Is it possible to automatically wrap a value in a temporary whose lifetime extends across the entire statement?
Originally I hoped a solution or alternative to my problem would present itself while writing the details for the question, unfortunately that didn't happen, so...
I have an abstract base class Logger that provides a streaming-like interface for generating log statements. Given an instance logger of this class, I want the following to be possible:
logger << "Option " << variable << " is " << 42;
Unlike regular streams, which simply generate a string from all the components (4 components in the example above), I want to generate an instance of a class Statement that manages a linked list of all the statement's components. The entire statement is then passed via pure virtual method to a class derived from Logger, which can iterate over all the components of the statement and do whatever with them, including obtaining information about their type, retrieving their value, or converting them to a string.
The tricky bit: I want to do the above without dynamic memory allocations. This means that every component of the statement must be wrapped by a temporary type that links the components into a traversable list, within the scope of the statement!
I posted a working example on ideone, with one problem: every component needs to be wrapped by a function call in order to generate an instance of the temporary type. The log statement therefore ends up looking like this:
logger << wrap("Option ") << wrap(variable) << wrap(" is ") << wrap(42);
All my attempts to get rid of the wrap function (e.g., using an implicit converting constructor for the component), have failed thus far, therefore this question.
How can the components of the log statement automatically be wrapped in their component type (e.g., using a converting constructor for the component), without the need for an explicit call to a wrapping function?
Alternatively, I would appreciate suggestions for other ways that achieve the same effect, i.e., allowing iteration over the components of the log statement in a class derived from logger, without dynamic memory allocations.
Reference: Full code on ideone:
#include <iostream>
#include <sstream>
struct Statement;
struct Logger;
struct ComponentBase;
//------------------------------------------------------------------------------
struct ComponentBase {
mutable ComponentBase *next;
ComponentBase() : next(nullptr) { }
virtual std::string toString() = 0;
};
template <typename T>
struct Component : ComponentBase {
T value;
Component(T value) : value(value) { }
~Component() { }
virtual std::string toString() {
std::stringstream ss;
ss << value;
return ss.str();
}
};
struct ComponentIterator {
ComponentBase *ptr;
ComponentIterator(ComponentBase *ptr) : ptr(ptr) { }
ComponentBase &operator*() { return *ptr; }
void operator++() { ptr = ptr->next; }
bool operator!=(ComponentIterator &other) { return (ptr != other.ptr); }
};
//------------------------------------------------------------------------------
struct Statement {
Logger *logger;
ComponentBase *front;
ComponentBase *back;
ComponentIterator begin() { return front; }
ComponentIterator end() { return nullptr; }
template <typename T>
Statement(Logger &logger, Component<T> &component)
: logger(&logger), front(&component), back(&component) { }
~Statement();
template <typename T>
Statement &operator<<(Component<T> &&component) {
back->next = &component;
back = &component;
return *this;
}
};
//------------------------------------------------------------------------------
struct Logger {
template <typename T>
Statement operator<<(Component<T> &&component) {
return {*this, component};
}
virtual void log(Statement &statement) = 0;
};
Statement::~Statement() {
logger->log(*this);
}
//------------------------------------------------------------------------------
template <typename T>
Component<T const &> wrap(T const &value) {
return value;
}
template <size_t N>
Component<char const *> wrap(char const (&value)[N]) {
return value;
}
//------------------------------------------------------------------------------
struct MyLogger : public Logger {
virtual void log(Statement &statement) override {
for(auto &&component : statement) {
std::cout << component.toString();
}
std::cout << std::endl;
}
};
int main() {
std::string variable = "string";
MyLogger logger;
logger << wrap("Option ") << wrap(variable) << wrap(" is ") << wrap(42);
}
I have some crazy but working solution.
Having component implemented like this you will get rid of templates all over your code:
struct Component
{
mutable Component *next;
typedef std::function<std::string()> ToStringFunction;
ToStringFunction toString; // <-- 1
template<typename T>
Component(const T& value)
: next(nullptr),
toString(nullptr)
{
toString = [&value](){
std::stringstream ss;
ss << value;
return ss.str();
};
}
};
Where (1) is the unction that knows what to do. This member std::function is a space for optimization.
