What are common values for uninitialized memory for debugging? - c++

A long time ago I learned about filling unused / uninitialized memory with 0xDEADBEEF so that in a debugger or a crash report if I ever see that value I know I'm looking at uninitialized memory. I saw from a crash report iOS uses 0xBBADBEEF.
What other creative values have people used? Do any particular values have any kind of specific benefit?
The most obvious benefit of values that turn into words is that, at least of most people, if the words are in their language they stick out easily where as some strictly numeric value is less likely to stick out.
But, maybe there are other reason to pick numbers? For example an odd number might crash a processors (68000) for example on certain memory accesses so it's probably better to pick 0x0BADBEEF over 0xBADBEEF0. Are their any other values (maybe processor specific) that have a concrete benefit for using for uninitialized memory?

Generally speaking, you want a value which is unlikely to happen to "work" when interpreted as either an integer, a pointer, or a string. So, here are a few constraints:
Don't use a value that's a multiple of the smallest "usual" alignment on your target architecture. For x86, that's 4 (bytes), so no values that are divisible by 4. This ensures that if the value is interpreted as a pointer, it'll be obviously-incorrect. If you're on a non-x86 architecture, you might even be able to use a value that will cause an alignment trap if used as a pointer.
Don't use a value which could reasonably be a small (positive or negative) integer. Your typical "int" variable in a C program never gets larger than 1,000 or so, so don't use small numbers as your empty data fill.
Don't use a value which is composed entirely of valid ASCII characters. Make sure there's at least one byte in there with the high bit set. These days, you'd want to make sure they weren't valid UTF-8 or possibly UTF-16 values, either.
Don't have any zero bytes in the value. There are too many cases where this would work out to be "helpful" to keeping the program from crashing - terminating a string, giving a non-int field a reasonable-looking value, etc.
Don't use a single (or two) byte values, repeated over and over. Having a full-word length pattern can make it easier to determine how your wild pointer ended up pointing where it is, at least narrowing down which operations offset it from the start of the pattern.
Don't use a value that maps to an valid address for a "typical" process. If the highest bits are set, it'll typically take a whole lot of malloc() before your process will grow large enough to make that a valid address.
Perhaps unsurprisingly, patterns like 0xDEADBEEF meet basically all of these requirements.

One technical term for values like this is "poison value".
Hex numbers that form English words are called Hexspeak. Wikipedia's Hexspeak article pretty much answers this question, cataloguing many known constants in use for various things, including several that are used as poison values / canaries / sanity checks, as well as other uses like error codes or IPv6 addresses.
I seem to recall some variation of 0xBADF00D. (maybe with a repeated letter like your 2nd example).
There's also 0xDEADC0DE. (Googling for where I've seen this used found the wikipedia article linked above).
Other English words in hex I've seen: Java .class files use 0xCAFEBABE as the magic number (first 4 bytes of the file). As a play on this, I guess, the Jikes JVM uses 0xDEADBABE as a sanity check constant.
Apparently Java wasn't the first user of 0xCAFEBABE. Wikipedia says "It was originally created by NeXTSTEP developers as a reference to the baristas at Peet's Coffee & Tea", and was used by the people developing Java before they thought of the name "Java". So it didn't come out of Java -> coffee (if anything the other way around), it's just plain old non-feminist tech culture. :(
re: update: Choosing a good value. For a poison value (not an error code), you want all the bytes to be different and not 0x00 or 0xFF, since those are probably the most likely values for an errant single-byte store. This applies especially for things like stack canaries (to detect buffer overruns), or other cases where detecting that it didn't get overwritten is important.
Your speculation about picking an odd value makes a lot of sense. Not being a valid memory address in the virtual memory layout of typical processes is a big advantage. Failing noisily as early as possible is optimal for debugging. Anyway, this probably means that having the high bit set is a good idea, so 0x0... is probably not a good idea.

Related

Why QVector::size returns int?

std::vector::size() returns a size_type which is unsigned and usually the same as size_t, e.g. it is 8 bytes on 64bit platforms.
In constrast, QVector::size() returns an int which is usually 4 bytes even on 64bit platforms, and at that it is signed, which means it can only go half way to 2^32.
Why is that? This seems quite illogical and also technically limiting, and while it is nor very likely that you may ever need more than 2^32 number of elements, the usage of signed int cuts that range in half for no apparent good reason. Perhaps to avoid compiler warnings for people too lazy to declare i as a uint rather than an int who decided that making all containers return a size type that makes no sense is a better solution? The reason could not possibly be that dumb?
This has been discussed several times since Qt 3 at least and the QtCore maintainer expressed that a while ago no change would happen until Qt 7 if it ever does.
When the discussion was going on back then, I thought that someone would bring it up on Stack Overflow sooner or later... and probably on several other forums and Q/A, too. Let us try to demystify the situation.
In general you need to understand that there is no better or worse here as QVector is not a replacement for std::vector. The latter does not do any Copy-On-Write (COW) and that comes with a price. It is meant for a different use case, basically. It is mostly used inside Qt applications and the framework itself, initially for QWidgets in the early times.
size_t has its own issue, too, after all that I will indicate below.
Without me interpreting the maintainer to you, I will just quote Thiago directly to carry the message of the official stance on:
For two reasons:
1) it's signed because we need negative values in several places in the API:
indexOf() returns -1 to indicate a value not found; many of the "from"
parameters can take negative values to indicate counting from the end. So even
if we used 64-bit integers, we'd need the signed version of it. That's the
POSIX ssize_t or the Qt qintptr.
This also avoids sign-change warnings when you implicitly convert unsigneds to
signed:
-1 + size_t_variable => warning
size_t_variable - 1 => no warning
2) it's simply "int" to avoid conversion warnings or ugly code related to the
use of integers larger than int.
io/qfilesystemiterator_unix.cpp
size_t maxPathName = ::pathconf(nativePath.constData(), _PC_NAME_MAX);
if (maxPathName == size_t(-1))
io/qfsfileengine.cpp
if (len < 0 || len != qint64(size_t(len))) {
io/qiodevice.cpp
qint64 QIODevice::bytesToWrite() const
{
return qint64(0);
}
return readSoFar ? readSoFar : qint64(-1);
That was one email from Thiago and then there is another where you can find some detailed answer:
Even today, software that has a core memory of more than 4 GB (or even 2 GB)
is an exception, rather than the rule. Please be careful when looking at the
memory sizes of some process tools, since they do not represent actual memory
usage.
