C++: Address-of dereference and dereference of an address-of - c++

Is *&x always equal to x? If not, when is it not?
Is &*x always equal to x? If not, when is it not?
My guess is that (1) is always true, but (2) is not always true because x may not always be a pointer, so we cannot state *x.

In your first example you get the address of x (which gives you a pointer to x) and then you deference that pointer back to x. So yeah it should be, unless x is a class that has overloaded the operators * or &.
Your second example only works with pointers or classes that have overloaded the * operator.
If it's used with raw pointers, yeah it should be the same. You deference x, which returns a reference to the value stored in x, and then you get the address where that value is stored, which of course is x.
If it's used with a pointer to a class, and the class has overloaded the & operator, then it doesn't have to be.
class A
{
public:
int v;
//int operator*() { return v; }
int * operator&() { return &v; }
};
A* w = new A();
int* ptr = &*w;

Yes and No because *&x means that it is reference to a pointer meaning
int v1 = 10;
int *v2 = &v1;
int *&v3 = v2;
cout << *v3;
*v2 = 11;
cout << *v3;
will give out put 10 and 11.While declaring *&x does not mean get value of at address of v3.
v3 in this context is the address of the pointer it is equated to. But if you use *&x outside declaration it will give you the value stored at address of v3.
I belive second is illegal if & or * are not overloaded

Related

C++: What is a de-reference actually doing?

I am reading through Stroustrup's 4th edition : The C++ Programming Language. I have a python/java background so the first 4 chapters are fine so far.
In Chapter 3 I saw:
complex& operator+=(complex z) { re+=z.re , im+=z.im; return ∗this; }
That began a day long attempt to write this question:
First I figured out that it is returning a reference to the object and not a copy. As I was able to confirm in this question.
And I was able to understand the difference between returning a reference into a reference variable vs. a regular variable from this question
And I did my own trial
class Test {
public:
Test():x{5}{}
int x;
void setX(int a) {x = a;}
Test& operator+=(Test z) {x+=z.x; return *this;}
// the keyword this is a pointer
Test* getTest() {return this;}
// but I can return the reference by *this
Test& getTest1() {return *this;}
// or I can return a copy
Test getTest2() {return *this;}
};
That lead me to question why it is called de-reference, so I did this trial
int x = 8;
int* p = &x;
int y = *p;
int& z = *p;
x++; // let's have some fun
std::cout << y << std::endl;
std::cout << z << std::endl;
As expected y = 8 and z = 9, so how did the de-reference return the address in one case, and the value in the other? More importantly how is C++ making that distinction?
It's exactly like in your Test class functions.
int y = *p;
int& z = *p;
y is a copy of what p points to.
z is a reference to (not an address) what p points to. So changing z changes *p and vice-versa. But changing y has no effect on *p.
As expected y = 8 and z = 9, so how did the de-reference return the address in one case, and the value in the other? More importantly how is C++ making that distinction?
The de-reference returned the actual thing referenced in both cases. So there is no distinction for C++ to make. The difference is in what was done with the result of the dereference.
If you do int j = <something>; then the result of the something is used to initialize j. Since j is an integer, the <something> must be an integer value.
If you do int &j = <something>; then the result of the something is still used to initialize j. But now, j is a reference to an integer, and the <something> must be an integer, not just an integer value.
So, what *this does is the same in both cases. How you use a value doesn't affect how that value is computed. But how you use it does affect what happens when you use it. And these two pieces of code use the dereferenced object differently. In one case, its value is taken. In the other case, a reference is bound to it.
It's possible to consider a pointer int* p as pointing to an address where data of type int resides. When you de-reference this, the system retrieves the value at that memory address (the address is the actual value of p itself). In the case of int y = *p; you put a copy of that int value on the stack as the locator value y.
On the other hand, de-referencing on the left-hand side in *p = 13; means you are replacing the int value *p stored at the memory address denoted by the value of p with the right-hand-side value 13.
The reference lvalue int& z in int& z = *p; is not a copy of the int value pointed to by p but rather a left-hand side reference to whatever is at the particular memory address returned by *p (i.e. the actual value held by p itself).
This doesn't mean much difference in your contrived case, but e.g. given a Foo class with a Foo::incrementCount() value,
Foo* p = new Foo();
p->incrementCount();
Foo& ref = *p;
ref.incrementCount();
The same method for the same instance will be called twice. In contrast, Foo foo = *p will actually copy the entire Foo instance, creating a separate copy on the stack. Thus, calling foo.incrementValue() won't affect the separate object still pointed to by p.