And the rest of the code should look like:
struct ComponentIterator {
Component *ptr;
ComponentIterator(Component *ptr) : ptr(ptr) { }
Component &operator*() { return *ptr; }
void operator++() { ptr = ptr->next; }
bool operator!=(ComponentIterator &other) { return (ptr != other.ptr); }
};
//------------------------------------------------------------------------------
struct Statement {
Logger *logger;
Component *front;
Component *back;
ComponentIterator begin() { return front; }
ComponentIterator end() { return nullptr; }
Statement(Logger &logger, Component &component)
: logger(&logger), front(&component), back(&component) { }
~Statement();
Statement &operator<<(Component &&component) {
back->next = &component;
back = &component;
return *this;
}
};
//------------------------------------------------------------------------------
struct Logger {
Statement operator<<(Component &&component) {
return{ *this, component };
}
virtual void log(Statement &statement) = 0;
};
Statement::~Statement() {
logger->log(*this);
}
//------------------------------------------------------------------------------
struct MyLogger : public Logger {
virtual void log(Statement &statement) override {
for (auto &&component : statement) {
std::cout << component.toString();
}
std::cout << std::endl;
}
};
int main() {
std::string variable = "string";
MyLogger logger;
//logger << wrap("Option ") << wrap(variable) << wrap(" is ") << wrap(42);
logger << 42;
logger << variable << " is " << 42;
logger << "Option " << variable << " is " << 42;
}
this will print:
42
string is 42
Option string is 42
UPD
as dyp advised here is alternative implementation of the Component structure without lambda:
struct Component
{
mutable Component *next;
void* value;
std::string toString(){
return _toString(this);
}
template<typename T>
Component(const T& inValue)
: next(nullptr),
value((void*)&inValue),
_toString(toStringHelper<T>)
{}
private:
typedef std::string(*ToStringFunction)(Component*);
ToStringFunction _toString;
template<typename T>
static std::string toStringHelper(Component* component)
{
const T& value = *(T*)component->value;
std::stringstream ss;
ss << value;
return ss.str();
}
};
I propose a solution tuple based:
template <class... Ts> class streamTuple;
struct Logger {
template <typename T>
streamTuple<T> operator<<(const T& t);
template <typename Tuple, std::size_t ... Is>
void dispatch(const Tuple& tup, std::index_sequence<Is...>)
{
int dummy[] = {0, (void(std::cout << std::get<Is>(tup) << " "), 0)...};
static_cast<void>(dummy); // Avoid unused variable warning
}
// Logger can take generic functor to have specific dispatch
// Or you may reuse your virtual method taking ComponentBase.
};
template <class... Ts> class streamTuple
{
public:
streamTuple(Logger* logger, const std::tuple<Ts...>& tup) :
logger(logger), tup(tup) {}
streamTuple(streamTuple&& rhs) : logger(rhs.logger), tup(std::move(rhs.tup))
{
rhs.logger = nullptr;
}
~streamTuple()
{
if (logger) {
logger->dispatch(tup, std::index_sequence_for<Ts...>());
}
}
template <typename T>
streamTuple<Ts..., const T&> operator << (const T& t) &&
{
auto* moveddLogger = logger;
logger = nullptr;
return {moveddLogger, std::tuple_cat(tup, std::tie(t))};
}
private:
Logger* logger;
std::tuple<Ts...> tup;
};
template <typename T>
streamTuple<T> Logger::operator<<(const T& t) {
return {this, t};
}
Demo
And usage:
int main() {
Logger log;
std::string variable = "string";
log << variable << 42 << "hello\n";
}
Related
I'm trying to build a vector of objects that have two properties, the key is always a String, and the value is always of type T
When I iterate through the vector, I need to be able to determine the type of the value property so that I can switch in a case statement to process it.
How do I determine the type of the return value of value get function of the vector object?
My class is here:
template <class T>
class IEFIAttribute
{
String key;
T value;
public:
IEFIAttribute(String key, T value)
{
this->key = key;
this->value = value;
}
String getKey();
T getValue();
};
template <class T>
String IEFIAttribute<T>::getKey()
{
return this->key;
}
template <class T>
T IEFIAttribute<T>::getValue()
{
return this->value;
}
And in my main.cpp, the following works:
...
IEFIAttribute <String> att("testkey","testvalue");
Serial.println("XXX Key: "+att.getKey());
Serial.println("XXX Value: "+att.getValue());
...
The result of running that is:
XXX Key: testkey
XXX Value: testvalue
What I want to be able to do is switch on the type of att.getValue() so that if it is a String, I do one thing, if it is xyz object, I process it according to my rules for xyz objects.
Any help will be very appreciated!
Kind regards!
