I convert my image data to caffe db format (leveldb, lmdb) using C++ as example I use this code for imagenet.
Is data need to be shuffled, can I write to db all my positives and then all my negatives like 00000000111111111, or data need to be shuffled and labels should look like 010101010110101011010?
How caffe sample data from DB, is it true that it use random subset of all data with size = batch_size?
Should you shuffle the samples? Think about the learning process if you don't shuffle; caffe sees only 0 samples - what do you expect the algorithm to deduce? simply predict 0 all the time and everything is cool. If you have plenty of 0 before you hit the first 1 caffe will be very confident in predicting always 0. It will be very difficult to move the model from this point.
On the other hand, if it constantly sees a mix of 0 and 1 it learns from the beginning meaningful features for separating the examples.
Bottom line: it is very advantageous to shuffle the training samples, especially when using SGD-based approaches.
AFAIK, caffe does not randomly sample batch_size samples, but rather goes sequentially over the input DB batch_size after batch_size samples.
TL;DR
shuffle.
Related
Say I have one batch that I want to train my model on. Do I simply run tf.Session()'s sess.run(batch) once, or do I have to iterate through all of the batch's examples with a loop in the session? I'm looking for the optimal way to iterate/update the training ops, such as loss. I thought tensorflow would handle it itself, especially in the cases where tf.nn.dynamic_rnn() takes in a batch dimension for listing the examples. I thought, perhaps naively, that a for loop in the python code would be the inefficient method of updating the loss. I am using tf.losses.mean_squared_error(batch) for a regression problem.
My regression problem is given two lists of word vectors (300d each), and determines the similarity between the two lists on a continuous scale from [0, 5]. My supervised model is Deepmind's Differential Neural Computer (DNC). The problem is I do not believe it is learning anything. this is due to the fact that the all of the output from the model is centered around 0 and even negative. I do not know how it could possibly be negative given no negative labels provided. I only call sess.run(loss) for the single batch, I do not create a python loop to iterate through it.
So, what is the most efficient way to iterate the training of a model and how do people go about it? Do they really use python loops to do multiple calls to sess.run(loss) (this was done in the training file example for DNC, and I have seen it in other examples as well). I am certain I get the final loss from the below process, but I am uncertain if the model has actually been trained entirely just because the loss was processed in one go. I also do not understand the point of update_ops returned by some functions, and am uncertain if they are necessary to ensure the model has been trained.
Example of what I mean by processing a batch's loss once:
# assume the model has been defined prior through batch_output_logits
train_loss = tf.losses.mean_squared_error(labels=target,
predictions=batch_output_logits)
with tf.Session() as sess:
sess.run(init_op) # pseudo code, unnecessary for question
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# is this the entire batch's loss && model has been trained for that batch?
loss_np = sess.run(train_step, train_loss)
coord.request_stop()
coord.join(threads)
Any input on why I am receiving negative values when the labels are in the range [0, 5] is welcomed as well(general abstract answers for this are fine, because its not the main focus). I am thinking of attempting to create a piece-wise function, if possible, for my loss, so that for any values out of bounds face a rapidly growing exponential loss function. Uncertain how to implement, or if it would even work.
Code is currently private. Once allowed, I will make the repo public.
To run DNC model, go to the project/ directory and run python -m src.main. If there are errors you encounter feel free to let me know.
This model depends upon Tensorflow r1.2, most recent Sonnet, and NLTK's punkt for Tokenizing sentences in sts_handler.py and tests/*.
In a regression model, the network calculates the model output based on the randomly initialized values for your model parameters. That's why you're seeing negative values here; you haven't trained your model enough for it to learn that your values are only between 0 and 5.
Unless I'm missing something, you are only calculating the loss, but you aren't actually training the model. You should probably be calling sess.run(optimizer) on an optimizer, not on your loss function.
You probably need to train your model for multiple epochs (training your model for one epoch = training your model once on the entire dataset).
Batches are used because it is more computationally efficient to train your model on a batch than it is to train it on a single example. However, your data seems to be small enough that you won't have that problem. As such, I would recommend reducing your batch size to as low as possible. As a general rule, you get better training from a smaller batch size, at the cost of added computation.
If you post all of your code, I can take a look.
I'm trying to do binary LSTM classification using theano.
I have gone through the example code however I want to build my own.
I have a small set of "Hello" & "Goodbye" recordings that I am using. I preprocess these by extracting the MFCC features for them and saving these features in a text file. I have 20 speech files(10 each) and I am generating a text file for each word, so 20 text files that contains the MFCC features. Each file is a 13x56 matrix.