In any case, we're talking here about having one single container addressing
more than 2 GB of memory. Because of the implicitly shared & copy-on-write
nature of the Qt containers, that will probably be highly inefficient. You need
to be very careful when writing such code to avoid triggering COW and thus
doubling or worse your memory usage. Also, the Qt containers do not handle OOM
situations, so if you're anywhere close to your memory limit, Qt containers
are the wrong tool to use.
The largest process I have on my system is qtcreator and it's also the only
one that crosses the 4 GB mark in VSZ (4791 MB). You could argue that it is an
indication that 64-bit containers are required, but you'd be wrong:
Qt Creator does not have any container requiring 64-bit sizes, it simply
needs 64-bit pointers
It is not using 4 GB of memory. That's just VSZ (mapped memory). The total
RAM currently accessible to Creator is merely 348.7 MB.
And it is using more than 4 GB of virtual space because it is a 64-bit
application. The cause-and-effect relationship is the opposite of what you'd
expect. As a proof of this, I checked how much virtual space is consumed by
padding: 800 MB. A 32-bit application would never do that, that's 19.5% of the
addressable space on 4 GB.
(padding is virtual space allocated but not backed by anything; it's only
there so that something else doesn't get mapped to those pages)
Going into this topic even further with Thiago's responses, see this:
Personally, I'm VERY happy that Qt collection sizes are signed. It seems
nuts to me that an integer value potentially used in an expression using
subtraction be unsigned (e.g. size_t).
An integer being unsigned doesn't guarantee that an expression involving
that integer will never be negative. It only guarantees that the result
will be an absolute disaster.
On the other hand, the C and C++ standards define the behaviour of unsigned
overflows and underflows.
Signed integers do not overflow or underflow. I mean, they do because the types
and CPU registers have a limited number of bits, but the standards say they
don't. That means the compiler will always optimise assuming you don't over-
or underflow them.
Example:
for (int i = 1; i >= 1; ++i)
This is optimised to an infinite loop because signed integers do not overflow.
If you change it to unsigned, then the compiler knows that it might overflow
and come back to zero.
Some people didn't like that: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475
unsigned numbers are values mod 2^n for some n.
Signed numbers are bounded integers.
Using unsigned values as approximations for 'positive integers' runs into the problem that common values are near the edge of the domain where unsigned values behave differently than plain integers.
The advantage is that unsigned approximation reaches higher positive integers, and under/overflow are well defined (if random when looked at as a model of Z).
But really, ptrdiff_t would be better than int.

On Linux, in C/C++, will a pointer ever have the MSB set?

I want to use a long integer that will be interpreted as a number when the MSB is set otherwise it will be interpreted as a pointer. So would this work or would I run into problems in either C or C++?
This is on a 64-bit system.
Edited for clarity and a better description.
On x86-64, you WILL have a pointer that is over 47 bits in address have the 63rd bit set, since all the bits above "max number of bits supported by the architecture" (which is currently 48) must all have the same value as the most significant bit of the value itself. (That is any address above 0007 FFFF FFFF FFFF will be FFF8 0000 0000 0000 - everything in between is "invalid" as a pointer)
That may well be addresses ONLY used by the kernel, but I'm not sure it's guaranteed to be.
However, I would try to avoid using tricks like this - it's likely to come back and haunt you at some point.
People have tried tricks like this before.
It never works out well in the long run.
Simply don't do it.
Edit: better link - see reference to 'bit31', which was previously never returned as set. Once it could be set (over 2 gigs of RAM, gasp!) it would break naughty programs and therefore programs needed to opt into this option once this much memory became the norm as people had used trickery like this (amongst other things). And now my lovely, short and to the point answer has become too long :-)
So would this work or would I run into problems in either C or C++?
Do you have 64 bits? Do you want your code to be portable to 32 bit systems? long does not necessarily have 64 bits. Big-endian v. little-endian? (Do you know which your system is?)
Plus, hopeless confusion. Please just use an extra variable to store this information or you will have many many bugs surrounding this.
It depends on the architecture. x86_64 architecture, for example, is currently using 48-bit addressing. It means that you could use 16 bits for your own needs (a trick that sometimes referred to as "pointer packing"). However, even the x86_64 architecture definition allows this limit to be raised in future implementations to the full 64 bits. If that happens, you may run into a situation where a lot of your code might need to be changed. So if you really must go that way, make sure your pointer packing is kept in one place that is easy to change in the future. For other architectures you have to check for yourself.
Unless you really need the space, or you're keeping alot of these things around, I would just use a plain union, and add a tag field. If you're going to go down that route, make sure that your memory is aligned to fit your needs.
Take a look at boost::lockfree::detail::tagged_ptr from boost.lockfree
This is a class that was introduced in latest 1_53 boost. It stores pointer and additional 16 bites in 64 bites variable.
Don't do such tricks. If you need to distinguish integers from pointers inside some container, consider using separate bit set to indicate such flag. In C++ std::bitset could be good enough.
Reasons:
Actually nobody guarantees pointers are long unsigned or long long unsigned. If you need
to store them, always apply sizeof() and void * type (if you need
to remove information about pointed object).
Even on one system addresses are highly dependent on architecture.
Kernel modules could seriously change mapping logics for process so you never know what addresses you will need.
Remember that the virtual address returned to your program does may necessarily line up to the actual physical address in memory. Infact, unless you are directly manipulating pretty special memory [e.g. some forms of graphics memory] then this is absolutely the case.
In this case, its the maximum value of the MMU which defines the values of the pointers your program sees. In which case, for x64 I'm pretty sure its (currently) 48bits, but as Mats specifies above once you've got the top bit set in the 48, you get the 63'd bit says aswell.
So taking his answer and mine - its entirely possible to get a pointer with the 47th bit set even with a small amount of RAM, and once you do you get the 63rd bit set.
If the "64-bit system" in question is x86_64, then yes, it will work.

What's the rationale for null terminated strings?

As much as I love C and C++, I can't help but scratch my head at the choice of null terminated strings:
Length prefixed (i.e. Pascal) strings existed before C
Length prefixed strings make several algorithms faster by allowing constant time length lookup.
Length prefixed strings make it more difficult to cause buffer overrun errors.
Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string. On 16 bit machines this is a single byte. On 64 bit machines, 4GB is a reasonable string length limit, but even if you want to expand it to the size of the machine word, 64 bit machines usually have ample memory making the extra seven bytes sort of a null argument. I know the original C standard was written for insanely poor machines (in terms of memory), but the efficiency argument doesn't sell me here.
Pretty much every other language (i.e. Perl, Pascal, Python, Java, C#, etc) use length prefixed strings. These languages usually beat C in string manipulation benchmarks because they are more efficient with strings.
C++ rectified this a bit with the std::basic_string template, but plain character arrays expecting null terminated strings are still pervasive. This is also imperfect because it requires heap allocation.
Null terminated strings have to reserve a character (namely, null), which cannot exist in the string, while length prefixed strings can contain embedded nulls.
Several of these things have come to light more recently than C, so it would make sense for C to not have known of them. However, several were plain well before C came to be. Why would null terminated strings have been chosen instead of the obviously superior length prefixing?
EDIT: Since some asked for facts (and didn't like the ones I already provided) on my efficiency point above, they stem from a few things:
Concat using null terminated strings requires O(n + m) time complexity. Length prefixing often require only O(m).
Length using null terminated strings requires O(n) time complexity. Length prefixing is O(1).
Length and concat are by far the most common string operations. There are several cases where null terminated strings can be more efficient, but these occur much less often.
From answers below, these are some cases where null terminated strings are more efficient:
When you need to cut off the start of a string and need to pass it to some method. You can't really do this in constant time with length prefixing even if you are allowed to destroy the original string, because the length prefix probably needs to follow alignment rules.
In some cases where you're just looping through the string character by character you might be able to save a CPU register. Note that this works only in the case that you haven't dynamically allocated the string (Because then you'd have to free it, necessitating using that CPU register you saved to hold the pointer you originally got from malloc and friends).
None of the above are nearly as common as length and concat.
There's one more asserted in the answers below:
You need to cut off the end of the string
but this one is incorrect -- it's the same amount of time for null terminated and length prefixed strings. (Null terminated strings just stick a null where you want the new end to be, length prefixers just subtract from the prefix.)
From the horse's mouth
None of BCPL, B, or C supports
character data strongly in the
language; each treats strings much
like vectors of integers and
supplements general rules by a few
conventions. In both BCPL and B a
string literal denotes the address of
a static area initialized with the
characters of the string, packed into
cells. In BCPL, the first packed byte
contains the number of characters in
the string; in B, there is no count
and strings are terminated by a
special character, which B spelled
*e. This change was made partially
to avoid the limitation on the length
of a string caused by holding the
count in an 8- or 9-bit slot, and
partly because maintaining the count
seemed, in our experience, less
convenient than using a terminator.
Dennis M Ritchie, Development of the C Language
C doesn't have a string as part of the language. A 'string' in C is just a pointer to char. So maybe you're asking the wrong question.
"What's the rationale for leaving out a string type" might be more relevant. To that I would point out that C is not an object oriented language and only has basic value types. A string is a higher level concept that has to be implemented by in some way combining values of other types. C is at a lower level of abstraction.
in light of the raging squall below:
I just want to point out that I'm not trying to say this is a stupid or bad question, or that the C way of representing strings is the best choice. I'm trying to clarify that the question would be more succinctly put if you take into account the fact that C has no mechanism for differentiating a string as a datatype from a byte array. Is this the best choice in light of the processing and memory power of todays computers? Probably not. But hindsight is always 20/20 and all that :)
The question is asked as a Length Prefixed Strings (LPS) vs zero terminated strings (SZ) thing, but mostly expose benefits of length prefixed strings. That may seem overwhelming, but to be honest we should also consider drawbacks of LPS and advantages of SZ.
As I understand it, the question may even be understood as a biased way to ask "what are the advantages of Zero Terminated Strings ?".
Advantages (I see) of Zero Terminated Strings:
very simple, no need to introduce new concepts in language, char
arrays/char pointers can do.
the core language just include minimal syntaxic sugar to convert
something between double quotes to a
bunch of chars (really a bunch of
bytes). In some cases it can be used
to initialize things completely
unrelated with text. For instance xpm
image file format is a valid C source
that contains image data encoded as a
string.
by the way, you can put a zero in a string literal, the compiler will
just also add another one at the end of the literal: "this\0is\0valid\0C".
Is it a string ? or four strings ? Or a bunch of bytes...
flat implementation, no hidden indirection, no hidden integer.
no hidden memory allocation involved (well, some infamous non
standard functions like strdup
perform allocation, but that's mostly
a source of problem).
no specific issue for small or large hardware (imagine the burden to
manage 32 bits prefix length on 8
bits microcontrollers, or the
restrictions of limiting string size
to less than 256 bytes, that was a problem I actually had with Turbo Pascal eons ago).
implementation of string manipulation is just a handful of
very simple library function
efficient for the main use of strings : constant text read
sequentially from a known start
(mostly messages to the user).
the terminating zero is not even mandatory, all necessary tools
to manipulate chars like a bunch of
bytes are available. When performing
array initialisation in C, you can
even avoid the NUL terminator. Just
set the right size. char a[3] =
"foo"; is valid C (not C++) and
won't put a final zero in a.
coherent with the unix point of view "everything is file", including
"files" that have no intrinsic length
like stdin, stdout. You should remember that open read and write primitives are implemented
at a very low level. They are not library calls, but system calls. And the same API is used
for binary or text files. File reading primitives get a buffer address and a size and return
the new size. And you can use strings as the buffer to write. Using another kind of string
representation would imply you can't easily use a literal string as the buffer to output, or
you would have to make it have a very strange behavior when casting it to char*. Namely
not to return the address of the string, but instead to return the actual data.
very easy to manipulate text data read from a file in-place, without useless copy of buffer,
just insert zeroes at the right places (well, not really with modern C as double quoted strings are const char arrays nowaday usually kept in non modifiable data segment).
prepending some int values of whatever size would implies alignment issues. The initial
length should be aligned, but there is no reason to do that for the characters datas (and
again, forcing alignment of strings would imply problems when treating them as a bunch of
bytes).
length is known at compile time for constant literal strings (sizeof). So why would
anyone want to store it in memory prepending it to actual data ?
in a way C is doing as (nearly) everyone else, strings are viewed as arrays of char. As array length is not managed by C, it is logical length is not managed either for strings. The only surprising thing is that 0 item added at the end, but that's just at core language level when typing a string between double quotes. Users can perfectly call string manipulation functions passing length, or even use plain memcopy instead. SZ are just a facility. In most other languages array length is managed, it's logical that is the same for strings.
in modern times anyway 1 byte character sets are not enough and you often have to deal with encoded unicode strings where the number of characters is very different of the number of bytes. It implies that users will probably want more than "just the size", but also other informations. Keeping length give use nothing (particularly no natural place to store them) regarding these other useful pieces of information.