#include <iostream>
#include <string>
#include <type_traits>
#include <vector>
using String = std::string;
template<class T>
class IEFIAttribute {
public:
using value_type = T; // add this to be able to query it later
IEFIAttribute(const String& Key, const T& Value) :
key(Key), // prefer using the member initializer list
value(Value)
{}
// instead of copies, return const references
String const& getKey() const {
return key;
};
T const& getValue() const {
return value;
}
private:
String key;
T value;
};
You have many possibilities to do special handling for certain types.
A template using constexpr if:
template<typename T>
T special_1(const std::vector<IEFIAttribute<T>>& v, size_t idx) {
if constexpr(std::is_same_v<T, String>) {
std::cout << "special_1() String handler\n";
} else if constexpr(std::is_same_v<T, int>) {
std::cout << "special_1() int handler\n";
} else {
std::cout << "special_1() generic handler\n";
}
return v[idx].getValue();
}
A template with specializations:
template<typename T>
T special_2(const std::vector<IEFIAttribute<T>>& v, size_t idx) {
std::cout << "special_2() generic handler\n";
return v[idx].getValue();
}
template<>
String special_2(const std::vector<IEFIAttribute<String>>& v, size_t idx) {
std::cout << "special_2() String handler\n";
return v[idx].getValue();
}
template<>
int special_2(const std::vector<IEFIAttribute<int>>& v, size_t idx) {
std::cout << "special_2() int handler\n";
return v[idx].getValue();
}
Or using the added value_type to do queries:
int main() {
std::vector<IEFIAttribute<String>> v1{{"testkey", "testvalue"}};
std::vector<IEFIAttribute<int>> v2{{"testkey", 10}};
// decltype(v1)::value_type is the vectors value_type
// and the second value_type is the one added to your class
if(std::is_same_v<decltype(v1)::value_type::value_type, String>) {
std::cout << "is String\n";
} else {
std::cout << "is not String\n";
}
if(std::is_same_v<decltype(v2)::value_type::value_type, int>) {
std::cout << "is int\n";
} else {
std::cout << "is not int\n";
}
std::cout << special_1(v1, 0) << "\n";
std::cout << special_1(v2, 0) << "\n";
std::cout << special_2(v1, 0) << "\n";
std::cout << special_2(v2, 0) << "\n";
}
One way to accomplish what you need is to use a typedef inside your class, and then functions of <type_traits> for you conditional statements.
For example:
template <class T>
class IEFIAttribute
{
public:
typedef T value_type;
// everything as before...
};
then
if (std::is_same<att::value_type, String>)
// .. do something
I have a class Task:
template <typename T>
class Task {
Task(const std::function<T()>& func)
: m_func(func)
{
// some stuff here
}
std::shared_ptr<T> getValue() {
return m_value;
}
void execute() {
m_value = std::make_shared<T>(m_func());
}
std::shared_ptr<T> m_value;
std::function<T()> m_func;
}
Now, I want to alias this Task class to a shared_ptr so I do the following...
template <typename T> using TaskPtr = std::shared_ptr<Task<T> >;
I have another class that will store a container of of TaskPtr, I would like for the consumer of the api to specify T when calling addTask as follows.
Class X {
// some boiler plate code
template <typename T>
addTask(TaskPtr<T> task) {
m_queue.push(task);
}
void loop() {
// do some stuff
auto item = m_queue.front();
item->execute();
m_queue.pop();
// continue looping
}
std::queue<TaskPtr<T> > m_queue;
}
I was wondering what the best way to do this would be. This code gives me the error that T is undefined. Duh! I need to add template <tyepname T> above my m_queue definition, that makes sense. When I do that, I get that I am putting the keyword typedef in an incorrect location. When I remove the template declaration and the T to just have std::queue<Taskptr> m_queue;, it tells me I am missing a template argument. Which makes sense, except I don't understand where it should go.
I have searched for an answer and couldn't find anything. What is the correct syntactical implementation for what I am trying do?
The error is at:
class X {
....
std::queue<TaskPtr<T> > m_queue; // <--- T is unknown
};
At that point, the compiler wants to know what is the type of the task, but you want simply to store all tasks regardless to their type. To figure out how to make this work, look at the uses of T and see how to get rid of it.
template <typename T>
class Task {
std::shared_ptr<T> getValue() {
return m_value;
}
void execute() {
m_value = std::make_shared<T>(m_func());
}
....
