynamic programming.
Lets assume that:
N - is the sum that required (your first input).
M - is the number of summands available (your second input).
a1...aM - are the summands available.
f[x] is true when you can reach the sum of x, and false otherwise
Now the solution:
Initially f[0] = true and f[1..N] = false - we can reach only the sum of zero without taking any summand.
Now you can iterate over all ai, where i in [1..M], and with each of them perform next operation:
f[x + ai] = f[x + ai] || f[x], for each x in [M..ai] - the order of processing is relevant!
Finally you output f[N].
This solution has the complexity of O(N*M), so it is not very useful when you either have large input numbers or large number of summands.
An array of integers A[i] (i > 1) is defined in the following way: an element A[k] ( k > 1) is the smallest number greater than A[k-1] such that the sum of its digits is equal to the sum of the digits of the number 4* A[k-1] .
You need to write a program that calculates the N th number in this array based on the given first element A[1] .
INPUT:
In one line of standard input there are two numbers seperated with a single space: A[1] (1 <= A[1] <= 100) and N (1 <= N <= 10000).
OUTPUT:
The standard output should only contain a single integer A[N] , the Nth number of the defined sequence.
Input:
7 4
Output:
79
Explanation:
Elements of the array are as follows: 7, 19, 49, 79... and the 4th element is solution.
I tried solving this by coding a separate function that for a given number A[k] calculates the sum of it's digits and finds the smallest number greater than A[k-1] as it says in the problem, but with no success. The first testing failed because of a memory limit, the second testing failed because of a time limit, and now i don't have any possible idea how to solve this. One friend suggested recursion, but i don't know how to set that.
Anyone who can help me in any way please write, also suggest some ideas about using recursion/DP for solving this problem. Thanks.
This has nothing to do with recursion and almost nothing with dynamic programming. You just need to find viable optimizations to make it fast enough. Just a hint, try to understand this solution:
http://codepad.org/LkTJEILz
Here is a simple solution in python. It only uses iteration, recursion is unnecessary and inefficient even for a quick and dirty solution.
def sumDigits(x):
sum = 0;
while(x>0):
sum += x % 10
x /= 10
return sum
def homework(a0, N):
a = [a0]
while(len(a) < N):
nextNum = a[len(a)-1] + 1
while(sumDigits(nextNum) != sumDigits(4 * a[len(a)-1])):
nextNum += 1
a.append(nextNum)
return a[N-1]
PS. I know we're not really supposed to give homework answers, but it appears the OP is in an intro to C++ class so probably doesn't know python yet, hopefully it just looks like pseudo code. Also the code is missing many simple optimizations which would probably make it too slow for a solution as is.
It is rather recursive.
The kernel of the problem is:
Find the smallest number N greater than K having digitsum(N) = J.
If digitsum(K) == J then test if N = K + 9 satisfies the condition.
If digitsum(K) < J then possibly N differs from K only in the ones digit (if the digitsum can be achieved without exceeding 9).
Otherwise if digitsum(K) <= J the new ones digit is 9 and the problem recurses to "Find the smallest number N' greater than (K/10) having digitsum(N') = J-9, then N = N'*10 + 9".
If digitsum(K) > J then ???
In every case N <= 4 * K
9 -> 18 by the first rule
52 -> 55 by the second rule
99 -> 189 by the third rule, the first rule is used during recursion
25 -> 100 requires the fourth case, which I had originally not seen the need for.
Any more counterexamples?