Let's say I have following C++ code
class ControlAlgorithm {
public:
virtual void update() = 0;
virtual void enable() = 0;
virtual void disable() = 0;
};
class Algorithm_A : public ControlAlgorithm {
public:
void update();
void enable();
void disable();
};
class Algorithm_B : public ControlAlgorithm {
public:
void update();
void enable();
void disable();
};
Algorithm_A algorithm_A;
Algorithm_B algorithm_B;
ControlAlgorithm *algorithm;
Lets's say I would like to switch between the algorithm_A and algorithm_B during run-time based on some external events (basically I am going to implement the state design pattern). So the algorithm pointer points either to the algorithm_A or algorithm_B object. My question is whether there is any method how to achieve the ability to dynamic switch between the algorithms during run-time without the virtual methods in the
common interface e.g. the curiously recurring template pattern?
You could use composition over inheritance. Something like below, for example.
#include <iostream>
#include <functional>
struct control_algorithm {
const std::function<void()> update;
const std::function<void()> enable;
const std::function<void()> edit;
};
control_algorithm make_algorithm_A() {
return {
[]() { std::cout << "update A\n"; },
[]() { std::cout << "enable A\n"; },
[]() { std::cout << "edit A\n"; },
};
}
control_algorithm make_algorithm_B() {
return {
[]() { std::cout << "update B\n"; },
[]() { std::cout << "enable B\n"; },
[]() { std::cout << "edit B\n"; },
};
}
int main()
{
auto algorithm_A = make_algorithm_A();
auto algorithm_B = make_algorithm_B();
auto control = algorithm_A;
//auto control = algorithm_B;
}
I'm trying to use the static polymorphism and template to create a container that can hold more the one type, from what I know about template it can't be done, but I'm hoping that I'm wrong and there is a way.
I have the following classes:
template<class Derived>
class base
{
public:
base(string);
void clean()
{
cout << "I'm cleannig \n";
}
void process()
{
static_cast<Derived*>(this)->setup();
static_cast<Derived*>(this)->run();
static_cast<Derived*>(this)->cleanup();
}
string name;
};
template<class Derived>
base<Derived>::base(string y):name(y)
{
}
class derived : public base<derived>
{
friend class base<derived>;
void setup() {cout << "derived setup \n"; }
void run() { cout << "derived run \n"; }
void cleanup() { cout << "derived cleanup \n"; }
};
class derived1 : public base<derived1>
{
friend class base<derived1>;
void setup() {cout << "derived1 setup \n"; }
void run() { cout << "derived1 run \n"; }
void cleanup() { cout << "derived1 cleanup \n"; }
};
and I wont to create a container that can hold them, I tried this code -
template <class T>
class Y{
public:
std::vector<base<T>> m_vec;
};
template <typename T>
class D:public Y<T>
{
public:
friend class Y<T>;
void print()
{
for(auto& e: Y<T>::m_vec)
{
e.process();
}
}
};
int main()
{
base<derived>* b = new base<derived>;
base<derived1>* c = new base<derived1>;
D<derived> y;
y.m_vec.push_back(b);
y.m_vec.push_back(c);
y.print();
}
but its not working
i tryed to do this:
y.m_vec.push_back(static_cast<base<derived>>(c));
and I'm getting this error:
error: no matching function for call to ‘std::vector, std::allocator > >::push_back(base*&)’
y.m_vec.push_back(b);
after some testing and digging the answer is that there isn't a way to do it. but you can use std::any like #formerlyknownas_463035818 suggested
declare the std::vector as :
`std::vector<std::any> m_vec;`
Instead of
std::vector<base<T>> m_vec;
and use the boost demangle function to get the type -
std::string name(boost::core::demangle(e.type().name()));
and then use some kind of factory functio to any_cast to the type you need
if(!name.compare("base<derived1>*") )
{
try {
auto* r = any_cast<base<derived1>*>(e);
r->process();
}
catch(const std::bad_any_cast& e) {
std::cout << e.what() << '\n';
}
}
else
{
try {
auto *r = any_cast<base<derived> *>(e);
r->process();
}
catch(const std::bad_any_cast& e) {
std::cout << e.what() << '\n';
}
}
or instead of using the demangle name and use string compare you can use the type() function of the class any and compare is to the typeid like this:
if(e.type()==typeid(base<derived1>*))
Let's say I have class Action
template<class T>
class Action {
public:
virtual ~Action() = default;
virtual void execute(T &object) const = 0;
};
which can be executed on some object of type T
Next, I have class Object
class Object {
public:
Object() : actions() {}
virtual ~Object() = default;
virtual const std::string getName() const = 0;
void addAction(const Action<Object> *action) {
actions.push_back(action);
}
void execute() {
for (auto &action : actions) {
action->execute(*this);
}
}
private:
std::vector<const Action<Object> *> actions;
};
which holds a vector of actions which can be executed at once.