When should I use * and when &? [duplicate]

This question already has answers here:
When to use references vs. pointers
(17 answers)
Closed 7 years ago.
I am learning some C++, and I came across pointers and addresses. However, in none of the materials, I could find a good explanation on when to use pointer, and when to use address. As I understand it is that when I use pointer, I POINT to address in memory, where some variable is stored. So for example:
int x = 5;
int k* = &x;
Which will mean that:
k represents x
When I change k, I also change value of x.
My question is as follows: when should I use pointer, and when should I use address? When I declare a function, should I use pointer, or address as a variable?
You have a typo there. It should be:
int x = 5;
int *k = &x;
It should be read as: k points to x. Or if you insist on the "represent" word: *k represents x.
The & operator takes any variable as argument and returns its address (pointer). The * gets a pointer (address) as argument and returns the value stored there. As such they are opposite operations: &*k is the same as k and likewise *&x is just like x. You can look at these expression this way:
x //an integer
k //pointer to integer
&x //pointer to x
*k //integer pointed to by k
*&x //integer pointed to by a pointer to x, that is x
&*k //pointer to the integer pointed to by k, that is k
Note that operator & can only be used on variables, as expressions in general do not have addresses, only variables do (well, and temporaries, but that is another matter). For example, this expression is invalid:
&(x + 1) //error!
The funniest thing with these operator is how a pointer is declared:
int *k;
You might think that it would be better written as int &k, but that's not how declarators are read in C++. Instead, that declaration should be read as:
int (*k);
that is, *k is an integer, so it results that k is a pointer to an integer.
Now, the declaration with initialization is weirder:
int *k = &x;
should actually be read as:
int (*k);
k = &x;
That is, you declare *k as being an integer, thus, k is a pointer-to-integer. And then you initialize k (the pointer) with the address of x.
Actually you can create pointers of any type, even pointers to pointers, pointers to pointers to pointers... but note that this syntax is illegal:
int x;
int **p = &&x; //error, &x is not a variable
but this is valid:
int x;
int *k = &x;
int **p = &k;
If a variable stores an address of a memory location, it is considered a pointer. So an int * for example stores the address of an int-variable. By using the dereference-operator *, you can access the memory location at the address of the pointer and assign to it.
To get the address of a variable, you use the &-operator. This is what your example does. To assign to the memory-location where x is stored, you would use the derefence-operator again like this: *k = 0;
Note that the derefence-operator and the * to express a pointer type are two different things. * and & are each other's inverse (overloading aside) operators, while int * is a type.
In C++ in particular, if the & is used together with a type, the type of the variable is a reference-type, e.g. const string &s. Just like the pointer-type this is different from the address-of operator. Reference-types do not need to be derefenced using *, but will direcly modify the memory location they reference.
Pointer operator (*) is used whenever you want to point to a variable.
Address operator (&) is used whenever you point to the memory address of a variable.