That said, no need to complain in the rare case where standard C strings are indeed inefficient. Libs are available. If I followed that trend, I should complain that standard C does not include any regex support functions... but really everybody knows it's not a real problem as there is libraries available for that purpose. So when string manipulation efficiency is wanted, why not use a library like bstring ? Or even C++ strings ?
EDIT: I recently had a look to D strings. It is interesting enough to see that the solution choosed is neither a size prefix, nor zero termination. As in C, literal strings enclosed in double quotes are just short hand for immutable char arrays, and the language also has a string keyword meaning that (immutable char array).
But D arrays are much richer than C arrays. In the case of static arrays length is known at run-time so there is no need to store the length. Compiler has it at compile time. In the case of dynamic arrays, length is available but D documentation does not state where it is kept. For all we know, compiler could choose to keep it in some register, or in some variable stored far away from the characters data.
On normal char arrays or non literal strings there is no final zero, hence programmer has to put it itself if he wants to call some C function from D. In the particular case of literal strings, however the D compiler still put a zero at the end of each strings (to allow easy cast to C strings to make easier calling C function ?), but this zero is not part of the string (D does not count it in string size).
The only thing that disappointed me somewhat is that strings are supposed to be utf-8, but length apparently still returns a number of bytes (at least it's true on my compiler gdc) even when using multi-byte chars. It is unclear to me if it's a compiler bug or by purpose. (OK, I probably have found out what happened. To say to D compiler your source use utf-8 you have to put some stupid byte order mark at beginning. I write stupid because I know of not editor doing that, especially for UTF-8 that is supposed to be ASCII compatible).
I think, it has historical reasons and found this in wikipedia:
At the time C (and the languages that
it was derived from) were developed,
memory was extremely limited, so using
only one byte of overhead to store the
length of a string was attractive. The
only popular alternative at that time,
usually called a "Pascal string"
(though also used by early versions of
BASIC), used a leading byte to store
the length of the string. This allows
the string to contain NUL and made
finding the length need only one
memory access (O(1) (constant) time).
But one byte limits the length to 255.
This length limitation was far more
restrictive than the problems with the
C string, so the C string in general
won out.
Calavera is right, but as people don't seem to get his point, I'll provide some code examples.
First, let's consider what C is: a simple language, where all code has a pretty direct translation into machine language. All types fit into registers and on the stack, and it doesn't require an operating system or a big run-time library to run, since it were meant to write these things (a task to which is superbly well-suited, considering there isn't even a likely competitor to this day).
If C had a string type, like int or char, it would be a type which didn't fit in a register or in the stack, and would require memory allocation (with all its supporting infrastructure) to be handled in any way. All of which go against the basic tenets of C.
So, a string in C is:
char s*;
So, let's assume then that this were length-prefixed. Let's write the code to concatenate two strings:
char* concat(char* s1, char* s2)
{
/* What? What is the type of the length of the string? */
int l1 = *(int*) s1;
/* How much? How much must I skip? */
char *s1s = s1 + sizeof(int);
int l2 = *(int*) s2;
char *s2s = s2 + sizeof(int);
int l3 = l1 + l2;
char *s3 = (char*) malloc(l3 + sizeof(int));
char *s3s = s3 + sizeof(int);
memcpy(s3s, s1s, l1);
memcpy(s3s + l1, s2s, l2);
*(int*) s3 = l3;
return s3;
}
Another alternative would be using a struct to define a string:
struct {
int len; /* cannot be left implementation-defined */
char* buf;
}
At this point, all string manipulation would require two allocations to be made, which, in practice, means you'd go through a library to do any handling of it.
The funny thing is... structs like that do exist in C! They are just not used for your day-to-day displaying messages to the user handling.
So, here is the point Calavera is making: there is no string type in C. To do anything with it, you'd have to take a pointer and decode it as a pointer to two different types, and then it becomes very relevant what is the size of a string, and cannot just be left as "implementation defined".
Now, C can handle memory in anyway, and the mem functions in the library (in <string.h>, even!) provide all the tooling you need to handle memory as a pair of pointer and size. The so-called "strings" in C were created for just one purpose: showing messages in the context of writting an operating system intended for text terminals. And, for that, null termination is enough.
Obviously for performance and safety, you'll want to keep the length of a string while you're working with it rather than repeatedly performing strlen or the equivalent on it. However, storing the length in a fixed location just before the string contents is an incredibly bad design. As Jörgen pointed out in the comments on Sanjit's answer, it precludes treating the tail of a string as a string, which for example makes a lot of common operations like path_to_filename or filename_to_extension impossible without allocating new memory (and incurring the possibility of failure and error handling). And then of course there's the issue that nobody can agree how many bytes the string length field should occupy (plenty of bad "Pascal string" languages used 16-bit fields or even 24-bit fields which preclude processing of long strings).
C's design of letting the programmer choose if/where/how to store the length is much more flexible and powerful. But of course the programmer has to be smart. C punishes stupidity with programs that crash, grind to a halt, or give your enemies root.
Lazyness, register frugality and portability considering the assembly gut of any language, especially C which is one step above assembly (thus inheriting a lot of assembly legacy code).
You would agree as a null char would be useless in those ASCII days, it (and probably as good as an EOF control char ).
let's see in pseudo code
function readString(string) // 1 parameter: 1 register or 1 stact entries
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
read(string[pointer])
increment pointer
total 1 register use
case 2
function readString(length,string) // 2 parameters: 2 register used or 2 stack entries
pointer=addressOf(string)
while(length>0) do
read(string[pointer])
increment pointer
decrement length
total 2 register used
That might seem shortsighted at that time, but considering the frugality in code and register ( which were PREMIUM at that time, the time when you know, they use punch card ). Thus being faster ( when processor speed could be counted in kHz), this "Hack" was pretty darn good and portable to register-less processor with ease.
