Knime Data Manipulation - data-mining

I have a table with properties as ReadingTime, Frequency and I would like to insert 3 values in between those records where the time difference is greater than 12 hours. I could determine the time difference using the "Time Difference" node available but could not insert rows as per the requirement. Is there any way to attain this in knime ?

In case you are using Time Generator in a chunk loop (with the lagged column and Use second column option on the Time Difference node), you can generate as many nodes as you want (I assume you already use some switches/if nodes).

Related

How to reduce specific values in a list?

If I have a list say X = [2,4,5,6,7,3,4,66,8,2,3,5,1,32,45] and I want to reduce the values 7,3,4,66,8 to some lower values and keep the rest of the list in tack. How do I get the output list in this case?
I have a precipitation time series and I want to reduce the precipitation values of some consecutive months in the time series without changing the rest of the time series. How do I proceed?

Application for filtering database for the short period of time

I need to create an application that would allow me to get phone numbers of users with specific conditions as fast as possible. For example we've got 4 columns in sql table(region, income, age [and 4th with the phone number itself]). I want to get phone numbers from the table with specific region and income. Just make a sql query won't help because it takes significant amount of time. Database updates 1 time per day and I have some time to prepare data as I wish.
The question is: How would you make the process of getting phone numbers with specific conditions as fast as possible. O(1) in the best scenario. Consider storing values from sql table in RAM for the fastest access.
I came up with the following idea:
For each phone number create smth like a bitset. 0 if the particular condition is false and 1 if the condition is true. But I'm not sure I can implement it for columns with not boolean values.
Create a vector with phone numbers.
Create a vector with phone numbers' bitsets.
To get phone numbers - iterate for the 2nd vector and compare bitsets with required one.
It's not O(1) at all. And I still don't know what to do about not boolean columns. I thought maybe it's possible to do something good with std::unordered_map (all phone numbers are unique) or improve my idea with vector and masks.
P.s. SQL table consumes 4GB of memory and I can store up to 8GB in RAM. The're 500 columns.
I want to get phone numbers from the table with specific region and income.
You would create indexes in the database on (region, income). Let the database do the work.
If you really want it to be fast I think you should consider ElasticSearch. Think of every phone in the DB as a doc with properties (your columns).
You will need to reindex the table once a day (or in realtime) but when it's time to search you just use the filter of ElasticSearch to find the results.
Another option is to have an index for every column. In this case the engine will do an Index Merge to increase performance. I would also consider using MEMORY Tables. In case you write to this table - consider having a read replica just for reads.
To optimize your table - save your queries somewhere and add index(for multiple columns) just for the top X popular searches depends on your memory limitations.
You can use use NVME as your DB disk (if you can't load it to memory)

Redshift -- Query Performance Issues

SELECT
a.id,
b.url as codingurl
FROM fact_A a
INNER JOIN dim_B b
ON strpos(a.url,b.url)> 0
Records Count in Fact_A: 2 Million
Records Count in Dim_B : 1500
Time Taken to Execute : 10 Mins
No of Nodes: 2
Could someone help me with an understanding why the above query takes more time to execute?
We have declared the distribution key in Fact_A to appropriately distribute the records evenly in both the nodes and also Sort Key is created on URL in Fact_A.
Dim_B table is created with DISTRIBUTION ALL.
Redshift does not have full-text search indexes or prefix indexes, so a query like this (with strpos used in filter) will result in full table scan, executing strpos 3 billion times.
Depending on which urls are in dim_B, you might be able to optimise this by extracting prefixes into separate columns. For example, if you always compare subpaths of the form http[s]://hostname/part1/part2/part3 then you can extract "part1/part2/part3" as a separate column both in fact_A and dim_B, and make it the dist and sort keys.
You can also rely on parallelism of Redshift. If you resize your cluster from 2 nodes to 20 nodes, you should see immediate performance improvement of 8-10 times as this kind of query can be executed by each node in parallel (for the most part).