Now, I have some concrete ObjectA
class ObjectA : public Object {
public:
const std::string getName() const override {
return "ObjectA";
}
};
and two concrete actions ActionA, ActionB
class ActionA : public Action<ObjectA> {
void execute(ObjectA &object) const override {
std::cout << "ActionA on " << object.getName() << std::endl;
}
};
class ActionB : public Action<ObjectA> {
void execute(ObjectA &object) const override {
std::cout << "ActionB on " << object.getName() << std::endl;
}
};
The usage is that I create an ObjectA, add both action to it and execute them.
int main() {
ObjectA object = ObjectA{};
object.addAction(reinterpret_cast<const Action<Object> *>(new ActionA()));
object.addAction(reinterpret_cast<const Action<Object> *>(new ActionB()));
// This is what I want to achieve instead of using reinterpret_cast
//object.addAction(new ActionA());
//object.addAction(new ActionB());
object.execute();
}
The output should be
ActionA on ObjectA
ActionB on ObjectA
The problem is that in order to compile it, I must use reinterpret_cast. The problem is probably the definition of std::vector<const Action<Object> *> actions; I would like to template this, so in ObjectA it is like std::vector<const Action<ObjectA> *> actions;
Is something like that possible?
Action<Object> and Action<ObjectA> are unrelated types in the C++ type system.
What more, Action<Object> permits itself to be called with more types than Action<ObjectA>. So ignoring the type system, an Action<ObjectA> cannot implement the contract that Action<Object> promises it can fulfill.
However, an Action<Object> can fulfill the promise that an Action<ObjectA> makes.
There are famous two kinds of OO-type relations; covariance and contravariance. Action<T> is cotravariant in T, Action<Base> can be used to fulfill the contract of Action<Derived>.
So an approach.
First, your Action<T> is a poorly written pointer-semantic version of std::function<void(T&)>. Use that instead.
You now have value semantics.
template<class T>
using Action=std::function<void(T&)>;
class Object {
public:
Object() = default;
virtual ~Object() = default;
virtual const std::string getName() const = 0;
void addAction(Action<Object> action) {
actions.emplace_back(std::move(action));
}
void execute() {
for (auto &action : actions) {
action(*this);
}
}
private:
std::vector<Action<Object>> actions;
};
ah, much nicer.
This doesn't, however, solve your problem.
auto ActionA = Action<ObjectA>{
[](ObjectA &object) {
std::cout << "ActionA on " << object.getName() << std::endl;
}
};
ActionA cannot be assigned to an Action<Object> because an Action<Object> can be passed a non-ObjectA and it must do something with it.
Your original code's override won't compile.
We have to decide if we want to pretend to be an Action<Object> what we should do if the types mismatch? Here is one option:
template<class T, class F>
auto only_when_dynamic_type_matches( F&& f ) {
if constexpr( std::is_pointer< T >{} ) {
return
[f=std::forward<F>(f)](auto* x)->void{
auto* t = dynamic_cast<T>(x);
if (!t) return
f(t);
};
} else {
return
[f=std::forward<F>(f)](auto&& x)->void{
auto* t = dynamic_cast<std::remove_reference_t<T>*>(std::addressof(x));
if (!t) return;
f(*t);
};
}
}
now we can write
auto ActionA = only_when_dynamic_type_matches<ObjectA&>([](auto&&object) {
std::cout << "ActionA on " << object.getName() << std::endl;
});
auto ActionB = only_when_dynamic_type_matches<ObjectA&>([](auto&&object) {
std::cout << "ActionB on " << object.getName() << std::endl;
});
then
int main() {
ObjectA object = ObjectA{};
object.addAction(ActionA);
object.addAction(ActionB);
object.execute();
}
Live example.
(Context and question first, skeleton code at the bottom of the post)
We are creating and implementing a C++ framework to use in environments like Arduino.
For this I want to use the Observer pattern, where any component interested in state-changes of sensors (Observables) can register itself and it will get notified of those changes by the Observable calling the notification() method of the Observer with itself as a parameter.
One Observer can observe multiple Observables, and vice versa.
The problem lies in the fact that the Observer needs to extract the current state of the Observable and do something with it, and this current state can take all forms and sizes, depending on the particular sensor that is the Observable.
It can of course be ordinal values, which are finite and can be coded out, like I did in the code below with the method getValueasInt() but it can also be sensor-specific structures, i.e. for a RealTimeClock, which delivers a struct of date and time values. The struct are of course defined at compile time, and fixed for a specific sensor.
My question: What is the most elegant, and future-modification proof solution or pattern for this ?
