I made a simple bubble sorting program, the code works but I do not know if its correct.
What I understand about the bubble sorting algorithm is that it checks an element and the other element beside it.
#include <iostream>
#include <array>
using namespace std;
int main()
{
int a, b, c, d, e, smaller = 0,bigger = 0;
cin >> a >> b >> c >> d >> e;
int test1[5] = { a,b,c,d,e };
for (int test2 = 0; test2 != 5; ++test2)
{
for (int cntr1 = 0, cntr2 = 1; cntr2 != 5; ++cntr1,++cntr2)
{
if (test1[cntr1] > test1[cntr2]) /*if first is bigger than second*/{
bigger = test1[cntr1];
smaller = test1[cntr2];
test1[cntr1] = smaller;
test1[cntr2] = bigger;
}
}
}
for (auto test69 : test1)
{
cout << test69 << endl;
}
system("pause");
}
It is a bubblesort implementation. It just is a very basic one.
Two improvements:
the outerloop iteration may be one shorter each time since you're guaranteed that the last element of the previous iteration will be the largest.
when no swap is done during an iteration, you're finished. (which is part of the definition of bubblesort in wikipedia)
Some comments:
use better variable names (test2?)
use the size of the container or the range, don't hardcode 5.
using std::swap() to swap variables leads to simpler code.
Here is a more generic example using (random access) iterators with my suggested improvements and comments and here with the improvement proposed by Yves Daoust (iterate up to last swap) with debug-prints
The correctness of your algorithm can be explained as follows.
In the first pass (inner loop), the comparison T[i] > T[i+1] with a possible swap makes sure that the largest of T[i], T[i+1] is on the right. Repeating for all pairs from left to right makes sure that in the end T[N-1] holds the largest element. (The fact that the array is only modified by swaps ensures that no element is lost or duplicated.)
In the second pass, by the same reasoning, the largest of the N-1 first elements goes to T[N-2], and it stays there because T[N-1] is larger.
More generally, in the Kth pass, the largest of the N-K+1 first element goes to T[N-K], stays there, and the next elements are left unchanged (because they are already increasing).
Thus, after N passes, all elements are in place.
This hints a simple optimization: all elements following the last swap in a pass are in place (otherwise the swap wouldn't be the last). So you can record the position of the last swap and perform the next pass up to that location only.
Though this change doesn't seem to improve a lot, it can reduce the number of passes. Indeed by this procedure, the number of passes equals the largest displacement, i.e. the number of steps an element has to take to get to its proper place (elements too much on the right only move one position at a time).
In some configurations, this number can be small. For instance, sorting an already sorted array takes a single pass, and sorting an array with all elements swapped in pairs takes two. This is an improvement from O(N²) to O(N) !
Yes. Your code works just like Bubble Sort.
Input: 3 5 1 8 2
Output after each iteration:
3 1 5 2 8
1 3 2 5 8
1 2 3 5 8
1 2 3 5 8
1 2 3 5 8
1 2 3 5 8
Actually, in the inner loop, we don't need to go till the end of the array from the second iteration onwards because the heaviest element of the previous iteration is already at the last. But that doesn't better the time complexity much. So, you are good to go..
Small Informal Proof:
The idea behind your sorting algorithm is that you go though the array of values (left to right). Let's call it a pass. During the pass pairs of values are checked and swapped to be in correct order (higher right).
During first pass the maximum value will be reached. When reached, the max will be higher then value next to it, so they will be swapped. This means that max will become part of next pair in the pass. This repeats until pass is completed and max moves to the right end of the array.
During second pass the same is true for the second highest value in the array. Only difference is it will not be swapped with the max at the end. Now two most right values are correctly set.
In every next pass one value will be sorted out to the right.
There are N values and N passes. This means that after N passes all N values will be sorted like:
{kth largest, (k-1)th largest,...... 2nd largest, largest}
No it isn't. It is worse. There is no point whatsoever in the variable cntr1. You should be using test1 here, and you should be referring to one of the many canonical implementations of bubblesort rather than trying to make it up for yourself.
Related
Problem statement:
Input:
First two inputs are integers n and m. n is the number of knights fighting in the tournament (2 <= n <= 100000, 1 <= m <= n-1). m is the number of battles that will take place.