My problem now is: How do I use this text file to train the LSTM?
I am relatively new to this. I have gone through some literature on it as well but not found really good understanding of the concept.
Any simpler way using LSTM's would also be welcome.
There are many existing implementation for example Tensorflow Implementation, Kaldi-focused implementation with all the scripts, it is better to check them first.
Theano is too low-level, you might try with keras instead, as described in tutorial. You can run tutorial "as is" to understand how things goes.
Then, you need to prepare a dataset. You need to turn your data into sequences of data frames and for every data frame in sequence you need to assign an output label.
Keras supports two types of RNNs - layers returning sequences and layers returning simple values. You can experiment with both, in code you just use return_sequences=True or return_sequences=False
To train with sequences you can assign dummy label for all frames except the last one where you can assign the label of the word you want to recognize. You need to place input and output labels to arrays. So it will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,...,1], [0,0,....,2]]
In X every element is a vector of 13 floats. In Y every element is just a number - 0 for intermediate frames and word ID for final frame.
To train with just labels you need to place input and output labels to arrays and output array is simpler. So the data will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,1], [0,1,0]]
Note that output is vectorized (np_utils.to_categorical) to turn it to vectors instead of just numbers.
Then you create network architecture. You can have 13 floats for input, a vector for output. In the middle you might have one fully connected layer followed by one lstm layer. Do not use too big layers, start with small ones.
Then you feed this dataset into model.fit and it trains you the model. You can estimate model quality on heldout set after training.
You will have a problem with convergence since you have just 20 examples. You need way more examples, preferably thousands to train LSTM, you will only be able to use very small models.
I have a problem that I would like to solve using neural networks. I have a basic understanding of how cascade correlated networks work, but I am not sure if I can use them in an example without complete retraining.
For example say I want to train a XOR example, but I only have the first three triplets of inputs/outputs:
0 0 0
0 1 1
1 0 1
I understand how to train the network for these inputs/outputs, but say I want to add a fourth triplet:
1 1 0
without completely retraining the whole network. If I understand the algorithm correctly it should be possible, but I haven't found an appropriate C++ library or MATLAB toolbox that implements this.
I don't know any implementations, but people have made online versions of cascade correlation - which means constantly updating the network with new training data as it comes in, rather than training once on a static dataset.
I'm not sure how that works. I believe they just add new neurons every so often. You could also backprop through the whole thing like it was a normal neural network.
I am working on vision project using ( c++ and opencv )
I need to classify 5 number of double , so Is there function in opencv to classify vector of double ?
and if not exist like this function , What is the easiest way to classify vector of double in c++ ?
I extracted 5 points from the edges of the human body, head and hands
and feet and I need to train a neural network in order to identify if
the object is a human being or not
For that purpose would be better to use a Viola-Jones classificator, I think. However, OpenCV provides Multi-Layer-Perceptron (MLP) which you can easily use for this.
You have to create a big (>1000) training set which contains five doubles for each item. Then you have to use each time 5% or 10% elements of that set to create a test set.
See Multi-Layer-Perceptron here for more information about theory and implementation.
However I warn you that with such classifier you probably won't get good results as 5 points are probably not sufficient and you may have many false positives.
I have recently implemented a typical 3 layer neural network (input -> hidden -> output) and I'm using the sigmoid function for activation. So far, the host program has 3 modes:
Creation, which seems to work fine. It creates a network with a specified number of input, hidden and output neurons, initializes the weights to either random values or zero.
Training, which loads a dataset, computes the output of the network then backpropagates the error and updates the weights. As far as I can tell, this works ok. The weights change, but not extremely, after training on the dataset.
Processing, which seems to work ok. However, the data output for the dataset which was used for training, or any other dataset for that matter is very bad. It's usually either just a continuuous stream of 1's, with an occasional 0.999999 or every output value for every input is 0.9999 with the last digits being different between inputs. As far as I could tell there was no correlation between those last 2 digits and what was supposed to be outputed.
How should I go about figuring out what's not working right?
You need to find a set of parameters (number of neurons, learning rate, number of iterations for training) that works well for classifying previously unseen data. People often achieve this by separating their data into three groups: training, validation and testing.
Whatever you decide to do, just remember that it really doesn't make sense to be testing on the same data with which you trained, because any classifcation method close to reasonable should be getting everything 100% right under such a setup.