Edit: Note that dynamic_cast<> constructions are not possible because of Arduino limitations
I have created the following class-hierarchy (skeleton code):
class SenseNode
{
public:
SenseNode() {};
SenseNode(uint8_t aNodeId): id(aNodeId) {}
virtual ~SenseNode() {}
uint8_t getId() { return id; };
private:
uint8_t id = 0;
};
class SenseStateNode : virtual public SenseNode
{
public:
SenseStateNode(uint8_t aNodeId) : SenseNode(aNodeId) {}
virtual ~SenseStateNode() {}
/** Return current node state interpreted as an integer. */
virtual int getValueAsInt();
};
class SenseObservable: public SenseStateNode
{
public:
SenseObservable(uint8_t aNodeId);
virtual ~SenseObservable();
/** Notify all interested observers of the change in state by calling Observer.notification(this) */
virtual void notifyObservers();
protected:
virtual void registerObserver(SenseObserver *);
virtual void unregisterObserver(SenseObserver *);
};
class SenseObserver: virtual public SenseNode
{
public:
SenseObserver() {};
virtual ~SenseObserver();
/** Called by an Observable that we are observing to inform us of a change in state */
virtual void notification(SenseObservable *observable) {
int v = observable->getValueAsInt(); // works like a charm
DateTime d = observable-> ???? // How should i solve this elegantly?
};
};
My previous answer does not take into account that the same observer might me registered with different observables. I'll try to give a full solution here. The solution is very flexible and scalable but a bit hard to understand as it involves template meta programming (TMP). I'll start by outlining what the end result will look like and then move into the TMP stuff. Brace yourself, this is a LONG answer. Here we go:
We first have, for the sake of the example, three observables, each with its own unique interface which we will want later to access from the observer.
#include <vector>
#include <algorithm>
#include <iostream>
#include <unordered_map>
#include <string>
class observable;
class observer {
public:
virtual void notify(observable& x) = 0;
};
// For simplicity, I will give some default implementation for storing the observers
class observable {
// assumping plain pointers
// leaving it to you to take of memory
std::vector<observer*> m_observers;
public:
observable() = default;
// string id for identifying the concrete observable at runtime
virtual std::string id() = 0;
void notifyObservers() {
for(auto& obs : m_observers) obs->notify(*this);
}
void registerObserver(observer* x) {
m_observers.push_back(x);
}
void unregisterObserver(observer*) {
// give your implementation here
}
virtual ~observable() = default;
};
// our first observable with its own interface
class clock_observable
: public observable {
int m_time;
public:
clock_observable(int time)
: m_time(time){}
// we will use this later
static constexpr auto string_id() {
return "clock_observable";
}
std::string id() override {
return string_id();
}
void change_time() {
m_time++;
notifyObservers(); // notify observes of time change
}
int get_time() const {
return m_time;
}
};
// another observable
class account_observable
: public observable {
double m_balance;
public:
account_observable(double balance)
: m_balance(balance){}
// we will use this later
static constexpr auto string_id() {
return "account_observable";
}
std::string id() override {
return string_id();
}
void deposit_amount(double x) {
m_balance += x;
notifyObservers(); // notify observes of time change
}
int get_balance() const {
return m_balance;
}
};
class temperature_observable
: public observable {
double m_value;
public:
temperature_observable(double value)
: m_value(value){}
// we will use this later
static constexpr auto string_id() {
return "temperature_observable";
}
std::string id() override {
return string_id();
}
void increase_temperature(double x) {
m_value += x;
notifyObservers(); // notify observes of time change
}
int get_temperature() const {
return m_value;
}
};
Notice that each observer exposes an id function returning a string which identifies it. Now, let's assume we want to create an observer which monitors the clock and the account. We could have something like this:
class simple_observer_clock_account
: public observer {
std::unordered_map<std::string, void (simple_observer_clock_account::*) (observable&)> m_map;
void notify_impl(clock_observable& x) {
std::cout << "observer says time is " << x.get_time() << std::endl;
}
void notify_impl(account_observable& x) {
std::cout << "observer says balance is " << x.get_balance() << std::endl;
}
// casts the observable into the concrete type and passes it to the notify_impl
template <class X>
void dispatcher_function(observable& x) {
auto& concrete = static_cast<X&>(x);
notify_impl(concrete);
}
public:
simple_observer_clock_account() {
m_map[clock_observable::string_id()] = &simple_observer_clock_account::dispatcher_function<clock_observable>;
m_map[account_observable::string_id()] = &simple_observer_clock_account::dispatcher_function<account_observable>;
}
void notify(observable& x) override {
auto f = m_map.at(x.id());
(this->*f)(x);
}
};
I am using an unoderded_map so that the correct dispatcher_function will be called depending on the id of the observable. Confirm that this works:
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
auto obs1 = new simple_observer_clock_account();
clock->registerObserver(obs1);
account->registerObserver(obs1);
clock->change_time();
account->deposit_amount(10);
}
A nice thing about this implementation is that if you try to register the observer to a temperature_observable you will get a runtime exception (as the m_map will not contain the relevant temperature_observable id).
