Most Efficient Way to Retrieve Texture Pixel Data? - opengl

I know Directx for Dx9 at least, has a texture object where you are able to get only a small portion of the texture to CPU accessible memory. It was a function called "LockRect" I believe. OpenGL has glGetTexImage() but it grabs the entire image and if the format isn't the same as the texture's then it is going to have to convert the entire texture into the new pixel format on top of transferring the entire texture. This function is also not in OpenGL ES. Framebuffers is another option but where I could potentially bind a framebuffer where a color attachment in connected to a texture. Then there is glReadPixels which reads from the framebuffer, so it should be reading from the texture. glReadPixels has limited pixel format options so a conversion is going to have to happen, but I can read the pixels I need (which is only 1 pixel). I haven't used this method but it seems like it is possible. If anyone can confirm the framebuffer method, that it is a working alternative. Then this method would also work for OpenGL ES 2+.
Are there any other methods? How efficient is the framebuffer method (if it works), does it end up having to convert the entire texture to the desired format before it reads the pixels or is it entirely implementation defined?
Edit: #Nicol_Bolas Please stop removing OpenGL from tags and adding OpenGL-ES, OpenGL-ES isn't applicable, OpenGL is. This is for OpenGL specifically but I would like it to be Open ES 2+ compatible if possible, though it doesn't have to be. If a OpenGL only solution is available then it is a consideration I will make if it is worth the trade off. Thank you.

Please note, I do not have that much experience with ES in particular, so there might be better ways to do this specifically in that context. The general gist applies in either plain OpenGL or ES, though.
First off, the most important performance consideration should be when you are doing the reading. If you request data from the video card while you are rendering, your program (the CPU end) will have to halt until the video card returns the data, which will slow rendering due to your inability to issue further render commands. As a general rule, you should always upload, render, download - do not mix any of these processes, it will impact speed immensely, and how much so can be very driver/hardware/OS dependent.
I suggest using glReadPixels( ) at the end of your render cycle. I suspect the limitations on formats for that function are connected to limitations on framebuffer formats; besides, you really should be using 8 bit unsigned or floating point, both of which are supported. If you have some fringe case not allowing any of those supported formats, you should explain what that is, as there may be a way to handle it specifically.
If you need the contents of the framebuffer at a specific point in rendering (rather than the end), create a second texture + framebuffer (again with the same format) to be an effective "backbuffer" and then copy from the target framebuffer to that texture. This occurs on the video card, so it does not impose the bus latency directly reading does. Here is something I wrote that does this operation:
glActiveTexture( GL_TEXTURE0 + unit );
glBindTexture( GL_TEXTURE_2D, backbufferTextureHandle );
glBindFramebuffer( GL_READ_FRAMEBUFFER, framebufferHandle );
glCopyTexSubImage2D(
GL_TEXTURE_2D,
0, // level
0, 0, // offset
0, 0, // x, y
screenX, screenY );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, framebufferHandle );
Then when you want the data, bind the backbuffer to GL_READ_FRAMEBUFFER and use glReadPixels( ) on it.
Finally, you should keep in mind that a download of data will still halt the CPU end. If you download before displaying the framebuffer, you will put off displaying the image until after you can again execute commands, which might result in visible latency. As such, I suggest still using a non-default framebuffer even if you only care about the final buffer state, and ending your render cycle to the effect of:
(1.) Blit to the default framebuffer:
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 ); // Default framebuffer
glBindFramebuffer( GL_READ_FRAMEBUFFER, framebufferHandle );
glBlitFramebuffer(
0, 0, screenX, screenY,
0, 0, screenX, screenY,
GL_COLOR_BUFFER_BIT,
GL_NEAREST );
(2.) Call whatever your swap buffers command may be in your given situation.
(3.) Your download call from the framebuffer (be it glReadPixels( ) or something else).
As for the speed impact of the blit/texcopy operations, it's quite good on most modern hardware and I have not found it to have a noticeable impact even done 10+ times a frame, but if you are dealing with antiquated hardware, it might be worth a second thought.