For argument sake I will implement 2 common string operation
stringLength(string)
pointer=addressOf(string)
while(string[pointer]!=CONTROL_CHAR) do
increment pointer
return pointer-addressOf(string)
complexity O(n) where in most case PASCAL string is O(1) because the length of the string is pre-pended to the string structure (that would also mean that this operation would have to be carried in an earlier stage).
concatString(string1,string2)
length1=stringLength(string1)
length2=stringLength(string2)
string3=allocate(string1+string2)
pointer1=addressOf(string1)
pointer3=addressOf(string3)
while(string1[pointer1]!=CONTROL_CHAR) do
string3[pointer3]=string1[pointer1]
increment pointer3
increment pointer1
pointer2=addressOf(string2)
while(string2[pointer2]!=CONTROL_CHAR) do
string3[pointer3]=string2[pointer2]
increment pointer3
increment pointer1
return string3
complexity O(n) and prepending the string length wouldn't change the complexity of the operation, while I admit it would take 3 time less time.
On another hand, if you use PASCAL string you would have to redesign your API for taking in account register length and bit-endianness, PASCAL string got the well known limitation of 255 char (0xFF) beacause the length was stored in 1 byte (8bits), and it you wanted a longer string (16bits->anything) you would have to take in account the architecture in one layer of your code, that would mean in most case incompatible string APIs if you wanted longer string.
Example:
One file was written with your prepended string api on an 8 bit computer and then would have to be read on say a 32 bit computer, what would the lazy program do considers that your 4bytes are the length of the string then allocate that lot of memory then attempt to read that many bytes.
Another case would be PPC 32 byte string read(little endian) onto a x86 (big endian), of course if you don't know that one is written by the other there would be trouble.
1 byte length (0x00000001) would become 16777216 (0x0100000) that is 16 MB for reading a 1 byte string.
Of course you would say that people should agree on one standard but even 16bit unicode got little and big endianness.
Of course C would have its issues too but, would be very little affected by the issues raised here.
In many ways, C was primitive. And I loved it.
It was a step above assembly language, giving you nearly the same performance with a language that was much easier to write and maintain.
The null terminator is simple and requires no special support by the language.
Looking back, it doesn't seem that convenient. But I used assembly language back in the 80s and it seemed very convenient at the time. I just think software is continually evolving, and the platforms and tools continually get more and more sophisticated.
Assuming for a moment that C implemented strings the Pascal way, by prefixing them by length: is a 7 char long string the same DATA TYPE as a 3-char string? If the answer is yes, then what kind of code should the compiler generate when I assign the former to the latter? Should the string be truncated, or automatically resized? If resized, should that operation be protected by a lock as to make it thread safe? The C approach side stepped all these issues, like it or not :)
Somehow I understood the question to imply there's no compiler support for length-prefixed strings in C. The following example shows, at least you can start your own C string library, where string lengths are counted at compile time, with a construct like this:
#define PREFIX_STR(s) ((prefix_str_t){ sizeof(s)-1, (s) })
typedef struct { int n; char * p; } prefix_str_t;
int main() {
prefix_str_t string1, string2;
string1 = PREFIX_STR("Hello!");
string2 = PREFIX_STR("Allows \0 chars (even if printf directly doesn't)");
printf("%d %s\n", string1.n, string1.p); /* prints: "6 Hello!" */
printf("%d %s\n", string2.n, string2.p); /* prints: "48 Allows " */
return 0;
}
This won't, however, come with no issues as you need to be careful when to specifically free that string pointer and when it is statically allocated (literal char array).
Edit: As a more direct answer to the question, my view is this was the way C could support both having string length available (as a compile time constant), should you need it, but still with no memory overhead if you want to use only pointers and zero termination.
Of course it seems like working with zero-terminated strings was the recommended practice, since the standard library in general doesn't take string lengths as arguments, and since extracting the length isn't as straightforward code as char * s = "abc", as my example shows.
"Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string."
First, extra 3 bytes may be considerable overhead for short strings. In particular, a zero-length string now takes 4 times as much memory. Some of us are using 64-bit machines, so we either need 8 bytes to store a zero-length string, or the string format can't cope with the longest strings the platform supports.
There may also be alignment issues to deal with. Suppose I have a block of memory containing 7 strings, like "solo\0second\0\0four\0five\0\0seventh". The second string starts at offset 5. The hardware may require that 32-bit integers be aligned at an address that is a multiple of 4, so you have to add padding, increasing the overhead even further. The C representation is very memory-efficient in comparison. (Memory-efficiency is good; it helps cache performance, for example.)
One point not yet mentioned: when C was designed, there were many machines where a 'char' was not eight bits (even today there are DSP platforms where it isn't). If one decides that strings are to be length-prefixed, how many 'char's worth of length prefix should one use? Using two would impose an artificial limit on string length for machines with 8-bit char and 32-bit addressing space, while wasting space on machines with 16-bit char and 16-bit addressing space.
If one wanted to allow arbitrary-length strings to be stored efficiently, and if 'char' were always 8-bits, one could--for some expense in speed and code size--define a scheme were a string prefixed by an even number N would be N/2 bytes long, a string prefixed by an odd value N and an even value M (reading backward) could be ((N-1) + M*char_max)/2, etc. and require that any buffer which claims to offer a certain amount of space to hold a string must allow enough bytes preceding that space to handle the maximum length. The fact that 'char' isn't always 8 bits, however, would complicate such a scheme, since the number of 'char' required to hold a string's length would vary depending upon the CPU architecture.
The null termination allows for fast pointer based operations.
Not a Rationale necessarily but a counterpoint to length-encoded
Certain forms of dynamic length encoding are superior to static length encoding as far as memory is concerned, it all depends on usage. Just look at UTF-8 for proof. It's essentially an extensible character array for encoding a single character. This uses a single bit for each extended byte. NUL termination uses 8 bits. Length-prefix I think can be reasonably termed infinite length as well by using 64 bits. How often you hit the case of your extra bits is the deciding factor. Only 1 extremely large string? Who cares if you're using 8 or 64 bits? Many small strings (Ie Strings of English words)? Then your prefix costs are a large percentage.