This works fine but if you try now to adjust this observer so that it can monitor temperature_observables, things get messy. You either have to go edit the simple_observer_clock_account (which goes against the closed for modification, open for extension principle), or create a new observer as follows:
class simple_observer_clock_account_temperature
: public observer {
std::unordered_map<std::string, void (simple_observer_clock_account_temperature::*) (observable&)> m_map;
// repetition
void notify_impl(clock_observable& x) {
std::cout << "observer1 says time is " << x.get_time() << std::endl;
}
// repetition
void notify_impl(account_observable& x) {
std::cout << "observer1 says balance is " << x.get_balance() << std::endl;
}
// genuine addition
void notify_impl(temperature_observable& x) {
std::cout << "observer1 says temperature is " << x.get_temperature() << std::endl;
}
// repetition
template <class X>
void dispatcher_function(observable& x) {
auto& concrete = static_cast<X&>(x);
notify_impl(concrete);
}
public:
// lots of repetition only to add an extra observable
simple_observer_clock_account_temperature() {
m_map[clock_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<clock_observable>;
m_map[account_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<account_observable>;
m_map[temperature_observable::string_id()] = &simple_observer_clock_account_temperature::dispatcher_function<temperature_observable>;
}
void notify(observable& x) override {
auto f = m_map.at(x.id());
(this->*f)(x);
}
};
This works but it is a hell of a lot repetitive for just adding one additional observable. You can also imagine what would happen if you wanted to create any combination (ie account + temperature observable, clock + temp observable, etc). It does not scale at all.
The TMP solution essentially provides a way to do all the above automatically and re-using the overriden implementations as opposed to replicating them again and again. Here is how it works:
We want to build a class hierarchy where the base class will expose a number of virtual notify_impl(T&) method, one for each T concrete observable type that we want to observe. This is achieved as follows:
template <class Observable>
class interface_unit {
public:
virtual void notify_impl(Observable&) = 0;
};
// combined_interface<T1, T2, T3> would result in a class with the following members:
// notify_impl(T1&)
// notify_impl(T2&)
// notify_impl(T3&)
template <class... Observable>
class combined_interface
: public interface_unit<Observable>...{
using self_type = combined_interface<Observable...>;
using dispatcher_type = void (self_type::*)(observable&);
std::unordered_map<std::string, dispatcher_type> m_map;
public:
void map_register(std::string s, dispatcher_type dispatcher) {
m_map[s] = dispatcher;
}
auto get_dispatcher(std::string s) {
return m_map.at(s);
}
template <class X>
void notify_impl(observable& x) {
interface_unit<X>& unit = *this;
// transform the observable to the concrete type and pass to the relevant interface_unit.
unit.notify_impl(static_cast<X&>(x));
}
};
The combined_interface class inherits from each interface_unit and also allows us to register functions to the map, similarly to what we did earlier for the simple_observer_clock_account. Now we need to create a recursive hierarchy where at each step of the recursion we override notify_impl(T&) for each T we are interested in.
// forward declaration
// Iface will be combined_interface<T1, T2>
// The purpose of this class is to implement the virtual methods found in the Iface class, ie notify_impl(T1&), notify_impl(T2&)
// Each ImplUnit provides an override for a single notify_impl(T&)
// Root is the base class of the hierarchy; this will be the data (if any) held by the observer
template <class Root, class Iface, template <class, class> class... ImplUnits>
struct hierarchy;
// recursive
template <class Root, class Iface, template <class, class> class ImplUnit, template <class, class> class... ImplUnits>
struct hierarchy<Root, Iface, ImplUnit, ImplUnits...>
: public ImplUnit< hierarchy<Root, Iface, ImplUnits...>, Root > {
using self_type = hierarchy<Root, Iface, ImplUnit, ImplUnits...>;
using base_type = ImplUnit< hierarchy<Root, Iface, ImplUnits...>, Root >;
public:
template <class... Args>
hierarchy(Args&&... args)
: base_type{std::forward<Args>(args)...} {
using observable_type = typename base_type::observable_type;
Iface::map_register(observable_type::string_id(), &Iface::template notify_impl<observable_type>);
}
};
// specialise if we have iterated through all ImplUnits
template <class Root, class Iface>
struct hierarchy<Root, Iface>
: public Root
, public observer
, public Iface {
public:
template <class... Args>
hierarchy(Args&&... args)
: Root(std::forward<Args>(args)...)