};
Had it been only execute then life would have been simple, sine the caller of execute() does not care what T is, only that the operation is executed. If it were only that, then the solution would have been trivial:
class TaskBase
{
public:
virtual ~TaskBase() = default;
TaskBase(const TaskBase &) = default; // and so on....
virtual void execute() = 0;
};
template <typename T>
class Task : public TaskBase {
....
};
Then, simply store a pointer to TaskBase instead of to Task<T>.
Solving the getValue() is slightly more involved. You need to use dynamic cast from TaskBase to the actual Task from getValue<T>():
template <typename T>
std::shared_ptr<T> Task<T>::getValue() {
return m_value;
}
template<typename T>
std::shared_ptr<T> TaskBase::getValue()
{
auto childThis = dynamic_cast<Task<T>*>(this);
if (childThis == nullptr) {
// or maybe throw an exception
return nullptr;
}
return childThis->getValue();
}
The use is more tricky, since the user has to know what type is stored in the task:
void foo(std::shared_ptr<TaskBase> ptr)
{
auto ifInt = ptr->getValue<int>();
auto ifDouble = ptr->getValue<double>();
... more code ..
}
In this case Task<int> would be detected by ifInt, but with Task<unsigned> this would fail since ifInt==nullptr.
Apparently the above explanation is not clear enough, so here is the complete source that compiles and works:
#include <memory>
#include <functional>
#include <queue>
#include <iostream>
class TaskBase
{
public:
virtual ~TaskBase() = default;
TaskBase() = default;
TaskBase(const TaskBase &) = default; // and so on....
virtual void execute() = 0;
template <typename T>
std::shared_ptr<T> getValue();
};
template <typename T>
class Task : public TaskBase {
public:
Task(const std::function<T()>& func)
: m_func(func)
{
// some stuff here
}
void execute() override {
m_value = std::make_shared<T>(m_func());
}
std::shared_ptr<T> getValue() {
return m_value;
}
private:
std::shared_ptr<T> m_value;
std::function<T()> m_func;
};
template <typename T>
std::shared_ptr<T> TaskBase::getValue()
{
auto downCast = dynamic_cast<Task<T>*>(this);
if (downCast)
return downCast->getValue();
else
return nullptr;
}
using TaskPtr = std::shared_ptr<TaskBase>;
class X {
// some boiler plate code
public:
void addTask(TaskPtr task) {
m_queue.push(task);
}
void loop() {
// do some stuff
auto item = m_queue.front();
item->execute();
m_queue.pop();
// continue looping
}
std::queue<TaskPtr> m_queue;
};
int main()
{
X x;
TaskPtr task = std::make_shared<Task<int>>(
[] { std::cout << "int task execution\n"; return 5;});
x.addTask(task);
x.loop();
std::cout << "getValue<int> --> ";
auto valPtr = task->getValue<int>();
if (valPtr)
std::cout << *valPtr << '\n';
else
std::cout << "nullptr\n";
std::cout << "getValue<float> --> ";
auto valPtr2 = task->getValue<float>();
if (valPtr2)
std::cout << *valPtr2 << '\n';
else
std::cout << "nullptr\n";
}
As far as I know, this seems to be impossible in a straightforward way. Making the member const makes it const for everyone. I would like to have a read-only property, but would like to avoid the typical "getter". I'd like const public, mutable private. Is this at all possible in C++?
Currently all I can think of is some trickery with templates and friend. I'm investigating this now.
Might seem like a stupid question, but I have been surprised by answers here before.
A possible solution can be based on an inner class of which the outer one is a friend, like the following one:
struct S {
template<typename T>
class Prop {
friend struct S;
T t;
void operator=(T val) { t = val; }
public:
operator const T &() const { return t; }
};
void f() {
prop = 42;
}
Prop<int> prop;
};
int main() {
S s;
int i = s.prop;
//s.prop = 0;
s.f();
return i, 0;
}
As shown in the example, the class S can modify the property from within its member functions (see S::f). On the other side, the property cannot be modified in any other way but still read by means of the given operator that returns a const reference to the actual variable.
There seems to be another, more obvious solution: use a public const reference member, pointing to the private, mutable, member. live code here.