Storing Time Series in AWS DynamoDb

I would like to store 1M+ different time series in Amazon's DynamoDb database. Each time series will have about 50K data points. A data point is comprised of a timestamp and a value.
The application will add new data points to time series frequently (all the time) and will retrieve (usually the whole time series) time series from time to time, for analytics.
How should I structure the database? Should I create a separate table for each timeseries? Or should I put all data points in one table?
Assuming your data is immutable and given the size, you may want to consider Amazon Redshift; it's written for petabyte-sized reporting solutions.
In Dynamo, I can think of a few viable designs. In the first, you could use one table, with a compound hash/range key (both strings). The hash key would be the time series name, the range key would be the timestamp as an ISO8601 string (which has the pleasant property that alphabetical ordering is also chronological ordering), and there would be an extra attribute on each item; a 'value'. This gives you the abilty to select everything from a time series (Query on hashKey equality) and a subset of a time series (Query on hashKey equality and rangeKey BETWEEN clause). However, your main problem is the "hotspot" problem: internally, Dynamo will partition your data by hashKey, and will disperse your ProvisionedReadCapacity over all your partitions. So you may have 1000 KB of reads a second, but if you have 100 partitions, then you have only 10 KB a second for each partition, and reading all data from a single time series (single hashKey) will only hit one partition. So you may think your 1000 KB of reads gives you 1 MB a second, but if you have 10 MB stored it might take you much longer to read it, as your single partition will throttle you much more heavily.
On the upside, DynamoDB has an extremely high but costly upper-bound on scaling; if you wanted you could pay for 100,000 Read Capacity units, and have sub-second response times on all of that data.
Another theoretical design would be to store every time series in a separate table, but I don't think DynamoDB is meant to scale to millions of tables, so this is probably a no-go.
You could try and spread out your time series across 10 tables where "highly read" data goes in table 1, "almost never read data" in table 10, and all other data somewhere in between. This would let you "game" the provisioned throughput / partition throttling rules, but at a high degree of complexity in your design. Overall, it's probably not worth it; where do you new time series? How do you remember where they all are? How do you move a time series?
I think DynamoDB supports some internal "bursting" on these kinds of reads from my own experience, and it's possible my numbers are off, and you will get adequete performance. However my verdict is to look into Redshift.
How about dripping each time series into JSON or similar and store in S3. At most you'd need a lookup from somewhere like Dynamo.
You still may need redshift to process your inputs.

Most efficient way to process complex histogram data?

I'm currently implementing a histogram that will show a very large scale data using Qt and I have some doubts about which data structure(s) I should be using for my problem. I will be displaying the amount of queries received from users of an application and the way I should display is as follows -in a single application that will show different histograms upon clicking different "show me this data etc." buttons-
1) Display the histogram of total queries per every month -4 months of data here, I
kept four variables and incremented them as I caught queries belonging to those months
in the CSV file-
2) Display the histogram of total queries per every single day in a selected month -I was thinking of using 4 QVectors to represent the months for this one, incrementing every element of the vector (day), as I come by that specific day -e.g. the vector represents the month of August and whenever I come across a data with 2011-08-XY , I will increment the (XY + 1)th element of that vector by 1- my second alternative is to use 4 QLinkedList's for the sake of better complexity but I'm not sure if the ways I've come up with are efficient enough and I'm willing to listen to any other idea.
3) Here's where things get a bit complicated. Display the histogram of total queries per every hour in a selected day and month. The data represented is multiplied in a vast manner and I don't know which data structure -or combination of structures- I should use to implement this one. A list of lists perhaps?
Any ideas on my problems at 2) and 3) would be helpful, Thanks in advance.
Actually, it shouldn't be too unmanageable to always do queries per hour. Assuming that the number of queries per hour is never greater than the maximum int value, that's only 24 ints per day = 32 bits or 64 depending on your machine. Assuming 32 bits, then you could get up to 28 years worth of data per MB.
There's no need to transfer the month/year - your program can work that out. Just assign hour 0 to the earliest point in your data, which you keep as a constant, then work out the date based on hours passed since then.
This avoids having to have a list of lists or anything fancy - just use an array where each address contains the number of hours since hour 0, and the number of queries for that hour.
Why don't you simply use a classical database?
When you start asking these kind of question I think it is a good time to consider a more robust structure.There are multiple data structures implemented inside any DB, optimized either for different access type. You should considerate at least lookup, insertion, deletion, range queries. There is no structure which is better than the others in all costs, so there is always a trade-off.
Qt has some database classes you can use. I never used the Qt SQL library, but I think you should give it a shot. Fortunately, there is a Qt SQL programming guide at the end of the page linked.