Related

how to update a certain channel of a texture

I am now using FFMPEG to read a high resolution video (6480*1920) and use opengl to show it
after decoding, I get 3 pointer that point to the Y,U,V.
At first, I use swsscale to convert it rgb and show it, but I find it's too slow. So I directly deal with YUV. My second try is generate 3 one channel texture and convert it to rgb in fragment shader. It is faster, but still cannot achieve 60fps
I find the bottleneck is this function : texture(texy, tex_coord.xy). When the texture is large, it cost a lot of time. So instead of call it 3 times, my idea is to put the YUV in one single texture since a texture can have 4 channel. But I wonder that how can I update a certain channel of a texture.
I try the following code, but it seems do not work. Instead of update a channel, glTexSubImage2D changes the whole texture:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, frame->width, frame->height,0, GL_RED, GL_UNSIGNED_BYTE, Y);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,frame->width, frame->height, GL_GREEN,U);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,frame->width, frame->height, GL_BLUE,V);
So how can I use one texture to pass the YUV data ? I also try that gather the YUV data into one array then generate the texture. But it does not help since it need a lot of time to generate that array.
Any good idea?
You're approaching this from the wrong angle, since you don't actually understand what is causing the poor performance in the first place. Yes, texture access is a rather expensive operation. But it is not that expensive; I mean, just think about of the amount of texture data that gets pushed around in modern games at very high frame rates.
The problem is not the channel format of the texture, and it is also not the call of GLSL texture.
Your problem is this:
(…) high resolution video (6480*1920)
Plain and simple the dimensions of the frame are outside the range of what the GPU is comfortable working with. Try breaking down the picture into a set of smaller textures. Using glPixelStorei paramters GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS you can select the rectangle inside your source picture to copy.
You don't have to make several draw calls BTW, just select the texture inside the shader based on the target fragment position or texture coordinate.
Unfortunately OpenGL doesn't offer a convenient function to determine the sweet spot, for most GPUs these days the maximum size in either direction for dense textures is 2048. Go above it and in my experience the performance tanks for dense textures.
Sparse textures are an entirely different chapter, and irrelevant for this problem.
And just for the sake of completeness: I take it, that you don't reinitialize the texture for each and every frame with a call to glTexImage2D. Do that only once at the start of the video, then just update the texture(s).

glDrawPixels vs textures to draw a 2d buffer in OpenGL

I have a 2d graphic library that I want to use in OpenGL, to be able to mix 2d and 3d graphic. The simplest way seems to be with glDrawPixels, but many recent tutorial, and forums, suggest to use a texture with the command glTexSubImage2D, and then to draw a square with such a texture.
My question is: why? where is the advantage? It just adds one more step (memory buffer->texture->video buffer, instead of memory buffer->video buffer).
There are two main reasons:
glDrawPixels() is deprecated, and not available in the OpenGL core profile, or in OpenGL ES.
When drawing the image multiple times, a lot of repeated work can be saved by storing the image data in a texture.
It's quite rare that you would have to draw an image only once. Much more commonly, you'll draw it repeatedly, on each redraw. With glDrawPixels() you have to pass the image data into OpenGL each time. If you store it in a texture, you can draw it repeatedly, and OpenGL can reuse the same data each time.
To draw the content of a texture, you don't necessarily have to set up a shader, draw a quad, etc. You can use glBlitFramebuffer() to copy the texture content to the display.
Since OpenGL use a video memory, use a simple "draw pixel" must be really slow because you will do a lot GPU/CPU synchronisation for each draw.
When you use glTexSubImage2D, you ensure that your image will reside(all the time) into the video memory which is fast.
One way to load a texture inside video memory could be :
glCreateTextures(GL_TEXTURE_2D, 1, &texture->mId);
glTextureParameteri(mId, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTextureParameteri(mId, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
GLsizei numMipmaps = ((GLsizei)log2(std::max(surface->w, surface->h)) + 1);
glTextureStorage2D(*texture, numMipmaps, internalFormat, surface->w, surface->h);
glTextureSubImage2D(*texture, 0, 0, 0, surface->w, surface->h,
format, GL_UNSIGNED_BYTE, surface->pixels);
glGenerateTextureMipmap(*texture);
Don't forget binding if you do not want to use direct state access.
However, if you still want to perform pixel draw (for example for procedural rendering), you must write your own fragment shader to be as fast as possible

Pass stream hint to existing texture?