#include <iostream>
struct S {
private:
int member;
public:
const int& prop;
S() : member{42}, prop{member} {}
S(const S& s) : member{s.member}, prop{member} {}
S(S&& s) : member(s.member), prop{member} {}
S& operator=(const S& s) { member = s.member; return *this; }
S& operator=(S&& s) { member = s.member; return *this; }
void f() { member = 32; }
};
int main() {
using namespace std;
S s;
int i = s.prop;
cout << i << endl;
cout << s.prop << endl;
S s2{s};
// s.prop = 32; // ERROR: does not compile
s.f();
cout << s.prop << endl;
cout << s2.prop << endl;
s2.f();
S s3 = move(s2);
cout << s3.prop << endl;
S s4;
cout << s4.prop << endl;
s4 = s3;
cout << s4.prop << endl;
s4 = S{};
cout << s4.prop << endl;
}
I like #skypjack's answer, but would have written it somehow like this:
#include <iostream>
template <class Parent, class Value> class ROMember {
friend Parent;
Value v_;
inline ROMember(Value const &v) : v_{v} {}
inline ROMember(Value &&v) : v_{std::move(v)} {}
inline Value &operator=(Value const &v) {
v_ = v;
return v_;
}
inline Value &operator=(Value &&v) {
v_ = std::move(v);
return v_;
}
inline operator Value& () & {
return v_;
}
inline operator Value const & () const & {
return v_;
}
inline operator Value&& () && {
return std::move(v_);
}
public:
inline Value const &operator()() const { return v_; }
};
class S {
template <class T> using member_t = ROMember<S, T>;
public:
member_t<int> val = 0;
void f() { val = 1; }
};
int main() {
S s;
std::cout << s.val() << "\n";
s.f();
std::cout << s.val() << "\n";
return 0;
}
Some enable_ifs are missing to really be generic to the core, but the spirit is to make it re-usable and to keep the calls looking like getters.
This is indeed a trickery with friend.
You can use curiously recurring template pattern and friend the super class from within a property class like so:
#include <utility>
#include <cassert>
template<typename Super, typename T>
class property {
friend Super;
protected:
T& operator=(const T& val)
{ value = val; return value; }
T& operator=(T&& val)
{ value = val; return value; }
operator T && () &&
{ return std::move(value); }
public:
operator T const& () const&
{ return value; }
private:
T value;
};
struct wrap {
wrap() {
// Assign OK
prop1 = 5; // This is legal since we are friends
prop2 = 10;
prop3 = 15;
// Move OK
prop2 = std::move(prop1);
assert(prop1 == 5 && prop2 == 5);
// Swap OK
std::swap(prop2, prop3);
assert(prop2 == 15 && prop3 == 5);
}
property<wrap, int> prop1;
property<wrap, int> prop2;
property<wrap, int> prop3;
};
int foo() {
wrap w{};
w.prop1 = 5; // This is illegal since operator= is protected
return w.prop1; // But this is perfectly legal
}
I'm trying to fix a double free or corruption in this class:
struct Holder
{
template <typename T>
Holder(const T& v)
{
_v = new T{};
memcpy(_v, &v, sizeof(T));
_deleter = [this]{
if (_v != nullptr)
{
delete reinterpret_cast<T*>(_v);
_v = nullptr;
}
};
}
template <typename T>
T get()
{
T t;
memcpy(&t, _v, sizeof(T));
return t;
}
~Holder()
{
std::cout << "~Holder() " << std::endl;
_deleter();
}
private:
void* _v;
std::function<void()> _deleter;
};
The goal of this class is to Hold a value of a particular type, like boost::any. So I'm trying to understand the mechanism to safely deallocate all memory.
Probably this line of code:
delete reinterpret_cast<T*>(_v);
doesn't do what I expect ...
**** After Suggestions ****
I've rewrite the code using comment suggestions and adding a move constructor
struct Holder
{
template <typename T>
Holder(const T& v)
{
std::cerr << "create " << N << std::endl;
_v = new T(v);
_deleter = [this]{
if (_v != nullptr)
{
std::cerr << "deleter " << N << std::endl;
delete reinterpret_cast<T*>(_v);
_v = nullptr;
}
};
}
Holder(Holder&& rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
rs._deleter = []{}; //usefull to avoid a bad function call
}
template <typename T>
T get() const
{
return *reinterpret_cast<T*>(_v);
}
~Holder()
{
//std::cout << "~Holder() " << N << std::endl;
_deleter();
}
private:
void* _v;
std::function<void()> _deleter;
};
Now seems work but I have to manage others corner case :)
Probably the best solution is to use boost::any:
struct Holder
{
template <typename T>
Holder(const T& v)
{
_v = v;
}
template <typename T>
T get()
{
return boost::any_cast<T>(_v);
}
private:
boost::any _v;
};
But I'am trying to understand how it coudl works without it.