, Iface(){}
};
At each step of the recursion, we register the dispatcher_function to our map.
Finally, we create a class which will be used for our observers:
template <class Root, class Iface, template <class, class> class... ImplUnits>
class observer_base
: public hierarchy<Root, Iface, ImplUnits...> {
public:
using base_type = hierarchy<Root, Iface, ImplUnits...>;
void notify(observable& x) override {
auto f = this->get_dispatcher(x.id());
return (this->*f)(x);
}
template <class... Args>
observer_base(Args&&... args)
: base_type(std::forward<Args>(args)...) {}
};
Let's now create some observables. For simplicity, I assume that the observer has not data:
class observer1_data {};
// this is the ImplUnit for notify_impl(clock_observable&)
// all such implementations must inherit from the Super argument and expose the observable_type type member
template <class Super, class ObserverData>
class clock_impl
: public Super {
public:
using Super::Super;
using observable_type = clock_observable;
void notify_impl(clock_observable& x) override {
std::cout << "observer says time is " << x.get_time() << std::endl;
}
};
template <class Super, class ObserverdData>
class account_impl
: public Super {
public:
using Super::Super;
using observable_type = account_observable;
void notify_impl(account_observable& x) override {
std::cout << "observer says balance is " << x.get_balance() << std::endl;
}
};
template <class Super, class ObserverdData>
class temperature_impl
: public Super {
public:
using Super::Super;
using observable_type = temperature_observable;
void notify_impl(temperature_observable& x) override {
std::cout << "observer says temperature is " << x.get_temperature() << std::endl;
}
};
Now we can easily create any observer we want, no matter what combinations we want to use:
using observer_clock = observer_base<observer1_data,
combined_interface<clock_observable>,
clock_impl>;
using observer_clock_account = observer_base<observer1_data,
combined_interface<clock_observable, account_observable>,
clock_impl, account_impl>;
using observer_clock_account_temperature = observer_base<observer1_data,
combined_interface<clock_observable, account_observable, temperature_observable>,
clock_impl, account_impl, temperature_impl>;
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
auto temp = new temperature_observable(36.6);
auto obs1 = new observer_clock_account_temperature();
clock->registerObserver(obs1);
account->registerObserver(obs1);
temp->registerObserver(obs1);
clock->change_time();
account->deposit_amount(10);
temp->increase_temperature(2);
}
I can appreciate there is a lot to digest. Anyway, I hope it is helpful. If you want to understand in detail the TMP ideas above have a look at the Modern C++ design by Alexandrescu. One of the best I've read.
Let me know if anything is not clear and I will edit the answer.
If the number of sensor types is more or less stable (and it is - the changes are pretty rare in most cases) - then just be prepared on Observer side to get several kind of notifications:
class Observer
{
public:
virtual void notify(SenseNode& node) {
// implement here general actions - like printing: not interested in this
}
virtual void notify(RealTimeClock& node) {
notify(static_cast<SenseNode&>(node));
// by default go to more general function
}
// and follow this pattern - for all nodes you want to handle
// add corresponding notify(T&) function
};
When it happens you have to add new node type - then just add new virtual function to your base Observer class.
To implement this mechanism on Observable side - use double dispatch pattern:
class SenseNode {
public:
virtual void notifyObserver(Observer& observer) {
observer.notify(*this);
}
};
class RealTimeClock : public virtual SenseNode {
public:
virtual void notifyObserver(Observer& observer) {
observer.notify(*this);
// this will select proper Observer::notify(RealTimeClock&)
// because *this is RealTimeCLock
}
};
class SenseObservable: public SenseStateNode
{
public:
virtual void notifyObservers() {
for (auto& observer : observers)
notifyObserver(observer);
}
};
How it works in practice, see live demo
Here is my take. If I understand correctly, each observer knows what concrete observable is monitoring; the problem is that the observer only gets a base class pointer to the concrete observable and hence cannot access the full interface. Assuming you can use static_cast as previous answers have assumed, my idea is to create an additional class which will be responsible for casting the base class pointer to the concrete one, thus giving you access to the concrete interface. The code below uses different names than the ones in your post, but it illustrates the idea:
#include <vector>
#include <algorithm>
#include <iostream>
class observable;
class observer {
public:
virtual void notify(observable&) = 0;
};
// For simplicity, I will give some default implementation for storing the observers
class observable {
// assumping plain pointers
// leaving it to you to take of memory
std::vector<observer*> m_observers;
public:
observable() = default;
void notifyObservers() {
for(auto& obs : m_observers) obs->notify(*this);
}
void registerObserver(observer* x) {
m_observers.push_back(x);
}
void unregisterObserver(observer* x) {
// give your implementation here
}
virtual ~observable() = default;
};
// our first observable with its own interface
class clock_observable
: public observable {
int m_time;
public:
clock_observable(int time)
: m_time(time){}
void change_time() {
m_time++;
notifyObservers(); // notify observes of time change
}
int get_time() const {
return m_time;
}
};
// another observable
class account_observable
: public observable {
double m_balance;
public:
account_observable(double balance)
: m_balance(balance){}
void deposit_amount(double x) {
m_balance += x;
notifyObservers(); // notify observes of time change
}
int get_balance() const {
return m_balance;
}
};
// this wrapper will be inherited and allows you to access the interface of the concrete observable
// all concrete observers should inherit from this class
template <class Observable>
class observer_wrapper
: public observer {
virtual void notify_impl(Observable& x) = 0;
public:
void notify(observable& x) {
notify_impl(static_cast<Observable&>(x));
}
};
// our first clock_observer
class clock_observer1
: public observer_wrapper<clock_observable> {
void notify_impl(clock_observable& x) override {
std::cout << "clock_observer1 says time is " << x.get_time() << std::endl;
}
};
// our second clock_observer
class clock_observer2
: public observer_wrapper<clock_observable> {
void notify_impl(clock_observable& x) override {
std::cout << "clock_observer2 says time is " << x.get_time() << std::endl;
}
};
// our first account_observer
class account_observer1
: public observer_wrapper<account_observable> {
void notify_impl(account_observable& x) override {
std::cout << "account_observer1 says balance is " << x.get_balance() << std::endl;
}
};
// our second account_observer
class account_observer2
: public observer_wrapper<account_observable> {
void notify_impl(account_observable& x) override {
std::cout << "account_observer2 says balance is " << x.get_balance() << std::endl;
}
};
int main() {
auto clock = new clock_observable(100);
auto account = new account_observable(100.0);
observer* clock_obs1 = new clock_observer1();
observer* clock_obs2 = new clock_observer2();
observer* account_obs1 = new account_observer1();
observer* account_obs2 = new account_observer2();
clock->registerObserver(clock_obs1);
clock->registerObserver(clock_obs2);
account->registerObserver(account_obs1);
account->registerObserver(account_obs2);
clock->change_time();
account->deposit_amount(10);
}
As you can see, you do not need to cast every time you create a new observable; the wrapper class does this for you. One issue you may face is registering an observer to the wrong observable; in this case the static_cast would fail but you would get no compilation issues. One way around it is to have the observable expose a string that identifies it and have the observer check that string when it's registering itself. Hope it helps.
You could go with
class SenseStateNode
{
...
virtual ObservableValue& getValue(); //or pointer, comes with different tradeoffs
};
That way, each SenseObservable can return a type derived from ObservableValue. Then, you just have to come up with a usable, generic API for this observable value.
For example, it could be:
class SenseObservable
{
DateTime* asDateTime(); //returns NULL if not a date
float* asFloat(); //returns NULL if not a float
};
The trick is to come with a usable, extensible and generic API for the various observable values. Also, you hve to return them by pointer or reference to not slice them. Then, either the user or the owner has to manage memory.
It may not be the most elegant solution, but the following is an option: define an EventArgs structure that can hold any kind of data, then do a cast in EventHandlers. Here's a snippet I just wrote (not a native speaker of CPP though):
#include <iostream>
#include <map>
#include <vector>
using namespace std;
struct EventArgs;
typedef void (*EventHandler)(EventArgs args);
typedef std::vector<EventHandler> BunchOfHandlers;
typedef std::map<string, BunchOfHandlers> HandlersBySubject;
struct EventArgs
{
void* data;
EventArgs(void* data)
{
this->data = data;
}
};
class AppEvents
{
HandlersBySubject handlersBySubject;
public:
AppEvents()
{
}
void defineSubject(string subject)
{
handlersBySubject[subject] = BunchOfHandlers();
}
void on(string subject, EventHandler handler)
{
handlersBySubject[subject].push_back(handler);
}
void trigger(string subject, EventArgs args)
{
BunchOfHandlers& handlers = handlersBySubject[subject];
for (const EventHandler& handler : handlers)
{
handler(args);
}
}
};
struct FooData
{
int x = 42;
string str = "Test";
};
struct BarData
{
long y = 123;
char c = 'x';
};
void foo_handler_a(EventArgs args)
{
FooData* data = (FooData*)args.data;
cout << "foo_handler_a: " << data->x << " " << data->str << endl;
}
void foo_handler_b(EventArgs args)
{
FooData* data = (FooData*)args.data;
cout << "foo_handler_b: " << data->x << " " << data->str << endl;
}
void bar_handler_a(EventArgs args)
{
BarData* data = (BarData*)args.data;
cout << "bar_handler_a: " << data->y << " " << data->c << endl;
}
void bar_handler_b(EventArgs args)
{
BarData* data = (BarData*)args.data;
cout << "bar_handler_b: " << data->y << " " << data->c << endl;
}
int main()
{
AppEvents* events = new AppEvents();
events->defineSubject("foo");
events->defineSubject("bar");
events->on("foo", foo_handler_a);
events->on("foo", foo_handler_a);
events->on("bar", bar_handler_b);
events->on("bar", bar_handler_b);
events->trigger("foo", EventArgs(new FooData()));
events->trigger("bar", EventArgs(new BarData()));
return 0;
}
Inspired by Backbone events and the general Event Bus pattern.