The next line contains n power levels.
The next m lines contain two integers l and r, indicating the range of knight positions to compete in the ith battle.
After each battle, all nights apart from the one with the highest power level will be eliminated.
The range for each battle is given in terms of the new positions of the knights, not the original positions.
Output:
Output m lines, the ith line containing the original positions (indices) of the knights from that battle. Each line is in ascending order.
Sample Input:
8 4
1 0 5 6 2 3 7 4
1 3
2 4
1 3
0 1
Sample Output:
1 2
4 5
3 7
0
Here is a visualisation of this process.
1 2
[(1,0),(0,1),(5,2),(6,3),(2,4),(3,5),(7,6),(4,7)]
-----------------
4 5
[(1,0),(6,3),(2,4),(3,5),(7,6),(4,7)]
-----------------
3 7
[(1,0),(6,3),(7,6),(4,7)]
-----------------
0
[(1,0),(7,6)]
-----------
[(7,6)]
I have solved this problem. My program produces the correct output, however, it is O(n*m) = O(n^2). I believe that if I erase knights more efficiently from the vector, efficiency can be increased. Would it be more efficient to erase elements using a set? I.e. erase contiguous segments rather that individual knights. Is there an alternative way to do this that is more efficient?
#define INPUT1(x) scanf("%d", &x)
#define INPUT2(x, y) scanf("%d%d", &x, &y)
#define OUTPUT1(x) printf("%d\n", x);
int main(int argc, char const *argv[]) {
int n, m;
INPUT2(n, m);
vector< pair<int,int> > knights(n);
for (int i = 0; i < n; i++) {
int power;
INPUT(power);
knights[i] = make_pair(power, i);
}
while(m--) {
int l, r;
INPUT2(l, r);
int max_in_range = knights[l].first;
for (int i = l+1; i <= r; i++) if (knights[i].first > max_in_range) {
max_in_range = knights[i].first;
}
int offset = l;
int range = r-l+1;
while (range--) {
if (knights[offset].first != max_in_range) {
OUTPUT1(knights[offset].second));
knights.erase(knights.begin()+offset);
}
else offset++;
}
printf("\n");
}
}
Well, removing from vector wouldn't be efficient for sure. Removing from set, or unordered set would be more effective (use iterators instead of indexes).
Yet the problem will still remain O(n^2), because you have two nested whiles running n*m times.
--EDIT--
I believe I understand the question now :)
First let's calculate the complexity of your code above. Your worst case would be the case that max range in all battles is 1 (two nights for each battle) and the battles are not ordered with respect to the position. Which means you have m battles (in this case m = n-1 ~= O(n))
The first while loop runs n times
For runs for once every time which makes it n*1 = n in total
The second while loop runs once every time which makes it n again.
Deleting from vector means n-1 shifts that makes it O(n).
Thus with the complexity of the vector total complexity is O(n^2)
First of all, you don't really need the inner for loop. Take the first knight as the max in range, compare the rest in the range one-by-one and remove the defeated ones.
Now, i believe it can be done in O(nlogn) with using std::map. The key to the map is the position and the value is the level of the knight.
Before proceeding, finding and removing an element in map is logarithmic, iterating is constant.
Finally, your code should look like:
while(m--) // n times
strongest = map.find(first_position); // find is log(n) --> n*log(n)
for (opponent = next of strongest; // this will run 1 times, since every range is 1
opponent in range;
opponent = next opponent) // iterating is constant
// removing from map is log(n) --> n * 1 * log(n)
if strongest < opponent
remove strongest, opponent is the new strongest
else
remove opponent, (be careful to remove it after iterating to next)
Ok, now the upper bound would be O(2*nlogn) = O(nlogn). If the ranges increases, that makes the run time of upper loop decrease but increases the number of remove operations. I'm sure the upper bound won't change, let's make it a homework for you to calculate :)
A solution with a treap is pretty straightforward.
For each query, you need to split the treap by implicit key to obtain the subtree that corresponds to the [l, r] range (it takes O(log n) time).
After that, you can iterate over the subtree and find the knight with the maximum strength. After that, you just need to merge the [0, l) and [r + 1, end) parts of the treap with the node that corresponds to this knight.