This is my last version:
struct Holder
{
template <typename T>
Holder(const T& v)
{
std::cerr << "create " << N << std::endl;
_v = new T(v);
_deleter = [](void* ptr){
if (ptr != nullptr)
{
std::cerr << "deleter " << std::endl;
delete reinterpret_cast<T*>(ptr);
}
};
_builder = [](void* &dest, void* src){
dest = new T(*reinterpret_cast<T*>(src));
};
}
Holder(const Holder& rs)
{
std::cerr << "copy constr" << std::endl;
if (this != &rs)
{
rs._builder(_v, rs._v);
_deleter = rs._deleter;
_builder = rs._builder;
}
}
Holder(Holder&& rs)
{
std::cerr << "move constr" << std::endl;
if (this != &rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
_builder = std::move(rs._builder);
rs._deleter = [](void*){};
}
}
Holder& operator=(const Holder& rs)
{
std::cerr << "copy operator" << std::endl;
if (this != &rs)
{
rs._builder(_v, rs._v);
_deleter = rs._deleter;
_builder = rs._builder;
}
return *this;
}
Holder& operator=(Holder&& rs)
{
std::cerr << "move operator" << std::endl;
if (this != &rs)
{
_v = rs._v;
_deleter = std::move(rs._deleter);
_builder = std::move(rs._builder);
rs._deleter = [](void*){};
}
return *this;
}
template <typename T>
T get() const
{
return *reinterpret_cast<T*>(_v);
}
~Holder()
{
//std::cout << "~Holder() " << N << std::endl;
_deleter(_v);
}
private:
void* _v;
std::function<void(void* ptr)> _deleter;
std::function<void(void* &, void* src)> _builder;
};
Don't reimplement the horse.
using pvoid_holder = std::unique_ptr<void, std::function<void(void*)>>
template<class T>
pvoid_holder pvoid_it( T* t ) {
return { t, [](void* v){ if (v) delete static_cast<T*>(v); } };
}
Now store a pvoid_holder in your Holder class. It will handle memory lifetime for you.
You could use a naked pvoid_holder, but it might have a richer interface than you want (for example, it will allow the stored pointer to be changed without changing the deleter).
You can also replace std::function with void(*)(void*) for a marginal performance gain.
Here is a random idea. I still don't like it though. The whole idea behind this design is bad.
template <typename T>
struct Holder
{
public:
Holder(T const& v)
{
new (&m_v) T(v);
}
T const& get() const
{
return reinterpret_cast<T const&>(m_v);
}
T& get()
{
return reinterpret_cast<T&>(m_v);
}
~Holder()
{
std::cout << "~Holder() " << std::endl;
get().~T();
}
private:
char m_v[sizeof(T)];
};
This class doesn't do the same as yours anymore, ie it can't store arbitrary types in a std::vector<Holder> but only the same type (std::vector<Holder<Foo>>). A comment was too small to contain this code though and I wanted to show a better looking syntax for what you're playing with ;).
That being said, the only way you can do what you're trying to do is when you add a second layer for the reference counting. Ie, you replace your void* _v with something that resembles shared_ptr but which doesn't call delete when the count reaches zero but calls deleter (which therefore should be stored inside this new class). In fact your class looks mostly like this new class, except that you should make it non-copyable and provide reference counting (ie through boost::intrusive_ptr). Then Holder can be a wrapper around that that is copyable.
Probably this line of code: delete reinterpret_cast<T*>(_v); doesn't do what I expect ...
Not exactly. Your types are likely using a default copy ctor; this copies your data pointer _v, and your deleter. So when both objects destruct, both deleters trigger, causing the data to be deleted twice. (Side note--you shouldn't name variables starting with _; such identifiers are reserved for implementations).
Here's what it takes to do type erasure properly, assuming I've no bugs in it. A better way would be to stick to using boost::any.
#include <utility>
struct EmptyType {}; // Thrown if unexpectedly empty
struct InvalidType {}; // Thrown if Holder(T) but get<U>.
struct Holder
{
Holder()
: data_()
, deleter_(e_deleter)
, copier_(e_copier)
, typetag_()
{
}
template<typename T>
Holder(const T& t)
: data_(erase_cast(new T))
, deleter_(deleter<T>)
// Need to explicitly carry T's copy behavior
// because Holder's default copy ctor isn't going to
, copier_(copier<T>)
// You need some way to protect against getting
// an Orange out of a Holder that holds an Apple.
