Analyzing an algorithm involving bitwise operations and powers of two? - c++

I wrote a program that computes the largest power of 2 in a given input number. For instance, the largest power of 2 in the number 26 is 16, since 24 is 16. Here is the algorithm:
uint power2( uint n )
{
uint i = n;
uint j = i & (i - 1);
while( j != 0 )
{
i = j;
j = i & (i - 1);
}
return i;
}
I've struggled a bit with analysis of algorithms. I know we are trying to figure out the Big-Oh, Big-Omega, or Big-Theta notation. In order to analyze an algorithm, we are supposed to count the number of basic operations? My problem here is that I see two lines that could be basic operations. I see the line uint j = i & (i - 1) outside the while loop and I also see the j = i & (i - 1) inside the while loop. I feel like the one inside the while loop is a basic operation for sure, but what about the one outside the while loop?
The other part I struggle with is determining how many times the body of the while loop will execute. For instance, if we have a for loop for(int i = 0; i < n; i++) {...} we know that this loop will execute n times. Or even in a while loop while(i < n * n) {... i++} we know this loop will run n * n times. But for this while loop, it varies depending on the input. For instance, if the number you pass into it is a power of 2 right off the bat, the while loop will never execute. But, if you pass in a really large number, it'll execute many times. I don't know how many times it will execute to be quite honest. That's what I am trying to figure out. Can anyone help me understand what is going on in this algorithm and the number of times it runs, like O(n) or O(n^2), etc?

This is a good example of an algorithm where it's easier to reason about it when you have a good intuitive understanding of what it's doing rather than just by looking at the code itself.
For starters, what does i & (i - 1) do? If you take a number written in binary and subtract one from it, it has the effect of
clearing the least-significant 1 bit, and
setting all the bits after that to 1.
For example, if we take the binary number 1001000 (72) and subtract one, we get 1000111 (71). Notice how the least-significant 1 bit was cleared and all the bits below that were set to 1.
What happens when you AND a number i with the number i - 1? Well, All the bits above the least-significant 1 bit in both i and i - 1 are unchanged, but i and i - 1 disagree in all positions at or below the least-significant 1 bit in i. This means that i & (i - 1) has the effect of clearing the lowest 1 bit in the number i.
So let's go back to the code. Notice that each iteration of the while loop uses this technique to clear a bit from the number j. This means that the number of iterations of the while loop is directly proportional to the number of 1 bits set in the number n. Therefore, if we let b represent the number of 1 bits set in n, then the runtime of this algorithm is Θ(b).
To get a sense for the best and worst-case behavior of this algorithm, as you noted, if n is a perfect power of two, then the runtime is O(1). That's as good as this is going to get. For the worst case, the number n could be all 1 bits, in which case there will be Θ(log n) 1 bits set in the number n (since, in binary, the number n requires Θ(log n) bits to write out). Therefore, the worst-case runtime is Θ(log n).
In summary, we see that
the best-case runtime is O(1),
the worst-case runtime is Θ(log n), and
the exact runtime is Θ(b), where b is the number of bits set in n.

Related

Total number of common factors for two numbers LARGE VALUES upto 10^12

Inputs are two values 1 <= m , n <= 10^12
i don't know why my code is taking soo long for large values . time limit is 1 sec. please suggest me some critical modifications.
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
unsigned long long m,n,count=0;
cin >> m >> n;
for (long long int i = 1; i <= ((min(m,n))/2)+1; i++) //i divided min(m,n) by 2 to make it efficient.
{
if ((m%i == 0) && (n%i == 0))
{
count++;
}
}
if (((n%m == 0) || (m%n == 0)) && (n!=m))
{
cout << count << endl;
}
printf("%lld",count); //cout<<count;
system("pause");
return 0;
}
Firstly
((min(m, n)) / 2) + 1
Is being calculated every iteration. But it's loop-invariant. In general loop invariant code can be calculated before the loop, and stored. It will add up, but there are obviously much better ways to improve things. I'll describe one below:
you can make this much faster by calculating how many common prime factors there are, and by dividing out any "found" primes as you go. e.g. if only one number is divisible by 5, and the other is not, you can divide that one by 5 and you still get the same answer for common factors. Divide m and n by any "found" numbers as you go through it. (but keep checking whether either is divisible by e.g. 2 and keep dividing before you go on).
e.g. if the two numbers are both divisible by 2, 3 and 5, then the number of ways those three primes can combine is 8 (2^3), treating the presence of each prime as a true/false thing. So each prime that occurs once multiplies the number of combos by 2.
If any of the primes occurs more than once, then it changes the equation slightly. e.g. if the two numbers are divisible by 4, 3, 5:
4 = 2^2, so you could have no "2s", 1 "2" or 2 "2s" in the combined factor, so the total combinations 3 x 2 x 2 = 12. So any prime that occurs "x" times, multiplies the total number of combos by "x+1".
So basically, you don't need to check for every actual factor, you just need to search for how many common prime factors there are, then work out how many combos that adds up to. Luckily you only need to store one value, "total_combos" and multiply it by the "x+1" value for each found number as you go.
And a handy thing is that you can divide out all primes as they're found, and you're guaranteed that the largest remaining prime to be found is no larger than the square root of the smallest remaining number out of m and n.
So to run you through how this would work, start with a copy of m and n, loop up to the sqrt of the min of those two (m and n will be reduced as the loop cycles through).
make a value "total_combos", which starts at 1.
Check for 2's first, find out how many common powers of 2 there are, add one to that number. Divide out ALL the 2's from m and n, even if they're not matched, because reducing down the number cuts the total amount you actually need to search. You count the 2's, add one, then multiply "total_combos" by that. Keep dividing m or n by two as long as either has a factor of 2 remaining.