It's clear that all parts of the solution except for the subtree traversal and printing work in O(log n) time per query. However, each operation reinserts only one knight and erase the rest from the range, so the size of the output (and the sum of sizes of subtrees) is linear in n. So the total time complexity is O(n log n).
I don't think you can solve with standard stl containers because there'no standard container that supports getting an iterator by index quickly and removing arbitrary elements.
int i = 0;
for(; i<size-1; i++) {
int temp = arr[i];
arr[i] = arr[i+1];
arr[i+1] = temp;
}
Here I started with the fist position of array. What if after the loop I need to execute the for loop again where the for loop starts with the next position of array.
Like for first for loop starts from: Array[0]
Second iteration: Array[1]
Third iteration: Array[2]
Example:
For array: 1 2 3 4 5
for i=0: 2 1 3 4 5, 2 3 1 4 5, 2 3 4 1 5, 2 3 4 5 1
for i=1: 1 3 2 4 5, 1 3 4 2 5, 1 3 4 5 2 so on.
You can nest loops inside each other, including the ability for the inner loop to access the iterator value of the outer loop. Thus:
for(int start = 0; start < size-1; start++) {
for(int i = start; i < size-1; i++) {
// Inner code on 'i'
}
}
Would repeat your loop with an increasing start value, thus repeating with a higher initial value for i until you're gone through your list.
Suppose you have a routine to generate all possible permutations of the array elements for a given length n. Suppose the routine, after processing all n! permutations, leaves the n items of the array in their initial order.
Question: how can we build a routine to make all possible permutations of an array with (n+1) elements?
Answer:
Generate all permutations of the initial n elements, each time process the whole array; this way we have processed all n! permutations with the same last item.
Now, swap the (n+1)-st item with one of those n and repeat permuting n elements – we get another n! permutations with a new last item.
The n elements are left in their previous order, so put that last item back into its initial place and choose another one to put at the end of an array. Reiterate permuting n items.
And so on.
Remember, after each call the routine leaves the n-items array in its initial order. To retain this property at n+1 we need to make sure the same element gets finally placed at the end of an array after the (n+1)-st iteration of n! permutations.
This is how you can do that:
void ProcessAllPermutations(int arr[], int arrLen, int permLen)
{
if(permLen == 1)
ProcessThePermutation(arr, arrLen); // print the permutation
else
{
int lastpos = permLen - 1; // last item position for swaps
for(int pos = lastpos; pos >= 0; pos--) // pos of item to swap with the last
{
swap(arr[pos], arr[lastpos]); // put the chosen item at the end
ProcessAllPermutations(arr, arrLen, permLen - 1);
swap(arr[pos], arr[lastpos]); // put the chosen item back at pos
}
}
}
and here is an example of the routine running: https://ideone.com/sXp35O
Note, however, that this approach is highly ineffective:
It may work in a reasonable time for very small input size only. The number of permutations is a factorial function of the array length, and it grows faster than exponentially, which makes really BIG number of tests.
The routine has no short return. Even if the first or second permutation is the correct result, the routine will perform all the rest of n! unnecessary tests, too. Of course one can add a return path to break iteration, but that would make the code somewhat ugly. And it would bring no significant gain, because the routine will have to make n!/2 test on average.
Each generated permutation appears deep in the last level of the recursion. Testing for a correct result requires making a call to ProcessThePermutation from within ProcessAllPermutations, so it is difficult to replace the callee with some other function. The caller function must be modified each time you need another method of testing / procesing / whatever. Or one would have to provide a pointer to a processing function (a 'callback') and push it down through all the recursion, down to the place where the call will happen. This might be done indirectly by a virtual function in some context object, so it would look quite nice – but the overhead of passing additional data down the recursive calls can not be avoided.
The routine has yet another interesting property: it does not rely on the data values. Elements of the array are never compared. This may sometimes be an advantage: the routine can permute any kind of objects, even if they are not comparable. On the other hand it can not detect duplicates, so in case of equal items it will make repeated results. In a degenerate case of all n equal items the result will be n! equal sequences.
So if you ask how to generate all permutations to detect a sorted one, I must answer: DON'T.
Do learn effective sorting algorithms instead.