, typetag_(id<T>())
{
}
Holder(const Holder& rhs)
: data_(rhs.copy())
, deleter_(rhs.deleter_)
, copier_(rhs.copier_)
, typetag_(rhs.typetag_)
{
}
template<typename T>
T get()
{
if (!data_) throw EmptyType();
T rv(fetch<T>());
return rv;
}
Holder(Holder&& rhs)
: data_()
, copier_(rhs.copier_)
, deleter_(rhs.deleter_)
, typetag_(rhs.typetag_)
{
std::swap(data_, rhs.data_);
}
~Holder()
{
destroy();
}
private:
// Reinterpret_cast wrappers labeled semantically
template<typename T>
static void* erase_cast(T* t) { return reinterpret_cast<void*>(t); }
template<typename T>
static T* unerase_cast(void* t) { return reinterpret_cast<T*>(t); }
// Return a data copy
void* copy() const { return copier_(data_); }
// Return const reference to data
template<typename T>
const T& fetch() {
if (typetag_!=id<T>()) throw InvalidType();
return *unerase_cast<T>(data_);
}
// Destroy data
void destroy() { deleter_(data_); data_=0; }
// ==== Type erased copy semantics ===
void*(*copier_)(void*);
template<typename T>
static void* copier(void* v) {
return erase_cast<T>(new T(*unerase_cast<T>(v)));
}
static void* e_copier(void*) { return 0; }
// ==== Type erased delete semantics ===
void(*deleter_)(void*);
template<typename T>
static void deleter(void* v) {
delete unerase_cast<T>(v);
}
static void e_deleter(void*) {}
// ==== Type protection using tagging (could also use typeid)
static int makenewid() { static int i=0; return i++;}
template<typename T>
static int id() { static int i=makenewid(); return i; }
// Type erased data
void* data_;
// Type erased tag
int typetag_;
};
...and here is some test/demo code:
#include <iostream>
#include <vector>
#define FAIL() std::cout << "Fail" << std::endl; return 1
int foos=0;
struct Foo { Foo(){++foos;} Foo(const Foo&){++foos;} ~Foo(){--foos;} };
int bars=0;
struct Bar { Bar(){++bars;} Bar(const Bar&){++bars;} ~Bar(){--bars;} };
int main() {
{
std::vector<Holder> v;
Foo fx,fy,fz; Bar ba,bb;
v.push_back(fx); v.push_back(fy); v.push_back(fz);
v.push_back(ba); v.push_back(ba); v.push_back(bb);
v.push_back(Holder());
try {
Foo y = v[2].get<Foo>();
}
catch (EmptyType&) { FAIL(); }
catch (InvalidType&) { FAIL(); }
try {
Foo y = v[4].get<Foo>();
FAIL();
}
catch (EmptyType&) { FAIL(); }
catch (InvalidType&) { }
try {
Foo y = v[6].get<Foo>();
FAIL();
}
catch (EmptyType&) { }
catch (InvalidType&) { FAIL(); }
}
if (foos||bars) { FAIL(); }
std::cout << "Pass" << std::endl;
}
Test results:
$ ./a.exe
Pass
My use is pretty complicated. I have a bunch of objs and they are all passed around by ptr (not reference or value unless its an enum which is byval). At a specific point in time i like to call CheckMembers() which will check if each member has been set or is null. By default i cant make it all null because i wouldnt know if i set it to null or if it is still null bc i havent touch it since the ctor.
To assign a variable i still need the syntax to be the normal var = p; var->member = new Type;. I generate all the classes/members. So my question is how can i implement a property like feature where i can detect if the value has been set or left as the default?
I am thinking maybe i can use C++ with CLR/.NET http://msdn.microsoft.com/en-us/library/z974bes2.aspx but i never used it before and have no idea how well it will work and what might break in my C++ prj (it uses rtti, templates, etc).
Reality (edit): this proved to be tricky, but the following code should handle your requirements. It uses a simple counter in the base class. The counter is incremented once for every property you wish to track, and then decremented once for every property that is set. The checkMembers() function only has to verify that the counter is equal to zero. As a bonus, you could potentially report how many members were not initialized.