Then check for 3's, find out how many common powers of 3 there are, add one, the multiply "total_combos" by that. Divide out any and all factors of 3 when you're doing this.
then check for 4's. Since 4 isn't prime and we got rid of all 2's already, there will be zero 4's. Add one to that = 1, then we times "total_combos" by 1, so it stays the same. We didn't need to check whether 4 was prime or not, the divisions we already did ensured it's ignored. Same for any power of 2.
then check for 5's. same deal as 2's and 3's. And so on. All the prime bases get divided out as you go, so whenever a value actually matches you can be sure it's a new prime.
stop the loop when it exceeds sqrt(max(m,n)) (EDITED: min is probably wrong there). But m and n here are the values that have had all the lower primes divided out, so it's much faster.
I hope this approach is helpful.
There is a better way to solve this problem.
All you have to do is take the GCD of two numbers. Now any number won't divide m & n if they are greater than their GCD. So all you to do is that run a loop till the i<=Math.sqrt(GCD(m,n)) and check if the m%i==0 and n%i==0 only. It will save a lot of nanosecs.

How to calculate the sum of the bitwise xor values of all the distinct combination of the given numbers efficiently?

Given n(n<=1000000) positive integer numbers (each number is smaller than 1000000). The task is to calculate the sum of the bitwise xor ( ^ in c/c++) value of all the distinct combination of the given numbers.
Time limit is 1 second.
For example, if 3 integers are given as 7, 3 and 5, answer should be 7^3 + 7^5 + 3^5 = 12.
My approach is:
#include <bits/stdc++.h>
using namespace std;
int num[1000001];
int main()
{
int n, i, sum, j;
scanf("%d", &n);
sum=0;
for(i=0;i<n;i++)
scanf("%d", &num[i]);
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
sum+=(num[i]^num[j]);
}
}
printf("%d\n", sum);
return 0;
}
But my code failed to run in 1 second. How can I write my code in a faster way, which can run in 1 second ?
Edit: Actually this is an Online Judge problem and I am getting Cpu Limit Exceeded with my above code.
You need to compute around 1e12 xors in order to brute force this. Modern processors can do around 1e10 such operations per second. So brute force cannot work; therefore they are looking for you to figure out a better algorithm.
So you need to find a way to determine the answer without computing all those xors.
Hint: can you think of a way to do it if all the input numbers were either zero or one (one bit)? And then extend it to numbers of two bits, three bits, and so on?
When optimising your code you can go 3 different routes:
Optimising the algorithm.
Optimising the calls to language and library functions.
Optimising for the particular architecture.
There may very well be a quicker mathematical way of xoring every pair combination and then summing them up, but I know it not. In any case, on the contemporary processors you'll be shaving off microseconds at best; that is because you are doing basic operations (xor and sum).
Optimising for the architecture also makes little sense. It normally becomes important in repetitive branching, you have nothing like that here.
The biggest problem in your algorithm is reading from the standard input. Despite the fact that "scanf" takes only 5 characters in your computer code, in machine language this is the bulk of your program. Unfortunately, if the data will actually change each time your run your code, there is no way around the requirement of reading from stdin, and there will be no difference whether you use scanf, std::cin >>, or even will attempt to implement your own method to read characters from input and convert them into ints.
All this assumes that you don't expect a human being to enter thousands of numbers in less than one second. I guess you can be running your code via: myprogram < data.
This function grows quadratically (thanks #rici). At around 25,000 positive integers with each being 999,999 (worst case) the for loop calculation alone can finish in approximately a second. Trying to make this work with input as you have specified and for 1 million positive integers just doesn't seem possible.
With the hint in Alan Stokes's answer, you may have a linear complexity instead of quadratic with the following:
std::size_t xor_sum(const std::vector<std::uint32_t>& v)
{
std::size_t res = 0;
for (std::size_t b = 0; b != 32; ++b) {
const std::size_t count_0 =
std::count_if(v.begin(), v.end(),
[b](std::uint32_t n) { return (n >> b) & 0x01; });
const std::size_t count_1 = v.size() - count_0;
res += count_0 * count_1 << b;
}
return res;
}
Live Demo.
Explanation:
x^y = Sum_b((x&b)^(y&b)) where b is a single bit mask (from 1<<0 to 1<<32).
For a given bit, with count_0 and count_1 the respective number of count of number with bit set to 0 or 1, we have count_0 * (count_0 - 1) 0^0, count_0 * count_1 0^1 and count_1 * (count_1 - 1) 1^1 (and 0^0 and 1^1 are 0).

Random pairs of different bits

I have the following problem. I have a number represented in binary representation. I need a way to randomly select two bits of them that are different (i.e. find a 1 and a 0). Besides this I run other operations on that number (reversing sequences, permute sequences,...) These are the approaches I already used:
Keep track of all the ones and the zeros. When I create the binary representation of the binary number I store the places of the 0's and 1's. So that I can choose an index for one list and one index from the other one. I then have two different bits. To run my other operations I created those from an elementary swap operations which updates the indices of the 1's and 0's when manipulating. Therefore I have a third list that stores the list index for each bit. If a bit is 1 I know where to find in the list with all the indices of the ones (same goes for zeros).
The method above yields some overhead when operations are done that do not require the bits to be different. So another way would be to create the lists whenever different bits are needed.
Does anyone have a better idea to do this? I need these operations to be really fast (I am working with popcount, clz, and other binary operations)
I don't feel as though I have enough information to assess the tradeoffs properly, but perhaps you'll find this idea useful. To find a random 1 in a word (find a 1 over multiple words by popcount and reservoir sampling; find a 0 by complementing), first test the popcount. If the popcount is high, then generate indexes uniformly at random and test them until a one is found. If the popcount is medium, then take bitwise ANDs with uniform random masks (but keep the original if the AND is zero) to reduce the popcount. When the popcount is low, use clz to compile the (small) list of candidates efficiently and then sample uniformly at random.