Is there any way to randomly swap two elements (two different index) in an array in C++? My idea is to randomly pick the first index, then randomly pick the second one till the second index is different from the first index. Then swap these two elements. I am wondering is there any better way to do this?
I think this is different from random_shuffle because each time I only want to swap two elements in the array and keep others in the original order.
Yes, pick two numbers First from [0...N-1] and Second from [0..N-2]. If First <= Second then ++Second so Second ends up in [0...First-1] or [First+1...N-1]. No retries needed.
Example: Say you have N=10 so First runs from 0-9 inclusive. Imagine you pick First=5. You know have 9 elements left from which to pick Second, namely 0-4 and 6-9. You now pick a number 0-8 instead, and map the subrange of possible results 5-8 to 6-9 by adding one.
<= is important. If you only added 1 if First!=Second, the chances of swapping 5 and 6 would be double, and the chances of swapping 5 and 9 would be 0%.
Here is one solution based on #MSalters suggestion:
int first = randInt(myArray.size()-1);
int second = randInt(myArray.size()-1);
while (first == second) {
second = randInt(myArray.size()-1);
}
char firstLetter = letters[first];
char secondLetter = letters[second];
myArray[first] = secondLetter;
myArray[second] = firstLetter;
I am debugging below problem and post the solution I am debugging and working on, the solution or similar is posted on a couple of forums, but I think the solution has a bug when num[0] = 0 or in general num[x] = x? Am I correct? Please feel free to correct me if I am wrong.
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
You must not modify the array (assume the array is read only).
You must use only constant, O(1) extra space.
Your runtime complexity should be less than O(n2).
There is only one duplicate number in the array, but it could be repeated more than once.
int findDuplicate3(vector<int>& nums)
{
if (nums.size() > 1)
{
int slow = nums[0];
int fast = nums[nums[0]];
while (slow != fast)
{
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = 0;
while (fast != slow)
{
fast = nums[fast];
slow = nums[slow];
}
return slow;
}
return -1;
}
Below is my code which uses Floyd's cycle-finding algorithm:
#include <iostream>
#include <vector>
using namespace std;
int findDup(vector<int>&arr){
int len = arr.size();
if(len>1){
int slow = arr[0];
int fast = arr[arr[0]];
while(slow!=fast){
slow = arr[slow];
fast = arr[arr[fast]];
}
fast = 0;
while(slow!=fast){
slow = arr[slow];
fast = arr[fast];
}
return slow;
}
return -1;
}
int main() {
vector<int>v = {1,2,2,3,4};
cout<<findDup(v)<<endl;
return 0;
}
Comment This works because zeroes aren't allowed, so the first element of the array isn't part of a cycle, and so the first element of the first cycle we find is referred to both outside and inside the cycle. If zeroes were allowed, this would fail if arr[0] were on a cycle. E.g., [0,1,1].
The sum of integers from 1 to N = (N * (N + 1)) / 2. You can use this to find the duplicate -- sum the integers in the array, then subtract the above formula from the sum. That's the duplicate.
Update: The above solution is based on the (possibly invalid) assumption that the input array consists of the values from 1 to N plus a single duplicate.
Start with two pointers to the first element: fast and slow.
Define a 'move' as incrementing fast by 2 step(positions) and slow by 1.
After each move, check if slow & fast point to the same node.
If there is a loop, at some point they will. This is because after they are both in the loop, fast is moving twice as quickly as slow and will eventually 'run into' it.
Say they meet after k moves. This is NOT NECESSARILY the repeated element, since it might not be the first element of the loop reached from outside the loop.
Call this element X.
Notice that fast has stepped 2k times, and slow has stepped k times.
Move fast back to zero.
Repeatedly advance fast and slow by ONE STEP EACH, comparing after each step.
Notice that after another k steps, slow will have moved a total of 2k steps and fast a total of k steps from the start, so they will again both be pointing to X.
Notice that if the prior step is on the loop for both of them, they were both pointing to X-1. If the prior step was only on the loop for slow, then they were pointing to different elements.
Ditto for X-2, X-3, ...
So in going forward, the first time they are pointing to the same element is the first element of the cycle reached from outside the cycle, which is the repeated element you're looking for.
Since you cannot use any additional space, using another hash table would be ruled out.
