Multiply Images In OpenCv & Apply Laplacian Filter On It - c++

In my previous question here's the link. According to the answer I have obtained the desired image which is white flood filled.
Now after applying the morphological operation of erosion on the white flood filled image, I get the new masked image.
Your answer helped a lot. Now what I am trying to do is that I am multiplying the new masked image with the original grayscaled image in order to get the veins pattern. But it gives me the same image as result which I get after performing erosion on the white flood filled image. After completing this step I have to apply the Laplacian function to get the veins pattern. I am attaching the original image and the result image that I want. I hope you will look into the matter.
Original Image.
Result Image.

If I am right in understanding you, you only want to extract the veins from the grayscale hand image, right? To do something like this, you would obviously multiply both of them as,
finalimg = grayimg * veinmask;
If you have done the above I think it would be more helpful to post a portion of your code so experts here might be able to point out whats wrong, also the output image that you're getting, and the one you want would also help.

I hope I understand you correctly. You have a gray scale image showing a hand (first image in your question)
You create a mask image that looks like the second image you posted.
Multiplication of both results in the mask image?
If that is the case check your values. If you work within a byte image your mask image must contain values 0 and 1, not 0 and 255 as the multiplication results for non-zero mask pixels otherwise exceed 255!

Related

cv::detail::MultiBandBlender strange white streaks at the end of the photo

I'm working with OpenCV 3.4.8 with C++11 and I'm trying to blend images together.
In this example I have 2 images (thiers mask shown in the screen belowe). I have georeference, so I can easy calculate corners of this images in the final image.
The data outside the masks are black.
My code looks like something like that:
std::vector<cv::UMat> inputImages;
std::vector<cv::UMat> masks;
std::vector<cv::Point> corners;
std::vector<cv::Size> imgSizes;
/*
here is code where I load images, create thier masks
(like in the screen above) and calculate corners.
*/
cv::Ptr<cv::detail::SeamFinder> seamFinder = new cv::detail::DpSeamFinder();
seamFinder->find(inputImages, corners, masks);
cv::Ptr<cv::detail::Blender> blender = new cv::detail:: MultiBandBlender(false);
blender->prepare(corners, imgSizes);
for(size_t i = 0; i < inputImages.size(); i++)
{
blender->feed(inputImages[i], masks[i], corners[i]);
}
cv::UMat blendedImg, outMask;
blender->blend(blendedImg, outMask);
SeamFinder gives me result like in the screen above. Finded seam lines looks good and Im very satisied form them. But the other problem occurs in the next step. The MultiBandBlender is making strange white streaks when the seam line goes on the end of the data.
This is an example:
When I don't use blender, but just use masks to cut the oryginal images and just add (cv::add()) images together with additional alpha channel (made from masks) I get very good results without any holes and strange colors, but I need to have more smoothed transition :/
Can anyone help me? When I create MultiBand Blender with smaller num_bands the white streaks are smaller, and with the num_bands = 0 the results looks like with just adding images.
I looked at feed() and blend() methods in the MultiBandBlender and I think that it is connected with Gaussian or Laplacian pyramid and the final restoring images from Laplacian pyramid in the blend() method.
EDIT1:
When Gaussian and Laplacian pyramids are created the copyMakeBorder(), which prevents the MultiBandBlender from making this white streaks when images are fully filled with the data. So in my case I think that I need to create my blender almost the same like MultiBandBlender, but copyMakeBorder() method in the feed() method change to the something that will "extend" my image inside the mask, like #AlexanderKondratskiy suggested.
Now I don't know how to achive correct "extend" similar to BORDER_REFLECT or BORDER_REFLECT_101.
I suspect your input images contain white pixels outside those masks. The white banding occurs around the areas where the seam follows the mask exactly. For Laplacian for example, pixels outside the mask do influence the final result, as each layer of a pyramid is essentially some blurring kernel on the image.
If you have some kind of good data outside the mask, keep it. If you do not, I suggest "extending" your image beyond the mask to maintain a smooth transition.
Edit:
Here's two things you could try, unless someone with more experience with OpenCV comes along.
To prove/disprove my hypothesis, fill the black region with just the average or median color within the mask. This should make the transition to the outside region less sharp, and hopefully reduce the artefacts. If that does not happen, my answer is wrong.
In terms of what is probably a good generalization of "BORDER_REFLECT" when the edge is arbitrary, you could try something like this:
Find the centroid c of the mask polygon
For each pixel p outside the mask, think of the line between it and c
Calculate point p' along this line that is the same distance inside the mask area, as p is from the mask edge. (i.e. you're reflecting along the mask edge)
Linearly interpolate the color of from the neighbors of p' (as it's position may not fall exactly in the middle of a pixel). That's the color of pixel p

retain original color of the object after thresholding opencv

I am doing a project where i need to find a red laser dot. After changing to HSV color space model and thresholding individual H,S,V components and merging it , i found a laser dot with several noise as well , now i need to subtract all other image components except for the laser dot and the noise with their respective color so that i can process those frame for further processing like template matching to get only the laser dot reducing the noises. Hope you understand the question and Thank You, any similar help is appreciated.
What you're looking to do is apply a mask to an image. A mask is an image where any positive non-zero value acts as an indicator. What you want to do is use the mask to indicate which pixels in the original image you want.
The easiest way to apply a mask is to use the cv2.bitwise_and() function, with your thresholded image as the mask:
masked_img = cv2.bitwise_and(img, img, mask=thresholded_img)
As an example, if this is my image and this is my mask, then this would be the masked image.