I think the following might be a rather efficient algorithm to do what you are asking. You only iterate over each bit in the number once, and for each element, you have to generate a random number (not exactly sure how costly that is, but I believe there are some optimized CPU instructions for getting random numbers).
Idea is to iterate over all the bits, and with the right probability, update the index to the current index you are visiting.
Generic pseudocode for getting an element from a stream/array:
p = 1
e = null
for s in stream:
with probability 1/p:
replace e with s
p++
return e
Java version:
int[] getIdx(int n){
int oneIdx = 0;
int zeroIdx = 0;
int ones = 1;
int zeros = 1;
// this loop depends on whether you want to select all the prepended zeros
// in a 32/64 bit representation. Alter to your liking...
for(int i = n, j = 0; i > 0; i = i >>> 1, j++){
if((i & 1) == 1){ // current element is 1
if(Math.random() < 1/(float)ones){
oneIdx = j;
}
ones++;
} else{ // element is 0
if(Math.random() < 1/(float)zeros){
zeroIdx = j;
}
zeros++;
}
}
return new int[]{zeroIdx,oneIdx};
}
An optimization you might look into is to do the probability selection using ints instead of floats, might be slightly faster. Here is a short proof I did some time ago regarding that this works: here . I believe the algorithm is attributed to Knuth but can't remember exactly.

Generating random integers with a difference constraint

I have the following problem:
Generate M uniformly random integers from the range 0-N, where N >> M, and where no pair has a difference less than K. where M >> K.
At the moment the best method I can think of is to maintain a sorted list, then determine the lower bound of the current generated integer and test it with the lower and upper elements, if it's ok to then insert the element in between. This is of complexity O(nlogn).
Would there happen to be a more efficient algorithm?
An example of the problem:
Generate 1000 uniformly random integers between zero and 100million where the difference between any two integers is no less than 1000
A comprehensive way to solve this would be to:
Determine all the combinations of n-choose-m that satisfy the constraint, lets called it set X
Select a uniformly random integer i in the range [0,|X|).
Select the i'th combination from X as the result.
This solution is problematic when the n-choose-m is large, as enumerating and storing all possible combinations will be extremely costly. Hence an efficient online generating solution is sought.
Note: The following is a C++ implementation of the solution provided by pentadecagon
std::vector<int> generate_random(const int n, const int m, const int k)
{
if ((n < m) || (m < k))
return std::vector<int>();
std::random_device source;
std::mt19937 generator(source());
std::uniform_int_distribution<> distribution(0, n - (m - 1) * k);
std::vector<int> result_list;
result_list.reserve(m);
for (int i = 0; i < m; ++i)
{
result_list.push_back(distribution(generator));
}
std::sort(std::begin(result_list),std::end(result_list));
for (int i = 0; i < m; ++i)
{
result_list[i] += (i * k);
}
return result_list;
}
http://ideone.com/KOeR4R
.
EDIT: I adapted the text for the requirement to create ordered sequences, each with the same probability.
Create random numbers a_i for i=0..M-1 without duplicates. Sort them. Then create numbers
b_i=a_i + i*(K-1)
Given the construction, those numbers b_i have the required gaps, because the a_i already have gaps of at least 1. In order to make sure those b values cover exactly the required range [1..N], you must ensure a_i are picked from a range [1..N-(M-1)*(K-1)]. This way you get truly independent numbers. Well, as independent as possible given the required gap. Because of the sorting you get O(M log M) performance again, but this shouldn't be too bad. Sorting is typically very fast. In Python it looks like this:
import random
def random_list( N, M, K ):
s = set()
while len(s) < M:
s.add( random.randint( 1, N-(M-1)*(K-1) ) )
res = sorted( s )
for i in range(M):
res[i] += i * (K-1)
return res
First off: this will be an attempt to show that there's a bijection between the (M+1)- compositions (with the slight modification that we will allow addends to be 0) of the value N - (M-1)*K and the valid solutions to your problem. After that, we only have to pick one of those compositions uniformly at random and apply the bijection.
Bijection:
Let
Then the xi form an M+1-composition (with 0 addends allowed) of the value on the left (notice that the xi do not have to be monotonically increasing!).
From this we get a valid solution
by setting the values mi as follows:
We see that the distance between mi and mi + 1 is at least K, and mM is at most N (compare the choice of the composition we started out with). This means that every (M+1)-composition that fulfills the conditions above defines exactly one valid solution to your problem. (You'll notice that we only use the xM as a way to make the sum turn out right, we don't use it for the construction of the mi.)
To see that this gives a bijection, we need to see that the construction can be reversed; for this purpose, let
be a given solution fulfilling your conditions. To get the composition this is constructed from, define the xi as follows:
Now first, all xi are at least 0, so that's alright. To see that they form a valid composition (again, every xi is allowed to be 0) of the value given above, consider:
The third equality follows since we have this telescoping sum that cancels out almost all mi.
So we've seen that the described construction gives a bijection between the described compositions of N - (M-1)*K and the valid solutions to your problem. All we have to do now is pick one of those compositions uniformly at random and apply the construction to get a solution.