Length-prefixed strings allowing time savings is not a real thing. Whether your supplied data is required to have length provided, you're counting at compile time, or you're truly being provided dynamic data that you must encode as a string. These sizes are computed at some point in the algorithm. A separate variable to store the size of a null terminated string can be provided. Which makes the comparison on time-savings moot. One just has an extra NUL at the end... but if the length encode doesn't include that NUL then there's literally no difference between the two. There's no algorithmic change required at all. Just a pre-pass you have to manually design yourself instead of having a compiler/runtime do it for you. C is mostly about doing things manually.
Length-prefix being optional is a selling point. I don't always need that extra info for an algorithm so being required to do it for a every string makes my precompute+compute time never able to drop below O(n). (Ie hardware random number generator 1-128. I can pull from an "infinite string". Let's say it only generates characters so fast. So our string length changes all the time. But my usage of the data probably doesn't care how many random bytes I have. It just wants the next available unused byte as soon as it can get it after a request. I could be waiting on the device. But I could also have a buffer of characters pre-read. A length comparison is a needless waste of computation. A null check is more efficient.)
Length-prefix is a good guard against buffer overflow? So is sane usage of library functions and implementation. What if I pass in malformed data? My buffer is 2 bytes long but I tell the function it's 7! Ex: If gets() was intended to be used on known data it could've had an internal buffer check that tested compiled buffers and malloc() calls and still follow spec. If it was meant to be used as a pipe for unknown STDIN to arrive at unknown buffer then clearly one can't know abut the buffer size which means a length arg is pointless, you need something else here like a canary check. For that matter, you can't length-prefix some streams and inputs, you just can't. Which means the length check has to be built into the algorithm and not a magic part of the typing system. TL;DR NUL-terminated never had to be unsafe, it just ended up that way via misuse.
counter-counter point: NUL-termination is annoying on binary. You either need to do length-prefix here or transform NUL bytes in some way: escape-codes, range remapping, etc... which of course means more-memory-usage/reduced-information/more-operations-per-byte. Length-prefix mostly wins the war here. The only upside to a transform is that no additional functions have to be written to cover the length-prefix strings. Which means on your more optimized sub-O(n) routines you can have them automatically act as their O(n) equivalents without adding more code. Downside is, of course, time/memory/compression waste when used on NUL heavy strings. Depending on how much of your library you end up duplicating to operate on binary data, it may make sense to work solely with length-prefix strings. That said one could also do the same with length-prefix strings... -1 length could mean NUL-terminated and you could use NUL-terminated strings inside length-terminated.
Concat: "O(n+m) vs O(m)" I'm assuming your referring to m as the total length of the string after concatenating because they both have to have that number of operations minimum (you can't just tack-on to string 1, what if you have to realloc?). And I'm assuming n is a mythical amount of operations you no longer have to do because of a pre-compute. If so, then the answer is simple: pre-compute. If you're insisting you'll always have enough memory to not need to realloc and that's the basis of the big-O notation then the answer is even more simple: do binary search on allocated memory for end of string 1, clearly there's a large swatch of infinite zeros after string 1 for us to not worry about realloc. There, easily got n to log(n) and I barely tried. Which if you recall log(n) is essentially only ever as large as 64 on a real computer, which is essentially like saying O(64+m), which is essentially O(m). (And yes that logic has been used in run-time analysis of real data structures in-use today. It's not bullshit off the top of my head.)
Concat()/Len() again: Memoize results. Easy. Turns all computes into pre-computes if possible/necessary. This is an algorithmic decision. It's not an enforced constraint of the language.
String suffix passing is easier/possible with NUL termination. Depending on how length-prefix is implemented it can be destructive on original string and can sometimes not even be possible. Requiring a copy and pass O(n) instead of O(1).
Argument-passing/de-referencing is less for NUL-terminated versus length-prefix. Obviously because you're passing less information. If you don't need length, then this saves a lot of footprint and allows optimizations.
You can cheat. It's really just a pointer. Who says you have to read it as a string? What if you want to read it as a single character or a float? What if you want to do the opposite and read a float as a string? If you're careful you can do this with NUL-termination. You can't do this with length-prefix, it's a data type distinctly different from a pointer typically. You'd most likely have to build a string byte-by-byte and get the length. Of course if you wanted something like an entire float (probably has a NUL inside it) you'd have to read byte-by-byte anyway, but the details are left to you to decide.
TL;DR Are you using binary data? If no, then NUL-termination allows more algorithmic freedom. If yes, then code quantity vs speed/memory/compression is your main concern. A blend of the two approaches or memoization might be best.
Many design decisions surrounding C stem from the fact that when it was originally implemented, parameter passing was somewhat expensive. Given a choice between e.g.
void add_element_to_next(arr, offset)
char[] arr;
int offset;
{
arr[offset] += arr[offset+1];
}
char array[40];
void test()
{
for (i=0; i<39; i++)
add_element_to_next(array, i);
}
versus
void add_element_to_next(ptr)
char *p;
{
p[0]+=p[1];
}
char array[40];
void test()
{
int i;
for (i=0; i<39; i++)
add_element_to_next(arr+i);
}
the latter would have been slightly cheaper (and thus preferred) since it only required passing one parameter rather than two. If the method being called didn't need to know the base address of the array nor the index within it, passing a single pointer combining the two would be cheaper than passing the values separately.
While there are many reasonable ways in which C could have encoded string lengths, the approaches that had been invented up to that time would have all required functions that should be able to work with part of a string to accept the base address of the string and the desired index as two separate parameters. Using zero-byte termination made it possible to avoid that requirement. Although other approaches would be better with today's machines (modern compilers often pass parameters in registers, and memcpy can be optimized in ways strcpy()-equivalents cannot) enough production code uses zero-byte terminated strings that it's hard to change to anything else.
PS--In exchange for a slight speed penalty on some operations, and a tiny bit of extra overhead on longer strings, it would have been possible to have methods that work with strings accept pointers directly to strings, bounds-checked string buffers, or data structures identifying substrings of another string. A function like "strcat" would have looked something like [modern syntax]
void strcat(unsigned char *dest, unsigned char *src)
{
struct STRING_INFO d,s;
str_size_t copy_length;
get_string_info(&d, dest);
get_string_info(&s, src);
if (d.si_buff_size > d.si_length) // Destination is resizable buffer
{
copy_length = d.si_buff_size - d.si_length;
if (s.src_length < copy_length)
copy_length = s.src_length;
memcpy(d.buff + d.si_length, s.buff, copy_length);
d.si_length += copy_length;
update_string_length(&d);
}
}
A little bigger than the K&R strcat method, but it would support bounds-checking, which the K&R method doesn't. Further, unlike the current method, it would be possible to easily concatenate an arbitrary substring, e.g.