How to align 2 images based on their content with OpenCV

I am totally new to OpenCV and I have started to dive into it. But I'd need a little bit of help.
So I want to combine these 2 images:
I would like the 2 images to match along their edges (ignoring the very right part of the image for now)
Can anyone please point me into the right direction? I have tried using the findTransformECC function. Here's my implementation:
cv::Mat im1 = [imageArray[1] CVMat3];
cv::Mat im2 = [imageArray[0] CVMat3];
// Convert images to gray scale;
cv::Mat im1_gray, im2_gray;
cvtColor(im1, im1_gray, CV_BGR2GRAY);
cvtColor(im2, im2_gray, CV_BGR2GRAY);
// Define the motion model
const int warp_mode = cv::MOTION_AFFINE;
// Set a 2x3 or 3x3 warp matrix depending on the motion model.
cv::Mat warp_matrix;
// Initialize the matrix to identity
if ( warp_mode == cv::MOTION_HOMOGRAPHY )
warp_matrix = cv::Mat::eye(3, 3, CV_32F);
else
warp_matrix = cv::Mat::eye(2, 3, CV_32F);
// Specify the number of iterations.
int number_of_iterations = 50;
// Specify the threshold of the increment
// in the correlation coefficient between two iterations
double termination_eps = 1e-10;
// Define termination criteria
cv::TermCriteria criteria (cv::TermCriteria::COUNT+cv::TermCriteria::EPS, number_of_iterations, termination_eps);
// Run the ECC algorithm. The results are stored in warp_matrix.
findTransformECC(
im1_gray,
im2_gray,
warp_matrix,
warp_mode,
criteria
);
// Storage for warped image.
cv::Mat im2_aligned;
if (warp_mode != cv::MOTION_HOMOGRAPHY)
// Use warpAffine for Translation, Euclidean and Affine
warpAffine(im2, im2_aligned, warp_matrix, im1.size(), cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
else
// Use warpPerspective for Homography
warpPerspective (im2, im2_aligned, warp_matrix, im1.size(),cv::INTER_LINEAR + cv::WARP_INVERSE_MAP);
UIImage* result = [UIImage imageWithCVMat:im2_aligned];
return result;
I have tried playing around with the termination_eps and number_of_iterations and increased/decreased those values, but they didn't really make a big difference.
So here's the result:
What can I do to improve my result?
EDIT: I have marked the problematic edges with red circles. The goal is to warp the bottom image and make it match with the lines from the image above:
I did a little bit of research and I'm afraid the findTransformECC function won't give me the result I'd like to have :-(
Something important to add:
I actually have an array of those image "stripes", 8 in this case, they all look similar to the images shown here and they all need to be processed to match the line. I have tried experimenting with the stitch function of OpenCV, but the results were horrible.
EDIT:
Here are the 3 source images:
The result should be something like this:
I transformed every image along the lines that should match. Lines that are too far away from each other can be ignored (the shadow and the piece of road on the right portion of the image)
By your images, it seems that they overlap. Since you said the stitch function didn't get you the desired results, implement your own stitching. I'm trying to do something close to that too. Here is a tutorial on how to implement it in c++: https://ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
You can use Hough algorithm with high threshold on two images and then compare the vertical lines on both of them - most of them should be shifted a bit, but keep the angle.
This is what I've got from running this algorithm on one of the pictures:
Filtering out horizontal lines should be easy(as they are represented as Vec4i), and then you can align the remaining lines together.
Here is the example of using it in OpenCV's documentation.
UPDATE: another thought. Aligning the lines together can be done with the concept similar to how cross-correlation function works. Doesn't matter if picture 1 has 10 lines, and picture 2 has 100 lines, position of shift with most lines aligned(which is, mostly, the maximum for CCF) should be pretty close to the answer, though this might require some tweaking - for example giving weight to every line based on its length, angle, etc. Computer vision never has a direct way, huh :)
UPDATE 2: I actually wonder if taking bottom pixels line of top image as an array 1 and top pixels line of bottom image as array 2 and running general CCF over them, then using its maximum as shift could work too... But I think it would be a known method if it worked good.