Picking a composition uniformly at random
Each of the described compositions can be uniquely identified in the following way (compare this for illustration): reserve N - (M-1)*K spaces for the unary notation of that value, and another M spaces for M commas. We get an (M+1)- composition of N - (M-1)*K by choosing M of the N - (M-1)*K + M spaces, putting commas there, and filling the rest with |. Then let x0 be the number of | before the first comma, xM+1 the number of | after the last comma, and all other xi the number of | between commas i and i+1. So all we have to do is pick an M-element subset of the integer interval[1; N - (M-1)*K + M] uniformly at random, which we can do for example with the Fisher-Yates shuffle in O(N + M log M) (we need to sort the M delimiters to build the composition) since M*K needs to be in O(N) for any solutions to exist. So if N is bigger than M by at least a logarithmic factor, then this is linear in N.
Note: #DavidEisenstat suggested that there are more space efficient ways of picking the M-element subset of that interval; I'm not aware of any, I'm afraid.
You can get an error-proof algorithm out of this by doing the simple input validation we get from the construction above that N ≥ (M-1) * K and that all three values are at least 1 (or 0, if you define the empty set as a valid solution for that case).
Why not do this:
for (int i = 0; i < M; ++i) {
pick a random number between K and N/M
add this number to (N/M)* i;
Now you have M random numbers, distributed evenly along N, all of which have a difference of at least K. It's in O(n) time. As an added bonus, it's already sorted. :-)
EDIT:
Actually, the "pick a random number" part shouldn't be between K and N/M, but between min(K, [K - (N/M * i - previous value)]). That would ensure that the differences are still at least K, and not exclude values that should not be missed.
Second EDIT:
Well, the first case shouldn't be between K and N/M - it should be between 0 and N/M. Just like you need special casing for when you get close to the N/M*i border, we need special initial casing.
Aside from that, the issue you brought up in your comments was fair representation, and you're right. As my pseudocode is presented, it currently completely misses the excess between N/M*M and N. It's another edge case; simply change the random values of your last range.
Now, in this case, your distribution will be different for the last range. Since you have more numbers, you have slightly less chance for each number than you do for all the other ranges. My understanding is that because you're using ">>", this shouldn't really impact the distribution, i.e. the difference in size in the sample set should be nominal. But if you want to make it more fair, you divide the excess equally among each range. This makes your initial range calculation more complex - you'll have to augment each range based on how much remainder there is divided by M.
There are lots of special cases to look out for, but they're all able to be handled. I kept the pseudocode very basic just to make sure that the general concept came through clearly. If nothing else, it should be a good starting point.
Third and Final EDIT:
For those worried that the distribution has a forced evenness, I still claim that there's nothing saying it can't. The selection is uniformly distributed in each segment. There is a linear way to keep it uneven, but that also has a trade-off: if one value is selected extremely high (which should be unlikely given a very large N), then all the other values are constrained:
int prevValue = 0;
int maxRange;
for (int i = 0; i < M; ++i) {
maxRange = N - (((M - 1) - i) * K) - prevValue;
int nextValue = random(0, maxRange);
prevValue += nextValue;
store previous value;
prevValue += K;
}
This is still linear and random and allows unevenness, but the bigger prevValue gets, the more constrained the other numbers become. Personally, I prefer my second edit answer, but this is an available option that given a large enough N is likely to satisfy all the posted requirements.
Come to think of it, here's one other idea. It requires a lot more data maintenance, but is still O(M) and is probably the most fair distribution:
What you need to do is maintain a vector of your valid data ranges and a vector of probability scales. A valid data range is just the list of high-low values where K is still valid. The idea is you first use the scaled probability to pick a random data range, then you randomly pick a value within that range. You remove the old valid data range and replace it with 0, 1 or 2 new data ranges in the same position, depending on how many are still valid. All of these actions are constant time other than handling the weighted probability, which is O(M), done in a loop M times, so the total should be O(M^2), which should be much better than O(NlogN) because N >> M.
Rather than pseudocode, let me work an example using OP's original example:
0th iteration: valid data ranges are from [0...100Mill], and the weight for this range is 1.0.
1st iteration: Randomly pick one element in the one element vector, then randomly pick one element in that range.
If the element is, e.g. 12345678, then we remove the [0...100Mill] and replace it with [0...12344678] and [12346678...100Mill]
If the element is, e.g. 500, then we remove the [0...100Mill] and replace it with just [1500...100Mill], since [0...500] is no longer a valid range. The only time we will replace it with 0 ranges is in the unlikely event that you have a range with only one number in it and it gets picked. (In that case, you'll have 3 numbers in a row that are exactly K apart from each other.)
The weight for the ranges are their length over the total length, e.g. 12344678/(12344678 + (100Mill - 12346678)) and (100Mill - 12346678)/(12344678 + (100Mill - 12346678))
In the next iterations, you do the same thing: randomly pick a number between 0 and 1 and determine which of the ranges that scale falls into. Then randomly pick a number in that range, and replace your ranges and scales.
By the time it's done, we're no longer acting in O(M), but we're still only dependent on the time of M instead of N. And this actually is both uniform and fair distribution.
Hope one of these ideas works for you!

How to calculate Big O notation from piece of code [duplicate]

Most people with a degree in CS will certainly know what Big O stands for.
It helps us to measure how well an algorithm scales.
But I'm curious, how do you calculate or approximate the complexity of your algorithms?
I'll do my best to explain it here on simple terms, but be warned that this topic takes my students a couple of months to finally grasp. You can find more information on the Chapter 2 of the Data Structures and Algorithms in Java book.
There is no mechanical procedure that can be used to get the BigOh.
As a "cookbook", to obtain the BigOh from a piece of code you first need to realize that you are creating a math formula to count how many steps of computations get executed given an input of some size.
The purpose is simple: to compare algorithms from a theoretical point of view, without the need to execute the code. The lesser the number of steps, the faster the algorithm.