/* Concatenate 10th through 24th characters from src to dest */
void catpart(unsigned char *dest, unsigned char *src)
{
struct SUBSTRING_INFO *inf;
src = temp_substring(&inf, src, 10, 24);
strcat(dest, src);
}
Note that the lifetime of the string returned by temp_substring would be limited by those of s and src, which ever was shorter (which is why the method requires inf to be passed in--if it was local, it would die when the method returned).
In terms of memory cost, strings and buffers up to 64 bytes would have one byte of overhead (same as zero-terminated strings); longer strings would have slightly more (whether one allowed amounts of overhead between two bytes and the maximum required would be a time/space tradeoff). A special value of the length/mode byte would be used to indicate that a string function was given a structure containing a flag byte, a pointer, and a buffer length (which could then index arbitrarily into any other string).
Of course, K&R didn't implement any such thing, but that's most likely because they didn't want to spend much effort on string handling--an area where even today many languages seem rather anemic.
According to Joel Spolsky in this blog post,
It's because the PDP-7 microprocessor, on which UNIX and the C programming language were invented, had an ASCIZ string type. ASCIZ meant "ASCII with a Z (zero) at the end."
After seeing all the other answers here, I'm convinced that even if this is true, it's only part of the reason for C having null-terminated "strings". That post is quite illuminating as to how simple things like strings can actually be quite hard.
I don't buy the "C has no string" answer. True, C does not support built-in higher-level types but you can still represent data-structures in C and that's what a string is. The fact a string is just a pointer in C does not mean the first N bytes cannot take on special meaning as a the length.
Windows/COM developers will be very familiar with the BSTR type which is exactly like this - a length-prefixed C string where the actual character data starts not at byte 0.
So it seems that the decision to use null-termination is simply what people preferred, not a necessity of the language.
One advantage of NUL-termination over length-prefixing, which I have not seen anyone mention, is the simplicity of string comparison. Consider the comparison standard which returns a signed result for less-than, equal, or greater-than. For length-prefixing the algorithm has to be something along the following lines:
Compare the two lengths; record the smaller, and note if they are equal (this last step might be deferred to step 3).
Scan the two character sequences, subtracting characters at matching indices (or use a dual pointer scan). Stop either when the difference is nonzero, returning the difference, or when the number of characters scanned is equal to the smaller length.
When the smaller length is reached, one string is a prefix of the other. Return negative or positive value according to which is shorter, or zero if of equal length.
Contrast this with the NUL-termination algorithm:
Scan the two character sequences, subtracting characters at matching indices [note that this is handled better with moving pointers]. Stop when the difference is nonzero, returning the difference. NOTE: If one string is a PROPER prefix of the other, one of the characters in the subtraction will be NUL, i.e zero, and the comparison will naturally stop there.
If the difference is zero, -only then- check if either character is NUL. If so, return zero, otherwise continue to next character.
The NUL-terminated case is simpler, and very easy to implement efficiently with a dual pointer scan. The length-prefixed case does at least as much work, nearly always more. If your algorithm has to do a lot of string comparisons [e.g a compiler!], the NUL-terminated case wins out. Nowadays that might not be as important, but back in the day, heck yeah.
gcc accept the codes below:
char s[4] = "abcd";
and it's ok if we treat is as an array of chars but not string. That is, we can access it with s[0], s[1], s[2], and s[3], or even with memcpy(dest, s, 4). But we'll get messy characters when we trying with puts(s), or worse with strcpy(dest, s).
I think the better question is why you think C owes you anything? C was designed to give you what you need, nothing more. You need to loose the mentality that the language must provide you with everything. Or just continue to use your higher level languages that will give you the luxary of String, Calendar, Containers; and in the case of Java you get one thing in tonnes of variety. Multiple types String, multiple types of unordered_map(s).
Too bad for you, this was not the purpose of C. C was not designed to be a bloated language that offers from a pin to an anchor. Instead you must rely on third party libraries or your own. And there is nothing easier than creating a simple struct that will contain a string and its size.
struct String
{
const char *s;
size_t len;
};
You know what the problem is with this though. It is not standard. Another language might decide to organize the len before the string. Another language might decide to use a pointer to end instead. Another might decide to use six pointers to make the String more efficient. However a null terminated string is the most standard format for a string; which you can use to interface with any language. Even Java JNI uses null terminated strings.
Lastly, it is a common saying; the right data structure for the task. If you find that need to know the size of a string more than anything else; well use a string structure that allows you to do that optimally. But don't make claims that that operation is used more than anything else for everybody. Like, why is knowing the size of a string more important than reading its contents. I find that reading the contents of a string is what I mostly do, so I use null terminated strings instead of std::string; which saves me 5 pointers on a GCC compiler. If I can even save 2 pointers that is good.

C++ : why bool is 8 bits long?

In C++, I'm wondering why the bool type is 8 bits long (on my system), where only one bit is enough to hold the boolean value ?
I used to believe it was for performance reasons, but then on a 32 bits or 64 bits machine, where registers are 32 or 64 bits wide, what's the performance advantage ?
Or is it just one of these 'historical' reasons ?
Because every C++ data type must be addressable.
How would you create a pointer to a single bit? You can't. But you can create a pointer to a byte. So a boolean in C++ is typically byte-sized. (It may be larger as well. That's up to the implementation. The main thing is that it must be addressable, so no C++ datatype can be smaller than a byte)
Memory is byte addressable. You cannot address a single bit, without shifting or masking the byte read from memory. I would imagine this is a very large reason.
A boolean type normally follows the smallest unit of addressable memory of the target machine (i.e. usually the 8bits byte).
Access to memory is always in "chunks" (multiple of words, this is for efficiency at the hardware level, bus transactions): a boolean bit cannot be addressed "alone" in most CPU systems. Of course, once the data is contained in a register, there are often specialized instructions to manipulate bits independently.
For this reason, it is quite common to use techniques of "bit packing" in order to increase efficiency in using "boolean" base data types. A technique such as enum (in C) with power of 2 coding is a good example. The same sort of trick is found in most languages.
Updated: Thanks to a excellent discussion, it was brought to my attention that sizeof(char)==1 by definition in C++. Hence, addressing of a "boolean" data type is pretty tied to the smallest unit of addressable memory (reinforces my point).