I have a texture that was created by another part of my code (with QT5's bindTexture, but this isn't relevant).
How can I set an OpenGL hint that this texture will be frequently updated?
glBindTexture(GL_TEXTURE_2D, textures[0]);
//Tell opengl that I plan on streaming this texture
glBindTexture(GL_TEXTURE_2D, 0);
There is no mechanism to indicating that a texture will be updated repeatedly; that is only related to buffers (e.g., VBOs, etc.) through the usage parameter. However, there are two possibilities:
Attache your texture as a framebuffer object and update it that way. That's probably the most efficient method to do what you're asking. The memory associated with the texture remains resident on the GPU, and you can update it at rendering speeds.
Try using a pixel buffer object (commonly called a PBO, and has an OpenGL buffer type of GL_PIXEL_UNPACK_BUFFER) as the buffer that Qt writes its generated texture into, and mark that buffer as GL_DYNAMIC_DRAW. You'll still need to call glTexImage*D() with the buffer offset of the PBO (i.e., probably zero) for each update, but that approach may afford some efficiency over just blasting texels to the pipe directly through glTexImage*D().
There is no such hint. OpenGL defines functionality, not performance. Just upload to it whenever you need to.

Uploading texture very slow in OpenGL

I have written an emulator which I am in the process of porting to Linux. At the moment to do the video I am using Direct3D 11, which I am porting to OpenGL (which I'm running on Windows for now). I render to a 1024x1024 texture which I upload to memory every frame (the original hardware doesn't really lend itself to modern hardware acceleration, so I just do it all in software). However, I have found that uploading the texture in OpenGL is a lot slower.
In Direct3D uploading the texture every frame drops the frame rate from 416 to 395 (a 5% drop). In OpenGL it drops from 427 to 297 (a 30% drop!).
Here's the relevant code from my draw function.
Direct3D:
D3D11_MAPPED_SUBRESOURCE resource;
deviceContext_->Map(texture, 0, D3D11_MAP_WRITE_DISCARD, 0, &resource);
uint32_t *buf = reinterpret_cast<uint32_t *>(resource.pData);
memcpy(buf, ...);
deviceContext_->Unmap(texture, 0);
OpenGL:
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1024, 1024, 0, GL_RGBA,
GL_UNSIGNED_BYTE, textureBuffer);
Can anyone suggest what may be causing this slowdown?
If it makes any odds, I'm running Windows 7 x64 with an NVIDIA GeForce GTX 550 Ti.
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1024, 1024, 0, GL_RGBA, GL_UNSIGNED_BYTE, textureBuffer);
You're doing several things wrong here. First, glTexImage2D is the equivalent of creating a Direct3D texture resource every frame. But you're not creating it; you're just uploading to it. You should use glTexImage2D only once per mipmap layer of interest; after that, all uploading should happen with glTexSubImage2D.
Second, your internal format (third parameter from the left) is GL_RGBA. You should always use explicit sizes for your image formats. So use GL_RGBA8. This isn't really a problem, but you should get into the habit now.
Third, you're using GL_RGBA ordering for your pixel transfer format (the third parameter from the right, not the left). This is generally not the most optimal pixel transfer format, as lots of hardware tends to prefer GL_BGRA ordering. But if you're not getting your data from whatever is producing it in that order, then there's not much that can be done.
Fourth, if you have something else you can do between starting the upload and actually rendering with it, you can employ asynchronous pixel transfer operations. You write your data to a buffer object (which can be mapped, so that you don't have to copy into it). Then you use glTexSubImage2D to transfer this data to OpenGL. Because the source data and the destination image are part of OpenGL's memory, it doesn't have to copy the data out of client memory before glTexSubImage2D returns.
Granted, that's probably not going to help you much, since you're already effectively doing that copy in the D3D case.
In OpenGL it drops from 427 to 297 (a 30% drop!)
The more important statistic is that it's a 1 millisecond difference. You should look at your timings in absolute time, not in frames-per-second, nor in percentage drops of FPS.
glTexImage2d does memory reallocation as well as update. Try to use glTexSubImage2d instead.