#include <iostream>
using namespace std;
class PropertyBase
{
public:
int * counter;
bool is_set;
};
template <typename T>
class Property : public PropertyBase
{
public:
T* ptr;
T* operator=(T* src)
{
ptr = src;
if (!is_set) { (*counter)--; is_set = true; }
return ptr;
}
T* operator->() { return ptr; }
~Property() { delete ptr; }
};
class Base
{
private:
int counter;
protected:
void TrackProperty(PropertyBase& p)
{
p.counter = &counter;
counter++;
}
public:
bool checkMembers() { return (counter == 0); }
};
class OtherObject : public Base { }; // just as an example
class MyObject : public Base
{
public:
Property<OtherObject> x;
Property<OtherObject> y;
MyObject();
};
MyObject::MyObject()
{
TrackProperty(x);
TrackProperty(y);
}
int main(int argc, char * argv[])
{
MyObject * object1 = new MyObject();
MyObject * object2 = new MyObject();
object1->x = new OtherObject();
object1->y = new OtherObject();
cout << object1->checkMembers() << endl; // true
cout << object2->checkMembers() << endl; // false
delete object1;
delete object2;
return 0;
}
There are a number of ways to do this, with varying tradeoffs in terms of space overhead. For example, here's one option:
#include <iostream>
template<typename T, typename OuterClass>
class Property
{
public:
typedef void (OuterClass::*setter)(const T &value);
typedef T &value_type;
typedef const T &const_type;
private:
setter set_;
T &ref_;
OuterClass *parent_;
public:
operator value_type() { return ref_; }
operator const_type() const { return ref_; }
Property<T, OuterClass> &operator=(const T &value)
{
(parent_->*set_)(value);
return *this;
}
Property(T &ref, OuterClass *parent, setter setfunc)
: set_(setfunc), ref_(ref), parent_(parent)
{ }
};
struct demo {
private:
int val_p;
void set_val(const int &newval) {
std::cout << "New value: " << newval << std::endl;
val_p = newval;
}
public:
Property<int, demo> val;
demo()
: val(val_p, this, &demo::set_val)
{ }
};
int main() {
demo d;
d.val = 42;
std::cout << "Value is: " << d.val << std::endl;
return 0;
}
It's possible to get less overhead (this has up to 4 * sizeof(void*) bytes overhead) using template accessors - here's another example:
#include <iostream>
template<typename T, typename ParentType, typename AccessTraits>
class Property
{
private:
ParentType *get_parent()
{
return (ParentType *)((char *)this - AccessTraits::get_offset());
}
public:
operator T &() { return AccessTraits::get(get_parent()); }
operator T() { return AccessTraits::get(get_parent()); }
operator const T &() { return AccessTraits::get(get_parent()); }
Property &operator =(const T &value) {
AccessTraits::set(get_parent(), value);
return *this;
}
};
#define DECL_PROPERTY(ClassName, ValueType, MemberName, TraitsName) \
struct MemberName##__Detail : public TraitsName { \
static ptrdiff_t get_offset() { return offsetof(ClassName, MemberName); }; \
}; \
Property<ValueType, ClassName, MemberName##__Detail> MemberName;
struct demo {
private:
int val_;
struct AccessTraits {
static int get(demo *parent) {
return parent->val_;
}
static void set(demo *parent, int newval) {
std::cout << "New value: " << newval << std::endl;
parent->val_ = newval;
}
};
public:
DECL_PROPERTY(demo, int, val, AccessTraits)
demo()
{ val_ = 0; }
};
int main() {
demo d;
d.val = 42;
std::cout << "Value is: " << (int)d.val << std::endl;
return 0;
}
This only consumes one byte for the property struct itself; however, it relies on unportable offsetof() behavior (you're not technically allowed to use it on non-POD structures). For a more portable approach, you could stash just the this pointer of the parent class in a member variable.
Note that both classes are just barely enough to demonstrate the technique - you'll want to overload operator* and operator->, etc, as well.
Here's my temporary alternative. One that doesn't ask for constructor parameters.
#include <iostream>
#include <cassert>
using namespace std;
template <class T>
class Property
{
bool isSet;
T v;
Property(Property&p) { }
public:
Property() { isSet=0; }
T operator=(T src) { v = src; isSet = 1; return v; }
operator T() const { assert(isSet); return v; }
bool is_set() { return isSet; }
};
class SomeType {};
enum SomeType2 { none, a, b};
class MyObject
{
public:
Property<SomeType*> x;
Property<SomeType2> y;
//This should be generated. //Consider generating ((T)x)->checkMembers() when type is a pointer
bool checkMembers() { return x.is_set() && y.is_set(); }
};
int main(int argc, char * argv[])
{
MyObject* p = new MyObject();
p->x = new SomeType;
cout << p->checkMembers() << endl; // false
p->y = a;
cout << p->checkMembers() << endl; // true
delete p->x;
delete p;
}