Difficulty of Observer Pattern in C++ is to handle life-time and un-registration.
You might use the following:
class Observer;
class IObserverNotifier
{
public:
virtual ~IObserverNotifier() = default;
virtual void UnRegister(Observer&) = 0;
};
class Observer
{
public:
explicit Observer() = default;
virtual ~Observer() {
for (auto* abstractObserverNotifier : mAbstractObserverNotifiers)
abstractObserverNotifier->UnRegister(*this);
}
Observer(const Observer&) = delete;
Observer(Observer&&) = delete;
Observer& operator=(const Observer&) = delete;
Observer& operator=(Observer&&) = delete;
void AddObserverNotifier(IObserverNotifier& observerNotifier)
{
mAbstractObserverNotifiers.insert(&observerNotifier);
}
void RemoveObserverNotifier(IObserverNotifier& observerNotifier)
{
mAbstractObserverNotifiers.erase(&observerNotifier);
}
private:
std::set<IObserverNotifier*> mAbstractObserverNotifiers;
};
template<typename ... Params>
class ObserverNotifier : private IObserverNotifier
{
public:
ObserverNotifier() = default;
~ObserverNotifier() {
for (const auto& p : mObserverCallbacks) {
p.first->RemoveObserverNotifier(*this);
}
}
ObserverNotifier(const ObserverNotifier&) = delete;
ObserverNotifier(ObserverNotifier&&) = delete;
ObserverNotifier& operator=(const ObserverNotifier&) = delete;
ObserverNotifier& operator=(ObserverNotifier&&) = delete;
void Register(Observer& observer, std::function<void(Params...)> f) {
mObserverCallbacks.emplace_back(&observer, f);
observer.AddObserverNotifier(*this);
}
void NotifyObservers(Params... args) const
{
for (const auto& p : mObserverCallbacks)
{
const auto& callback = p.second;
callback(args...);
}
}
void UnRegister(Observer& observer) override
{
mObserverCallbacks.erase(std::remove_if(mObserverCallbacks.begin(),
mObserverCallbacks.end(),
[&](const auto& p) { return p.first == &observer;}),
mObserverCallbacks.end());
}
private:
std::vector<std::pair<Observer*, std::function<void(Params...)>>> mObserverCallbacks;
};
And then usage would be something like:
class Sensor
{
public:
void ChangeTime() {
++mTime;
mOnTimeChange.NotifyObservers(mTime);
}
void ChangeTemperature(double delta) {
mTemperature += delta;
mOnTemperatureChange.NotifyObservers(mTemperature);
}
void RegisterTimeChange(Observer& observer, std::function<void(double)> f) { mOnTimeChange.Register(observer, f); }
void RegisterTemperatureChange(Observer& observer, std::function<void(double)> f) { mOnTemperatureChange.Register(observer, f); }
private:
ObserverNotifier<int> mOnTimeChange;
ObserverNotifier<double> mOnTemperatureChange;
int mTime = 0;
double mTemperature = 0;
};
class Ice : public Observer {
public:
void OnTimeChanged(int time) {
mVolume -= mLose;
mOnVolumeChange.NotifyObservers(mVolume);
}
void OnTemperatureChanged(double t) {
if (t <= 0) {
mLose = 0;
} else if (t < 15) {
mLose = 5;
} else {
mLose = 21;
}
}
void RegisterVolumeChange(Observer& observer, std::function<void(double)> f) { mOnVolumeChange.Register(observer, f); }
private:
ObserverNotifier<double> mOnVolumeChange;
double mVolume = 42;
double mLose = 0;
};
class MyObserver : public Observer {
public:
static void OnTimeChange(int t) {
std::cout << "observer says time is " << t << std::endl;
}
static void OnTemperatureChange(double temperature) {
std::cout << "observer says temperature is " << temperature << std::endl;
}
static void OnIceChange(double volume) {
std::cout << "observer says Ice volume is " << volume << std::endl;
}
};
And test it:
int main()
{
Sensor sensor;
Ice ice;
MyObserver observer;
sensor.RegisterTimeChange(observer, &MyObserver::OnTimeChange);
sensor.RegisterTemperatureChange(observer, &MyObserver::OnTemperatureChange);
ice.RegisterVolumeChange(observer, &MyObserver::OnIceChange);
sensor.RegisterTimeChange(ice, [&](int t){ice.OnTimeChanged(t);});
sensor.RegisterTemperatureChange(ice, [&](double t){ice.OnTemperatureChanged(t);});
sensor.ChangeTemperature(0);
sensor.ChangeTime();
sensor.ChangeTemperature(10.3);
sensor.ChangeTime();
sensor.ChangeTime();
sensor.ChangeTemperature(42.1);
sensor.ChangeTime();
}
Demo
following this question , I am trying to avoid copy-pasting some code related to calling all of the same-named methods of the mixins of the class BaseSensor.