Now, coming to the approach of hashing on existing array, it can be acheived if we are allowed to modify the array in place.
Algo:
1) Start with the first element.
2) Hash the first element and apply a transformation to the value of hash.Let's say this transformation is making the value -ve.
3)Proceed to next element.Hash the element and before applying the transformation, check if a transformation has already been applied.
4) If yes, then element is a duplicate.
Code:
for(i = 0; i < size; i++)
{
if(arr[abs(arr[i])] > 0)
arr[abs(arr[i])] = -arr[abs(arr[i])];
else
cout<< abs(arr[i]) <<endl;
}
This transformation is required since if we are to use hashing approach,then, there has to be a collision for hashing the same key.
I cant think of a way in which hashing can be used without any additional space and not modifying the array.
For example:
array[] = {3, 9, 10, **12**,1,4,**7**,2,**6**,***5***}
First, I need maximum value=12 then I need maximum value among the rest of array (1,4,7,2,6,5), so value=7, then maxiumum value of the rest of array 6, then 5, After that, i will need series of this values. This gives back (12,7,6,5).
How to get these numbers?
I have tried the following code, but it seems to infinite
I think I'll need a recursive function but how can I do this?
max=0; max2=0;...
for(i=0; i<array_length; i++){
if (matrix[i] >= max)
max=matrix[i];
else {
for (j=i; j<array_length; j++){
if (matrix[j] >= max2)
max2=matrix[j];
else{
...
...for if else for if else
...??
}
}
}
}
This is how you would do that in C++11 by using the std::max_element() standard algorithm:
#include <vector>
#include <algorithm>
#include <iostream>
int main()
{
int arr[] = {3,5,4,12,1,4,7,2,6,5};
auto m = std::begin(arr);
while (m != std::end(arr))
{
m = std::max_element(m, std::end(arr));
std::cout << *(m++) << std::endl;
}
}
Here is a live example.
This is an excellent spot to use the Cartesian tree data structure. A Cartesian tree is a data structure built out of a sequence of elements with these properties:
The Cartesian tree is a binary tree.
The Cartesian tree obeys the heap property: every node in the Cartesian tree is greater than or equal to all its descendants.
An inorder traversal of a Cartesian tree gives back the original sequence.
For example, given the sequence
4 1 0 3 2
The Cartesian tree would be
4
\
3
/ \
1 2
\
0
Notice that this obeys the heap property, and an inorder walk gives back the sequence 4 1 0 3 2, which was the original sequence.
But here's the key observation: notice that if you start at the root of this Cartesian tree and start walking down to the right, you get back the number 4 (the biggest element in the sequence), then 3 (the biggest element in what comes after that 4), and the number 2 (the biggest element in what comes after the 3). More generally, if you create a Cartesian tree for the sequence, then start at the root and keep walking to the right, you'll get back the sequence of elements that you're looking for!
The beauty of this is that a Cartesian tree can be constructed in time Θ(n), which is very fast, and walking down the spine takes time only O(n). Therefore, the total amount of time required to find the sequence you're looking for is Θ(n). Note that the approach of "find the largest element, then find the largest element in the subarray that appears after that, etc." would run in time Θ(n2) in the worst case if the input was sorted in descending order, so this solution is much faster.
Hope this helps!
If you can modify the array, your code will become simpler. Whenever you find a max, output that and change its value inside the original array to some small number, for example -MAXINT. Once you have output the number of elements in the array, you can stop your iterations.
std::vector<int> output;
for (auto i : array)
{
auto pos = std::find_if(output.rbegin(), output.rend(), [i](int n) { return n > i; }).base();
output.erase(pos,output.end());
output.push_back(i);
}
Hopefully you can understand that code. I'm much better at writing algorithms in C++ than describing them in English, but here's an attempt.
Before we start scanning, output is empty. This is the correct state for an empty input.
We start by looking at the first unlooked at element I of the input array. We scan backwards through the output until we find an element G which is greater than I. Then we erase starting at the position after G. If we find none, that means that I is the greatest element so far of the elements we've searched, so we erase the entire output. Otherwise, we erase every element after G, because I is the greatest starting from G through what we've searched so far. Then we append I to output. Repeat until the input array is exhausted.