For example, let's say you have this piece of code:
int sum(int* data, int N) {
int result = 0; // 1
for (int i = 0; i < N; i++) { // 2
result += data[i]; // 3
}
return result; // 4
}
This function returns the sum of all the elements of the array, and we want to create a formula to count the computational complexity of that function:
Number_Of_Steps = f(N)
So we have f(N), a function to count the number of computational steps. The input of the function is the size of the structure to process. It means that this function is called such as:
Number_Of_Steps = f(data.length)
The parameter N takes the data.length value. Now we need the actual definition of the function f(). This is done from the source code, in which each interesting line is numbered from 1 to 4.
There are many ways to calculate the BigOh. From this point forward we are going to assume that every sentence that doesn't depend on the size of the input data takes a constant C number computational steps.
We are going to add the individual number of steps of the function, and neither the local variable declaration nor the return statement depends on the size of the data array.
That means that lines 1 and 4 takes C amount of steps each, and the function is somewhat like this:
f(N) = C + ??? + C
The next part is to define the value of the for statement. Remember that we are counting the number of computational steps, meaning that the body of the for statement gets executed N times. That's the same as adding C, N times:
f(N) = C + (C + C + ... + C) + C = C + N * C + C
There is no mechanical rule to count how many times the body of the for gets executed, you need to count it by looking at what does the code do. To simplify the calculations, we are ignoring the variable initialization, condition and increment parts of the for statement.
To get the actual BigOh we need the Asymptotic analysis of the function. This is roughly done like this:
Take away all the constants C.
From f() get the polynomium in its standard form.
Divide the terms of the polynomium and sort them by the rate of growth.
Keep the one that grows bigger when N approaches infinity.
Our f() has two terms:
f(N) = 2 * C * N ^ 0 + 1 * C * N ^ 1
Taking away all the C constants and redundant parts:
f(N) = 1 + N ^ 1
Since the last term is the one which grows bigger when f() approaches infinity (think on limits) this is the BigOh argument, and the sum() function has a BigOh of:
O(N)
There are a few tricks to solve some tricky ones: use summations whenever you can.
As an example, this code can be easily solved using summations:
for (i = 0; i < 2*n; i += 2) { // 1
for (j=n; j > i; j--) { // 2
foo(); // 3
}
}
The first thing you needed to be asked is the order of execution of foo(). While the usual is to be O(1), you need to ask your professors about it. O(1) means (almost, mostly) constant C, independent of the size N.
The for statement on the sentence number one is tricky. While the index ends at 2 * N, the increment is done by two. That means that the first for gets executed only N steps, and we need to divide the count by two.
f(N) = Summation(i from 1 to 2 * N / 2)( ... ) =
= Summation(i from 1 to N)( ... )
The sentence number two is even trickier since it depends on the value of i. Take a look: the index i takes the values: 0, 2, 4, 6, 8, ..., 2 * N, and the second for get executed: N times the first one, N - 2 the second, N - 4 the third... up to the N / 2 stage, on which the second for never gets executed.
On formula, that means:
f(N) = Summation(i from 1 to N)( Summation(j = ???)( ) )
Again, we are counting the number of steps. And by definition, every summation should always start at one, and end at a number bigger-or-equal than one.
f(N) = Summation(i from 1 to N)( Summation(j = 1 to (N - (i - 1) * 2)( C ) )
(We are assuming that foo() is O(1) and takes C steps.)
We have a problem here: when i takes the value N / 2 + 1 upwards, the inner Summation ends at a negative number! That's impossible and wrong. We need to split the summation in two, being the pivotal point the moment i takes N / 2 + 1.
f(N) = Summation(i from 1 to N / 2)( Summation(j = 1 to (N - (i - 1) * 2)) * ( C ) ) + Summation(i from 1 to N / 2) * ( C )
Since the pivotal moment i > N / 2, the inner for won't get executed, and we are assuming a constant C execution complexity on its body.
Now the summations can be simplified using some identity rules:
Summation(w from 1 to N)( C ) = N * C
Summation(w from 1 to N)( A (+/-) B ) = Summation(w from 1 to N)( A ) (+/-) Summation(w from 1 to N)( B )
Summation(w from 1 to N)( w * C ) = C * Summation(w from 1 to N)( w ) (C is a constant, independent of w)
Summation(w from 1 to N)( w ) = (N * (N + 1)) / 2
Applying some algebra:
f(N) = Summation(i from 1 to N / 2)( (N - (i - 1) * 2) * ( C ) ) + (N / 2)( C )
f(N) = C * Summation(i from 1 to N / 2)( (N - (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (Summation(i from 1 to N / 2)( N ) - Summation(i from 1 to N / 2)( (i - 1) * 2)) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2)( i - 1 )) + (N / 2)( C )
=> Summation(i from 1 to N / 2)( i - 1 ) = Summation(i from 1 to N / 2 - 1)( i )
f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2 - 1)( i )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N / 2 - 1) * (N / 2 - 1 + 1) / 2) ) + (N / 2)( C )
=> (N / 2 - 1) * (N / 2 - 1 + 1) / 2 =
(N / 2 - 1) * (N / 2) / 2 =
((N ^ 2 / 4) - (N / 2)) / 2 =
(N ^ 2 / 8) - (N / 4)
f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N ^ 2 / 8) - (N / 4) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - ( (N ^ 2 / 4) - (N / 2) )) + (N / 2)( C )
f(N) = C * (( N ^ 2 / 2 ) - (N ^ 2 / 4) + (N / 2)) + (N / 2)( C )
f(N) = C * ( N ^ 2 / 4 ) + C * (N / 2) + C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + 2 * C * (N / 2)
f(N) = C * ( N ^ 2 / 4 ) + C * N
f(N) = C * 1/4 * N ^ 2 + C * N
And the BigOh is:
O(N²)
Big O gives the upper bound for time complexity of an algorithm. It is usually used in conjunction with processing data sets (lists) but can be used elsewhere.