How to render offscreen on OpenGL? [duplicate]

This question already has answers here:
How to use GLUT/OpenGL to render to a file?
(6 answers)
Closed 9 years ago.
My aim is to render OpenGL scene without a window, directly into a file. The scene may be larger than my screen resolution is.
How can I do this?
I want to be able to choose the render area size to any size, for example 10000x10000, if possible?
It all starts with glReadPixels, which you will use to transfer the pixels stored in a specific buffer on the GPU to the main memory (RAM). As you will notice in the documentation, there is no argument to choose which buffer. As is usual with OpenGL, the current buffer to read from is a state, which you can set with glReadBuffer.
So a very basic offscreen rendering method would be something like the following. I use c++ pseudo code so it will likely contain errors, but should make the general flow clear:
//Before swapping
std::vector<std::uint8_t> data(width*height*4);
glReadBuffer(GL_BACK);
glReadPixels(0,0,width,height,GL_BGRA,GL_UNSIGNED_BYTE,&data[0]);
This will read the current back buffer (usually the buffer you're drawing to). You should call this before swapping the buffers. Note that you can also perfectly read the back buffer with the above method, clear it and draw something totally different before swapping it. Technically you can also read the front buffer, but this is often discouraged as theoretically implementations were allowed to make some optimizations that might make your front buffer contain rubbish.
There are a few drawbacks with this. First of all, we don't really do offscreen rendering do we. We render to the screen buffers and read from those. We can emulate offscreen rendering by never swapping in the back buffer, but it doesn't feel right. Next to that, the front and back buffers are optimized to display pixels, not to read them back. That's where Framebuffer Objects come into play.
Essentially, an FBO lets you create a non-default framebuffer (like the FRONT and BACK buffers) that allow you to draw to a memory buffer instead of the screen buffers. In practice, you can either draw to a texture or to a renderbuffer. The first is optimal when you want to re-use the pixels in OpenGL itself as a texture (e.g. a naive "security camera" in a game), the latter if you just want to render/read-back. With this the code above would become something like this, again pseudo-code, so don't kill me if mistyped or forgot some statements.
//Somewhere at initialization
GLuint fbo, render_buf;
glGenFramebuffers(1,&fbo);
glGenRenderbuffers(1,&render_buf);
glBindRenderbuffer(render_buf);
glRenderbufferStorage(GL_RENDERBUFFER, GL_BGRA8, width, height);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER​,fbo);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, render_buf);
//At deinit:
glDeleteFramebuffers(1,&fbo);
glDeleteRenderbuffers(1,&render_buf);
//Before drawing
glBindFramebuffer(GL_DRAW_FRAMEBUFFER​,fbo);
//after drawing
std::vector<std::uint8_t> data(width*height*4);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glReadPixels(0,0,width,height,GL_BGRA,GL_UNSIGNED_BYTE,&data[0]);
// Return to onscreen rendering:
glBindFramebuffer(GL_DRAW_FRAMEBUFFER​,0);
This is a simple example, in reality you likely also want storage for the depth (and stencil) buffer. You also might want to render to texture, but I'll leave that as an exercise. In any case, you will now perform real offscreen rendering and it might work faster then reading the back buffer.
Finally, you can use pixel buffer objects to make read pixels asynchronous. The problem is that glReadPixels blocks until the pixel data is completely transfered, which may stall your CPU. With PBO's the implementation may return immediately as it controls the buffer anyway. It is only when you map the buffer that the pipeline will block. However, PBO's may be optimized to buffer the data solely on RAM, so this block could take a lot less time. The read pixels code would become something like this:
//Init:
GLuint pbo;
glGenBuffers(1,&pbo);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo);
glBufferData(GL_PIXEL_PACK_BUFFER, width*height*4, NULL, GL_DYNAMIC_READ);
//Deinit:
glDeleteBuffers(1,&pbo);
//Reading:
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo);
glReadPixels(0,0,width,height,GL_BGRA,GL_UNSIGNED_BYTE,0); // 0 instead of a pointer, it is now an offset in the buffer.
//DO SOME OTHER STUFF (otherwise this is a waste of your time)