The answers about 8-bits being the smallest amount of memory that is addressable are correct. However, some languages can use 1-bit for booleans, in a way. I seem to remember Pascal implementing sets as bit strings. That is, for the following set:
{1, 2, 5, 7}
You might have this in memory:
01100101
You can, of course, do something similar in C / C++ if you want. (If you're keeping track of a bunch of booleans, it could make sense, but it really depends on the situation.)
I know this is old but I thought I'd throw in my 2 cents.
If you limit your boolean or data type to one bit then your application is at risk for memory curruption. How do you handle error stats in memory that is only one bit long?
I went to a job interview and one of the statements the program lead said to me was, "When we send the signal to launch a missle we just send a simple one bit on off bit via wireless. Sending one bit is extremelly fast and we need that signal to be as fast as possible."
Well, it was a test to see if I understood the concepts and bits, bytes, and error handling. How easy would it for a bad guy to send out a one bit msg. Or what happens if during transmittion the bit gets flipped the other way.
Some embedded compilers have an int1 type that is used to bit-pack boolean flags (e.g. CCS series of C compilers for Microchip MPU's). Setting, clearing, and testing these variables uses single-instruction bit-level instructions, but the compiler will not permit any other operations (e.g. taking the address of the variable), for the reasons noted in other answers.
Note, however, that std::vector<bool> is allowed to use bit-packing, i.e. to store the bits in smaller units than an ordinary bool. But it is not required.

Magic Numbers In Arrays? - C++

I'm a fairly new programmer, and I apologize if this information is easily available out there, I just haven't been able to find it yet.
Here's my question:
Is is considered magic numbers when you use a literal number to access a specific element of an array?
For example:
arrayOfNumbers[6] // Is six a magic number in this case?
I ask this question because one of my professors is adamant that all literal numbers in a program are magic numbers. It would be nice for me just to access an element of an array using a real number, instead of using a named constant for each element.
Thanks!
That really depends on the context. If you have code like this:
arr[0] = "Long";
arr[1] = "sentence";
arr[2] = "as";
arr[3] = "array.";
...then 0..3 are not considered magic numbers. However, if you have:
int doStuff()
{
return my_global_array[6];
}
...then 6 is definitively a magic number.
It's pretty magic.
I mean, why are you accessing the 6th element? What's are the semantics that should be applied to that number? As it stands all we know is "the 6th (zero-based) number". If we knew the declaration of arrayOfNumbers we would further know its type (e.g. an int or a double).
But if you said:
arrayOfNumbers[kDistanceToSaturn];
...now it has much more meaning to someone reading the code.
In general one iterates over an array, performing some operation on each element, because one doesn't know how long the array is and you can't just access it in a hardcoded manner.
However, sometimes array elements have specific meanings, for example, in graphics programming. Sometimes an array is always the same size because the data demands it (e.g. certain transform matrices). In these cases it may or may not be okay to access the specific element by number: domain experts will know what you're doing, but generalists probably won't. Giving the magic index number a name makes it more obvious to those who have to maintain your code, and helps you to prevent typing the wrong one accidentally.
In my example above I assumed your array holds distances from the sun to a planet. The sun would be the zeroth element, thus arrayOfNumbers[kDistanceToSun] = 0. Then as you increment, each element contains the distance to the next farthest planet: mercury, venus, etc. This is much more readable than just typing the number of the planet you want. In this case the array is of a fixed size because there are a fixed number of planets (well, except the whole Pluto debacle).
The other problem is that "arrayOfNumbers" tells us nothing about the contents of the array. We already know its an array of numbers because we saw the declaration somewhere where you said int arrayOfNumers[12345]; or however you declared it. Instead, something like:
int distanceToPlanetsFromSol[kNumberOfPlanets];
...gives us a much better idea of what the data actually is and what its semantics are. One of your goals as a programmer should be to write code that is self-documenting in this manner.
And then we can argue elsewhere if kNumberOfPlanets should be 8 or 9. :)
You should ask yourself why are you accessing that particular position. In this case, I assume that if you are doing arrayOfNumbers[6] the sixth position has some special meaning. If you think what's that meaning, you probably realize that it's a magic number hiding that.
another way to look at it:
What if after some chance the program needs to access 7th element instead of 6th? HOw would you or a maintainer know that? If for example if the 6th entry is the count of trees in CA it would be a good thing to put
#define CA_STATE_ENTRY 6
Then if now the table is reordered somebody can see that they need to change this to 9 (say). BTW I am not saying this is the best way to maintain an array for tree counts by state - it probably isnt.
Likewise, if later people want to change the program to deal with trees in oregon, then they know to replace
trees[CA_STATE_ENTRY]
with
trees[OR_STATE_ENTRY]
The point is
trees[6]
is not self-documenting
Of course for c++ it should be an enum not a #define
You'd have to provide more context for a meaningful answer. Not all literal numbers are magic, but many are. In a case like that there is no way at all to tell for sure, though most cases I can think of off-hand with an explicit array index >>1 probably qualify as magic.
Not all literals in a program really qualify as "magic numbers" -- but this one certainly seems to. The 6 gives us no clue of why you're accessing that particular element of the array.
To not be a magic number, you need its meaning to be quite clear even on first examination (or at least minimal examination) why that value is being used. Just for example, a lot of code will do things like: &x[0]. In this case, it's typically pretty clear that the '0' really just means "the beginning of the array."
If you need to access a particular element of the array, chances are you're doing it wrong.
You should almost always be iterating over the entire array.
It's only not a magic number if your program is doing something very special involving the number six specifically. Could you provide some context?
That's the problem with professors, they're often too academic. In theory he's right, as usual, but usually magic numbers are used in a stricter context, when the number is embedded in a data stream, allowing you to detect certain properties of the stream (like the signature header of a file type for instance).
See also this Wikipedia entry.
Usually not all constant values in software are called magic numbers.
A java class files always starts with the hex value 0xcafebabe a windows .exe
file with MZ 0x4d, 0x5a , this allows you quickly (but not for sure) to identify
the content of a binary file.
In a MISRA compliant system, all values except 0 and 1 are considered magic numbers. My opinion has always been if the constant value is obvious or likely won't change then leave it as a number. If in doubt create a unique constant since long term maintenance will be easier.