declaration of reference and pointer in c++

For example, if F is a reference to an integer, where the reference is not permitted to be pointed to a new object once it is initially pointed to one.
Can I write to declaration like: const int & F?
I am confused about reference and pointer, because they both represent the address of something, but we always write parameter use reference as: const & F, I understand that this is to reduce the copy and does not allow others to change it, but are there any other meanings? and why do we need "const" after a function declaration like: int F(int z) const; this const makes the return type const or everything in the function const?
One more example,
void F(int* p)
{
p+=3;
}
int z=8;
F(&z);
std::cout<<z<<std::endl;
What is the output for z since z is a reference, and I pass it as a pointer who points to an integer.Increasing p by 3 just makes the address different and does not change its value?
Just a first pass at some answers - if anything is unclear please comment and I'll try to elaborate.
int a = 3;
declares an integer, a, with the initial value 3, but you are allowed to change it. For example, later you can do
a = 5; // (*)
and a will have the value 5. If you want to prevent this, you can instead write
const int a = 3;
which will make the assignment (*) illegal - the compiler will issue an error.
If you create a reference to an integer, you are basically creating an alias:
int& b = a;
, despite appearances, does not create a new integer b. Instead, it declares b as an alias for a. If a had the value 3 before, so will b, if you write b = 6 and print the value of a, you will get 6 as well. Just as for a, you can make the assignment b = 6 illegal by declaring it as const:
const int& b = a;
means that b is still an alias for a, but it will not be used to assign a different value to a. It will only be used to read the value of a. Note that a itself still may or may not be constant - if you declared it as non-const you can still write a = 6 and b will also be 6.
As for the question about the pointers: the snippet
void F(int* p) {
p += 3;
}
int z = 8;
F(&z);
does not do what you expected. You pass the address of z into the function F, so inside F, the pointer p will point to z. However, what you are doing then, is adding 3 to the value of p, i.e. to the address that p points to. So you will change to pointer to point at some (semi)random memory address. Luckily, it's just a copy, and it will be discarded. What you probably wanted to do, is increment the value of the integer that p points to, which would be *p += 3. You could have prevented this mistake by making the argument a int* const, meaning: the value of p (i.e. address pointed to) cannot be changed, but the value it points to (i.e. the value of z, in this case) can. This would have made *p += 3 legal but not the "erroneous" (unintended) p += 3. Other versions would be const int* p which would make p += 3 legal but not *p += 3, and const int* const` which would have allowed neither.
Actually, the way you have written F is dangerous: suppose that you expand the function and later you write (correctly) *p += 3. You think that you are updating the value of z whose address you passed in, while actually you are updating the value of a more-or-less random memory address. In fact, when I tried compiling the following:
// WARNING WARNING WARNING
// DANGEROUS CODE - This will probably produce a segfault - don't run it!
void F(int* p) {
p += 3; // I thought I wrote *p += 3
// ... Lots of other code in between, I forgot I accidentally changed p
*p += 3; // NOOOOOOOOOOO!
}
int main()
{
int z=8;
F(&z);
std::cout << z;
return 0;
}
I got a segmentation fault, because I'm writing at an address where I haven't allocated a variable (for all I know I could have just screwed up my boot sector).
Finally, about const after a function declaration: it makes the this pointer a const pointer - basically the compiler emits const A* this instead of just A* this. Conceptually, it states your intention that the function will not change the state of the class, which usually means it won't change any of the (internal) variables. For example, it would make the following code illegal:
class A {
int a;
void f() const {
a = 3; // f is const, so it cannot change a!
}
};
A a;
a.f();
Of course, if the function returns something, this value can have its own type, for example
void f();
int f();
int& f();
const int f();
const int& f();
are functions that return nothing, a (copy of) an integer, a (reference to) an integer, a constant (copy of) an integer, and a constant reference of an integer. If in addition f is guaranteed not to change any class fields, you can also add const after the brackets:
void f() const;
int f() const;
int& f() const;
const int f() const;
const int& f() const;
The way I remember the difference between references and pointers is that a reference must exist and the reference cannot change.
A pointer can be changed, and usually needs to be checked against NULL or tested to verify it points to a valid object.
Also, an object passed by reference can be treated syntactically like it was declared in the function. Pointers must use deferencing syntax.
Hope that helps.
You are confusing things.
First of all int z=8; F(&z); here z IS NOT a reference.
So let me start with the basics:
when found in a type declaration the symbol & denotes a reference, but in any other context, the symbol & means address of.
Similar, in a type declaration * has the meaning of declaring a pointer, anywhere else it it the dereferencing operator, denoting you use the value at an address.
For instance:
int *p : p is a pointer of type int.
x = *p : x is assigned the value found at address p.
int &r = a : r is reference of type int, and r refers the variable a.
p = &a : p is assigned the address of variable a.
Another question you have: the const at the end of a function, like int f(int x) const. This can be used only on non-static class methods and specifies that the function does not modify the object. It has nothing to do with the return value.