in sensor.hpp
struct EdgeSensor //a mixin
{
void update(){}
void printStats() {}
};
struct TrendSensor //another mixin
{
void update(){}
void printStats() {}
};
template<typename ... SensorType>
class BaseSensor : public SensorType ... //to my BaseSensor class
{
void update() /*{ what goes in here??? }*/
void printStats() /*{ what goes in here??? }*/
};
in sensor.t.hpp
template<typename ... SensorType>
void BaseSensor<SensorType...>::update()
{
int arr[] = { (SensorType::update(), 0)..., 0 };
(void)arr;
}
template<typename ... SensorType>
void BaseSensor<SensorType...>::printStats()
{
int arr[] = { (SensorType::printStats(), 0)..., 0 };
(void)arr;
}
in main.cpp
int main(int , const char **)
{
{
BaseSensor<EdgeSensor,TrendSensor> ets;
ets.update();
ets.printStats();
}
{
BaseSensor<EdgeSensor> ets;
ets.update();
ets.printStats();
}
}
The above code executes the update() of all the mixins in turn, before going on to execute all the printStats() from all the mixins as well.
I wonder if it is somehow possible to avoid duplicating the implementation of BaseSensor::update() and BaseSensor::printStats() and create a generic (template) function that accepts the name of the target function to execute across all the mixins:
For example, I could create a method runAll()
template<typename ... SensorType>
class BaseSensor : public SensorType ... //to my BaseSensor class
{
void update() /*{ what goes in here??? }*/
void printStats() /*{ what goes in here??? }*/
template<typename FnName>
void runAll(FnName f)
{
int arr[] = { (SensorType::f(), 0)..., 0 };
(void)arr;
}
};
How would I call it then from BaseSensor::update() and BaseSensor::printStats(). I have attempted to use
void update() { runAll<update>(); }
void printStats() { runAll<printStats>(); }
but this does not work (did not expect it to). The problem with passing function name as a function argument (which I see is many other questions such as here is that I do not know how to point to various ::update() functions from BaseSensor::update(). for example
void update() { runAll<update>( update() ); }
is also not correct.
Is it possible to avoid copying in this case? Can this be done in a one-liner so as to avoid alot of copying using c++11 (i.e. without using generic lambdas as is done here)? How would the template parameters look like if I where to move a working runAll() into file "sensor.t.hpp" ?
Thank you.
As long as the functions to be called are two, you can use a dedicated structure and rely on overloading to solve it.
It follows a minimal, working example:
#include<iostream>
struct Executor {
template<typename T>
static void execute(int, T &t) {
t.update();
}
template<typename T>
static void execute(char, T &t) {
t.printStats();
}
};
struct EdgeSensor
{
void update() { std::cout << "EdgeSensor::update" << std::endl; }
void printStats() { std::cout << "EdgeSensor::printStats" << std::endl; }
};
struct TrendSensor
{
void update() { std::cout << "TrendSensor::update" << std::endl; }
void printStats() { std::cout << "TrendSensor::printStats" << std::endl; }
};
template<typename ... SensorType>
class BaseSensor : public SensorType ...
{
template<typename T>
void execute() {
int arr[] = { (Executor::execute(T{}, static_cast<SensorType&>(*this)), 0)..., 0 };
(void)arr;
}
public:
void update() {
execute<int>();
}
void printStats() {
execute<char>();
}
};
int main() {
BaseSensor<EdgeSensor,TrendSensor> ets;
ets.update();
ets.printStats();
}
In case you have more than two functions to be called, I guess the choice trick applies well here.
You can still write the (simplified version of) generic lambda manually:
void update() {
execute([](auto &t) { t.update(); });
}
becomes so
void update() {
struct {
template <typename T>
void operator () (T& t) const { t.update(); }
} updater;
execute(updater);
}