Warp perspective and stitch/overlap images (C++)

I am detecting and matching features of a pair of images, using a typical detector-descriptor-matcher combination and then findHomography to produce a transformation matrix.
After this, I want the two images to be overlapped (the second one (imgTrain) over the first one (imgQuery), so I warp the second image using the transformation matrix using:
cv::Mat imgQuery, imgTrain;
...
TRANSFORMATION_MATRIX = cv::findHomography(...)
...
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgTrain.size());
From here on, I don't know how to produce an image that contains the original imgQuery with the warped imgTrainWarped on it.
I consider two scenarios:
1) One where the size of the final image is the size of imgQuery
2) One where the size of the final image is big enough to accommodate both imgQuery and imgTrainWarped, since they overlap only partially, not completely. I understand this second case might have black/blank space somewhere around the images.
You should warp to a destination matrix that has the same dimensions as imgQuery after that, loop over the whole warped image and copy pixel to the first image, but only if the warped image actually holds a warped pixel. That is most easily done by warping an additional mask. Please try this:
cv::Mat imgMask = cv::Mat(imgTrain.size(), CV_8UC1, cv::Scalar(255));
cv::Mat imgMaskWarped;
cv::warpPerspective(imgMask , imgMaskWarped, TRANSFORMATION_MATRIX, imgQuery.size());
cv::Mat imgTrainWarped;
cv::warpPerspective(imgTrain, imgTrainWarped, TRANSFORMATION_MATRIX, imgQuery.size());
// now copy only masked pixel:
imgTrainWarped.copyTo(imgQuery, imgMaskWarped);
please try and tell whether this is ok and solves scenario 1. For scenario 2 you would test how big the image must be before warping (by using the transformation) and copy both images to a destination image big enough.
Are you trying to create a panoramic image out of two overlapping pictures taken from the same viewpoint in different directions? If so, I am concerned about the "the second one over the first one" part. The correct way to stitch the panorama together is to cut both images off down the central line (symmetry axis) of the overlapping part, and not to add a part of one image to the (whole) other one.
Accepted answer works but could be done easier with using BORDER_TRANSPARENT:
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), INTER_LINEAR, BORDER_TRANSPARENT);
When using BORDER_TRANSPARENT the source pixel of imgQuery remains untouched.
For OpenCV 4 INTER_LINEAR and BORDER_TRANSPARENT
can be resolved by using
cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT, e.g.
cv::warpPerspective(imgTrain, imgQuery, TRANSFORMATION_MATRIX, imgQuery.size(), cv::InterpolationFlags::INTER_LINEAR, cv::BorderTypes::BORDER_TRANSPARENT);

OpenCV HSV weird converted

I am working on project what detect hematoma from skin. I am having issue with color after convertion from RGB to HSV. My algorithm detect hematoma by its color.
With some images I have good results like here:
Original img: http://imgur.com/WHiOWdj
Result img: http://imgur.com/PujbnHa
But with some images i have bad result like this:
Original img: http://imgur.com/OshB99r
Result img: http://imgur.com/CuNzAId
The same original image after convertion to HSV: http://imgur.com/lkVwtCs
Do you have any ideas how to fix it?
Thanks
Looking at your result image I think that you are only using the H channel of the original image in your algorithm. The false positive detection can inherit from that the some part of the healty skin has quite the same H value than the hematoma has. You can see on the qrey-scale image of H channel that both parts have similar values:
The difference between the two parts is the saturation value. On the following image you can see the S channel of the original image and it shows perfectly that at the hematoma the saturation is much higher than at other the part of the arm:
This was expected because the hematoma has much stronger color than the healty skin has.
So, I suggest you to use both H and S channel in your algorithm that is you have to take into account only that parts of H image where the S image contains high saturation values. A possible and simple solution to do that is that you binarize both H and S images and with an AND operation you can execute this filtering:
H image after binarisation:
S image after binarisation:
Image after H&S operation:
You can see that on the result image only the hematoma part is white (except some noise but you can eliminate easily, for example by size or by morphological filtering).
EDIT
Important to note that binarization is one of most important (and sometimes also very complicated) step in the object detection algorithms namely binarization is the first highlight of the objects to detect.
If the the external conditions (lighting, color of objects etc.) do not change significantly from image to image you can use fix binaraziation thresholds. If this constant environment can not be issured you have to use more complicated methods. There are a lot of possibilies you can use, here you can read some examples:
Wikipedia - Thresholding
Wikipedia - Balanced histogram thresholding
Several solutions are based on the histogram analysis: on the histograms with objects there are always more local maximums which positions can vary depend on the environment and if you find them you can adapt the binarization threshold easily.
For example the histogram of the H channel of the original image is the following:
The first maximum belongs to the background, the second to the skin and the last to the hematome. It can be supposed that these 3 thresholds can be found in each image only their positions vary depend on the lighting or on other conditions. To put a threshold between the 2nd and the 3rd local maximum it can be a good choice to highlight the hematome.
Finally I offer you the read the following articel about thresholding in OpenCV:
OpenCV - Thresholding