Assigning int value to an address

I thought the following codes were correct but it is not working.
int x, *ra;
&ra = x;
and
int x, ra;
&ra = x;
Please help me if both of these code snippets are correct. If not, what errors do you see in them?
Your both expressions are incorrect, It should be:
int x, *ra;
ra = &x; // pointer variable assigning address of x
& is ampersand is an address of operator (in unary syntax), using & you can assign address of variable x into pointer variable ra.
Moreover, as your question title suggests: Assigning int value to an address.
ra is a pointer contains address of variable x so you can assign a new value to x via ra
*ra = 20;
Here * before pointer variable (in unary syntax) is deference operator gives value at the address.
Because you have also tagged question to c++ so I think you are confuse with reference variable declaration, that is:
int x = 10;
int &ra = x; // reference at time of declaration
Accordingly in case of the reference variable, if you want to assign a new value to x it is very simply in syntax as we do with value variable:
ra = 20;
(notice even ra is reference variable we assign to x without & or * still change reflects, this is the benefit of reference variable: simple to use capable as pointers!)
Remember reference binding given at the time of declaration and it can't change where pointer variable can point to the new variable later in the program.
In C we only have pointer and value variables, whereas in C++ we have a pointer, reference and value variables. In my linked answer I tried to explain differences between pointer and reference variable.
Both are incorrect.
When you declare a pointer, you assign it the address of a variable. You are attempting the other way round. The correct way would be:
int x,*ra;
ra = &x;
Both of those causes, in the way you have them in your question, undefined behavior.
For the first, you don't initialize the pointer, meaning it points to a random location (or NULL if the variable is global).
For the second, you try to change the address the variable is located at, which (if it even would compile) is not allowed.
Here's some annotated code:
int main () {
// declare an int variable
int x = 0;
// declare a pointer to an int variable
int *p;
// get the memory address of `x`
// using the address-of operator
&x;
// let `p` point to `x` by assigning the address of `x` to `p`
p = &x;
// assign `x` a value directly
x = 42;
// assign `x` a value indirectly via `p`
// using the dereference operator
*p = 0;
// get the value of `x` directly
x;
// get the value of `x` indirectly via `p`
// using the dereference operator
*p;
}
Note that dereferencing a pointer that doesn't point to a valid object of the specified type is not allowed.
So you normally shouldn't do things like the following (unless you really know what you are doing):
*(int*)(12345) = 42; // assign an integer value to an arbitrary memory address
Here is my 2 cent.
If you are going onto understanding pointer in C. First make the distinction between * the operator and * the type qualifier/specifier.
See that in C * is a syntaxique element that can plays both role but never at the same time. A type qualifier:
int a;
int * c = &a;
int * my_function_returning_pointer();
And for getting the proper int. As an operator. ( *c is an alias of a)
*c = 9;
I admit that is quite confusing and can trap a lot of beginner. Make sure that you recognize when * is used as an operator or when it is used as a type qualifier.
The same things apply to & although it is less often used as type qualifier.
int & f = returning_a_reference();
int my_function( int & refParam);
It is more often use for getting the address of an object. Thus it is used as an operator.
c = &f;
case 1:
int x,*ra;
&ra = x;
it is wrong in c, because in c we can point to a memory location by using a pointer ( i.e *ra in your case ). this can be done as fallows
int x, *ra; x ---------
ra=&x; ra --->1000 | value |
----------
NOTE : with out initializing a variable we can't use pointer to hold the address of that variable, so you better to first initialize variable, then set pointer to that memory location.
int x, *ra;
x=7;
ra=&x;
Fallowing may be helpful to you:
problems(mistake we do ) in handling pointers :
1.)
int a ,*p;
p=a; // assigning value instead of address. that leads to segmentation fault at run time.
2)
int a, *p;
&p=a; // look at here wrong assignment
3)
char *p="srinivas"
strcat(p, "helo" ) ; // we cant add a substring to the constant string.
4) int a=5, *p;
p=5; // the pointer here will points to location 5 in the memory, that may damage whole system, be care full in these type of assignments.

Does int * & has any real sense?

I'm looking few exercise from university about C++ and I found out this exercise:
#include <iostream>
using namespace std;
int& f(int*&);
int& f(int*& x) {
*x = 5;
return *x;
}
int main() {
int y = 1, x;
int* z = &y;
x= f(z);
cout << y << " " << x <<endl;
}
I was wondering: does <any type>*& has any real sense? Isn't f(int*& x) the same as f(int x)? Aren't you passing the pointer to the L-value of the variable?
f(int*& x) is not the same as f(int x). In the first case x is a reference to an integer pointer whereas in the second case x is just an integer.
Lets start from the basics:
When you write f(int &x) means that x is a reference to an integer and you can change the value of x in the function and the change will be reflected in the calling function.
Similarly, when you write f(int*& x), it means that x is reference to an integer pointer and when you change the address that x points to, the change will also be reflected in the calling function.
With int* &x you are passing the same pointer(by reference). Otherwise with only int* x you are passing a copy of the pointer and then you can't change the original one in the function. &x makes x an alias of the original parameter.
It's a reference to a pointer to an int. The function is then able to change the pointer if it wants to. In your example it doesn't make sense, but it obviously does have a use.
nope: *& here doesn't mean "dereference addressof". It means: "pass a pointer byref".
int& f(int*& x) {
*x = 5; // note: changes the pointee, not the pointer
return *x;
}
In this example, you don't gain anything by passing the pointer by reference, since you're not changing the pointer. Passing a pointer by reference is only needed when you intend to change the pointer:
void f(int*& x) {
x = new int(42); // note: changes the pointer
}
I think you are confusing sybols when they are used as operators or declarators.
If you use * when declaring variable, that means veriable is a pointer. When you use * as operator, that is dereference operator.
int *& name
simply means you are taking pointer to int by reference. **The * and & do not cancel each other out.**
If you had line of code like this:
var = *& var2;
then yes, it would be same as:
var = var2;