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo); //Might not be necessary...
pixel_data = glMapBuffer(GL_PIXEL_PACK_BUFFER, GL_READ_ONLY);
The part in caps is essential. If you just issue a glReadPixels to a PBO, followed by a glMapBuffer of that PBO, you gained nothing but a lot of code. Sure the glReadPixels might return immediately, but now the glMapBuffer will stall because it has to safely map the data from the read buffer to the PBO and to a block of memory in main RAM.
Please also note that I use GL_BGRA everywhere, this is because many graphics cards internally use this as the optimal rendering format (or the GL_BGR version without alpha). It should be the fastest format for pixel transfers like this. I'll try to find the nvidia article I read about this a few monts back.
When using OpenGL ES 2.0, GL_DRAW_FRAMEBUFFER might not be available, you should just use GL_FRAMEBUFFER in that case.
I'll assume that creating a dummy window (you don't render to it; it's just there because the API requires you to make one) that you create your main context into is an acceptable implementation strategy.
Here are your options:
Pixel buffers
A pixel buffer, or pbuffer (which isn't a pixel buffer object), is first and foremost an OpenGL context. Basically, you create a window as normal, then pick a pixel format from wglChoosePixelFormatARB (pbuffer formats must be gotten from here). Then, you call wglCreatePbufferARB, giving it your window's HDC and the pixel buffer format you want to use. Oh, and a width/height; you can query the implementation's maximum width/heights.
The default framebuffer for pbuffer is not visible on the screen, and the max width/height is whatever the hardware wants to let you use. So you can render to it and use glReadPixels to read back from it.
You'll need to share you context with the given context if you have created objects in the window context. Otherwise, you can use the pbuffer context entirely separately. Just don't destroy the window context.
The advantage here is greater implementation support (though most drivers that don't support the alternatives are also old drivers for hardware that's no longer being supported. Or is Intel hardware).
The downsides are these. Pbuffers don't work with core OpenGL contexts. They may work for compatibility, but there is no way to give wglCreatePbufferARB information about OpenGL versions and profiles.
Framebuffer Objects
Framebuffer Objects are more "proper" offscreen rendertargets than pbuffers. FBOs are within a context, while pbuffers are about creating new contexts.
FBOs are just a container for images that you render to. The maximum dimensions that the implementation allows can be queried; you can assume it to be GL_MAX_VIEWPORT_DIMS (make sure an FBO is bound before checking this, as it changes based on whether an FBO is bound).
Since you're not sampling textures from these (you're just reading values back), you should use renderbuffers instead of textures. Their maximum size may be larger than those of textures.
The upside is the ease of use. Rather than have to deal with pixel formats and such, you just pick an appropriate image format for your glRenderbufferStorage call.
The only real downside is the narrower band of hardware that supports them. In general, anything that AMD or NVIDIA makes that they still support (right now, GeForce 6xxx or better [note the number of x's], and any Radeon HD card) will have access to ARB_framebuffer_object or OpenGL 3.0+ (where it's a core feature). Older drivers may only have EXT_framebuffer_object support (which has a few differences). Intel hardware is potluck; even if they claim 3.x or 4.x support, it may still fail due to driver bugs.
If you need to render something that exceeds the maximum FBO size of your GL implementation libtr works pretty well:
The TR (Tile Rendering) library is an OpenGL utility library for doing
tiled rendering. Tiled rendering is a technique for generating large
images in pieces (tiles).
TR is memory efficient; arbitrarily large image files may be generated
without allocating a full-sized image buffer in main memory.
The easiest way is to use something called Frame Buffer Objects (FBO). You will still have to create a window to create an opengl context though (but this window can be hidden).
The easiest way to fulfill your goal is using FBO to do off-screen render. And you don't need to render to texture, then get the teximage. Just render to buffer and use function glReadPixels. This link will be useful. See Framebuffer Object Examples