A few examples of how it's used in C code.
Say we have an array of n elements
int array[n];
If we wanted to access the first element of the array this would be O(1) since it doesn't matter how big the array is, it always takes the same constant time to get the first item.
x = array[0];
If we wanted to find a number in the list:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
This would be O(n) since at most we would have to look through the entire list to find our number. The Big-O is still O(n) even though we might find our number the first try and run through the loop once because Big-O describes the upper bound for an algorithm (omega is for lower bound and theta is for tight bound).
When we get to nested loops:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
This is O(n^2) since for each pass of the outer loop ( O(n) ) we have to go through the entire list again so the n's multiply leaving us with n squared.
This is barely scratching the surface but when you get to analyzing more complex algorithms complex math involving proofs comes into play. Hope this familiarizes you with the basics at least though.
While knowing how to figure out the Big O time for your particular problem is useful, knowing some general cases can go a long way in helping you make decisions in your algorithm.
Here are some of the most common cases, lifted from http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:
O(1) - Determining if a number is even or odd; using a constant-size lookup table or hash table
O(logn) - Finding an item in a sorted array with a binary search
O(n) - Finding an item in an unsorted list; adding two n-digit numbers
O(n2) - Multiplying two n-digit numbers by a simple algorithm; adding two n×n matrices; bubble sort or insertion sort
O(n3) - Multiplying two n×n matrices by simple algorithm
O(cn) - Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute force
O(n!) - Solving the traveling salesman problem via brute-force search
O(nn) - Often used instead of O(n!) to derive simpler formulas for asymptotic complexity
Small reminder: the big O notation is used to denote asymptotic complexity (that is, when the size of the problem grows to infinity), and it hides a constant.
This means that between an algorithm in O(n) and one in O(n2), the fastest is not always the first one (though there always exists a value of n such that for problems of size >n, the first algorithm is the fastest).
Note that the hidden constant very much depends on the implementation!
Also, in some cases, the runtime is not a deterministic function of the size n of the input. Take sorting using quick sort for example: the time needed to sort an array of n elements is not a constant but depends on the starting configuration of the array.
There are different time complexities:
Worst case (usually the simplest to figure out, though not always very meaningful)
Average case (usually much harder to figure out...)
...
A good introduction is An Introduction to the Analysis of Algorithms by R. Sedgewick and P. Flajolet.
As you say, premature optimisation is the root of all evil, and (if possible) profiling really should always be used when optimising code. It can even help you determine the complexity of your algorithms.
Seeing the answers here I think we can conclude that most of us do indeed approximate the order of the algorithm by looking at it and use common sense instead of calculating it with, for example, the master method as we were thought at university.
With that said I must add that even the professor encouraged us (later on) to actually think about it instead of just calculating it.
Also I would like to add how it is done for recursive functions:
suppose we have a function like (scheme code):
(define (fac n)
(if (= n 0)
1
(* n (fac (- n 1)))))
which recursively calculates the factorial of the given number.
The first step is to try and determine the performance characteristic for the body of the function only in this case, nothing special is done in the body, just a multiplication (or the return of the value 1).
So the performance for the body is: O(1) (constant).
Next try and determine this for the number of recursive calls. In this case we have n-1 recursive calls.
So the performance for the recursive calls is: O(n-1) (order is n, as we throw away the insignificant parts).
Then put those two together and you then have the performance for the whole recursive function:
1 * (n-1) = O(n)
Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example.
Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.
If your cost is a polynomial, just keep the highest-order term, without its multiplier. E.g.:
O((n/2 + 1)*(n/2)) = O(n2/4 + n/2) = O(n2/4) = O(n2)
This doesn't work for infinite series, mind you. There is no single recipe for the general case, though for some common cases, the following inequalities apply:
O(log N) < O(N) < O(N log N) < O(N2) < O(Nk) < O(en) < O(n!)
I think about it in terms of information. Any problem consists of learning a certain number of bits.
Your basic tool is the concept of decision points and their entropy. The entropy of a decision point is the average information it will give you. For example, if a program contains a decision point with two branches, it's entropy is the sum of the probability of each branch times the log2 of the inverse probability of that branch. That's how much you learn by executing that decision.
For example, an if statement having two branches, both equally likely, has an entropy of 1/2 * log(2/1) + 1/2 * log(2/1) = 1/2 * 1 + 1/2 * 1 = 1. So its entropy is 1 bit.
Suppose you are searching a table of N items, like N=1024. That is a 10-bit problem because log(1024) = 10 bits. So if you can search it with IF statements that have equally likely outcomes, it should take 10 decisions.
That's what you get with binary search.
Suppose you are doing linear search. You look at the first element and ask if it's the one you want. The probabilities are 1/1024 that it is, and 1023/1024 that it isn't. The entropy of that decision is 1/1024*log(1024/1) + 1023/1024 * log(1024/1023) = 1/1024 * 10 + 1023/1024 * about 0 = about .01 bit. You've learned very little! The second decision isn't much better. That is why linear search is so slow. In fact it's exponential in the number of bits you need to learn.
Suppose you are doing indexing. Suppose the table is pre-sorted into a lot of bins, and you use some of all of the bits in the key to index directly to the table entry. If there are 1024 bins, the entropy is 1/1024 * log(1024) + 1/1024 * log(1024) + ... for all 1024 possible outcomes. This is 1/1024 * 10 times 1024 outcomes, or 10 bits of entropy for that one indexing operation. That is why indexing search is fast.
Now think about sorting. You have N items, and you have a list. For each item, you have to search for where the item goes in the list, and then add it to the list. So sorting takes roughly N times the number of steps of the underlying search.
So sorts based on binary decisions having roughly equally likely outcomes all take about O(N log N) steps. An O(N) sort algorithm is possible if it is based on indexing search.
I've found that nearly all algorithmic performance issues can be looked at in this way.
Lets start from the beginning.
First of all, accept the principle that certain simple operations on data can be done in O(1) time, that is, in time that is independent of the size of the input. These primitive operations in C consist of
Arithmetic operations (e.g. + or %).
Logical operations (e.g., &&).
Comparison operations (e.g., <=).
Structure accessing operations (e.g. array-indexing like A[i], or pointer fol-
lowing with the -> operator).
Simple assignment such as copying a value into a variable.
Calls to library functions (e.g., scanf, printf).
The justification for this principle requires a detailed study of the machine instructions (primitive steps) of a typical computer. Each of the described operations can be done with some small number of machine instructions; often only one or two instructions are needed.
As a consequence, several kinds of statements in C can be executed in O(1) time, that is, in some constant amount of time independent of input. These simple include
Assignment statements that do not involve function calls in their expressions.
Read statements.
Write statements that do not require function calls to evaluate arguments.
The jump statements break, continue, goto, and return expression, where
expression does not contain a function call.
In C, many for-loops are formed by initializing an index variable to some value and
incrementing that variable by 1 each time around the loop. The for-loop ends when
the index reaches some limit. For instance, the for-loop
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
uses index variable i. It increments i by 1 each time around the loop, and the iterations
stop when i reaches n − 1.
However, for the moment, focus on the simple form of for-loop, where the difference between the final and initial values, divided by the amount by which the index variable is incremented tells us how many times we go around the loop. That count is exact, unless there are ways to exit the loop via a jump statement; it is an upper bound on the number of iterations in any case.
For instance, the for-loop iterates ((n − 1) − 0)/1 = n − 1 times,
since 0 is the initial value of i, n − 1 is the highest value reached by i (i.e., when i
reaches n−1, the loop stops and no iteration occurs with i = n−1), and 1 is added
to i at each iteration of the loop.
In the simplest case, where the time spent in the loop body is the same for each
iteration, we can multiply the big-oh upper bound for the body by the number of
times around the loop. Strictly speaking, we must then add O(1) time to initialize
the loop index and O(1) time for the first comparison of the loop index with the
limit, because we test one more time than we go around the loop. However, unless
it is possible to execute the loop zero times, the time to initialize the loop and test
the limit once is a low-order term that can be dropped by the summation rule.
Now consider this example:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
We know that line (1) takes O(1) time. Clearly, we go around the loop n times, as
we can determine by subtracting the lower limit from the upper limit found on line
(1) and then adding 1. Since the body, line (2), takes O(1) time, we can neglect the
time to increment j and the time to compare j with n, both of which are also O(1).
Thus, the running time of lines (1) and (2) is the product of n and O(1), which is O(n).
Similarly, we can bound the running time of the outer loop consisting of lines
(2) through (4), which is
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
We have already established that the loop of lines (3) and (4) takes O(n) time.
Thus, we can neglect the O(1) time to increment i and to test whether i < n in
each iteration, concluding that each iteration of the outer loop takes O(n) time.
The initialization i = 0 of the outer loop and the (n + 1)st test of the condition
i < n likewise take O(1) time and can be neglected. Finally, we observe that we go
around the outer loop n times, taking O(n) time for each iteration, giving a total
O(n^2) running time.
A more practical example.
If you want to estimate the order of your code empirically rather than by analyzing the code, you could stick in a series of increasing values of n and time your code. Plot your timings on a log scale. If the code is O(x^n), the values should fall on a line of slope n.
This has several advantages over just studying the code. For one thing, you can see whether you're in the range where the run time approaches its asymptotic order. Also, you may find that some code that you thought was order O(x) is really order O(x^2), for example, because of time spent in library calls.
Basically the thing that crops up 90% of the time is just analyzing loops. Do you have single, double, triple nested loops? The you have O(n), O(n^2), O(n^3) running time.
Very rarely (unless you are writing a platform with an extensive base library (like for instance, the .NET BCL, or C++'s STL) you will encounter anything that is more difficult than just looking at your loops (for statements, while, goto, etc...)
Less useful generally, I think, but for the sake of completeness there is also a Big Omega Ω, which defines a lower-bound on an algorithm's complexity, and a Big Theta Θ, which defines both an upper and lower bound.
Big O notation is useful because it's easy to work with and hides unnecessary complications and details (for some definition of unnecessary). One nice way of working out the complexity of divide and conquer algorithms is the tree method. Let's say you have a version of quicksort with the median procedure, so you split the array into perfectly balanced subarrays every time.
Now build a tree corresponding to all the arrays you work with. At the root you have the original array, the root has two children which are the subarrays. Repeat this until you have single element arrays at the bottom.
Since we can find the median in O(n) time and split the array in two parts in O(n) time, the work done at each node is O(k) where k is the size of the array. Each level of the tree contains (at most) the entire array so the work per level is O(n) (the sizes of the subarrays add up to n, and since we have O(k) per level we can add this up). There are only log(n) levels in the tree since each time we halve the input.
Therefore we can upper bound the amount of work by O(n*log(n)).
However, Big O hides some details which we sometimes can't ignore. Consider computing the Fibonacci sequence with
a=0;
b=1;
for (i = 0; i <n; i++) {
tmp = b;
b = a + b;
a = tmp;
}
and lets just assume the a and b are BigIntegers in Java or something that can handle arbitrarily large numbers. Most people would say this is an O(n) algorithm without flinching. The reasoning is that you have n iterations in the for loop and O(1) work in side the loop.
But Fibonacci numbers are large, the n-th Fibonacci number is exponential in n so just storing it will take on the order of n bytes. Performing addition with big integers will take O(n) amount of work. So the total amount of work done in this procedure is
1 + 2 + 3 + ... + n = n(n-1)/2 = O(n^2)
So this algorithm runs in quadradic time!
Familiarity with the algorithms/data structures I use and/or quick glance analysis of iteration nesting. The difficulty is when you call a library function, possibly multiple times - you can often be unsure of whether you are calling the function unnecessarily at times or what implementation they are using. Maybe library functions should have a complexity/efficiency measure, whether that be Big O or some other metric, that is available in documentation or even IntelliSense.
Break down the algorithm into pieces you know the big O notation for, and combine through big O operators. That's the only way I know of.
For more information, check the Wikipedia page on the subject.
As to "how do you calculate" Big O, this is part of Computational complexity theory. For some (many) special cases you may be able to come with some simple heuristics (like multiplying loop counts for nested loops), esp. when all you want is any upper bound estimation, and you do not mind if it is too pessimistic - which I guess is probably what your question is about.
If you really want to answer your question for any algorithm the best you can do is to apply the theory. Besides of simplistic "worst case" analysis I have found Amortized analysis very useful in practice.
For the 1st case, the inner loop is executed n-i times, so the total number of executions is the sum for i going from 0 to n-1 (because lower than, not lower than or equal) of the n-i. You get finally n*(n + 1) / 2, so O(n²/2) = O(n²).
For the 2nd loop, i is between 0 and n included for the outer loop; then the inner loop is executed when j is strictly greater than n, which is then impossible.
I would like to explain the Big-O in a little bit different aspect.
Big-O is just to compare the complexity of the programs which means how fast are they growing when the inputs are increasing and not the exact time which is spend to do the action.
IMHO in the big-O formulas you better not to use more complex equations (you might just stick to the ones in the following graph.) However you still might use other more precise formula (like 3^n, n^3, ...) but more than that can be sometimes misleading! So better to keep it as simple as possible.
I would like to emphasize once again that here we don't want to get an exact formula for our algorithm. We only want to show how it grows when the inputs are growing and compare with the other algorithms in that sense. Otherwise you would better use different methods like bench-marking.
In addition to using the master method (or one of its specializations), I test my algorithms experimentally. This can't prove that any particular complexity class is achieved, but it can provide reassurance that the mathematical analysis is appropriate. To help with this reassurance, I use code coverage tools in conjunction with my experiments, to ensure that I'm exercising all the cases.
As a very simple example say you wanted to do a sanity check on the speed of the .NET framework's list sort. You could write something like the following, then analyze the results in Excel to make sure they did not exceed an n*log(n) curve.
In this example I measure the number of comparisons, but it's also prudent to examine the actual time required for each sample size. However then you must be even more careful that you are just measuring the algorithm and not including artifacts from your test infrastructure.
int nCmp = 0;
System.Random rnd = new System.Random();
// measure the time required to sort a list of n integers
void DoTest(int n)
{
List<int> lst = new List<int>(n);
for( int i=0; i<n; i++ )
lst[i] = rnd.Next(0,1000);
// as we sort, keep track of the number of comparisons performed!
nCmp = 0;
lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }
System.Console.Writeline( "{0},{1}", n, nCmp );
}
// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
DoTest(n);
Don't forget to also allow for space complexities that can also be a cause for concern if one has limited memory resources. So for example you may hear someone wanting a constant space algorithm which is basically a way of saying that the amount of space taken by the algorithm doesn't depend on any factors inside the code.
Sometimes the complexity can come from how many times is something called, how often is a loop executed, how often is memory allocated, and so on is another part to answer this question.
Lastly, big O can be used for worst case, best case, and amortization cases where generally it is the worst case that is used for describing how bad an algorithm may be.
First of all, the accepted answer is trying to explain nice fancy stuff,
but I think, intentionally complicating Big-Oh is not the solution,
which programmers (or at least, people like me) search for.
Big Oh (in short)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
Big Oh of above is f(n) = O(n!) where n represents number of items in input set,
and f represents operation done per item.
Big-Oh notation is the asymptotic upper-bound of the complexity of an algorithm.
In programming: The assumed worst-case time taken,
or assumed maximum repeat count of logic, for size of the input.
Calculation
Keep in mind (from above meaning) that; We just need worst-case time and/or maximum repeat count affected by N (size of input),
Then take another look at (accepted answer's) example:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern:
Find first line that N caused repeat behavior,
Or caused increase of logic executed,
But constant or not, ignore anything before that line.
Seems line hundred-twenty-three is what we are searching ;-)
On first sight, line seems to have 2*n max-looping.
But looking again, we see i += 2 (and that half is skipped).
So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet.
Repeat search till method's end, and find next line matching our search-pattern, here that's line 124
Which is tricky, because strange condition, and reverse looping.
But after remembering that we just need to consider maximum repeat count (or worst-case time taken).
It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so:
Add n to previous write down's end,
but like "( n " instead of "+ n" (as this is inside previous loop),
and close parenthesis only if we find something outside of previous loop.
Search Done! why? because line 125 (or any other line after) does not match our search-pattern.
We can now close any parenthesis (left-open in our write down), resulting in below:
f(n) = O( n( n ) )
Try to further shorten "n( n )" part, like:
n( n ) = n * n
= n2
Finally, just wrap it with Big Oh notation, like O(n2) or O(n^2) without formatting.
What often gets overlooked is the expected behavior of your algorithms. It doesn't change the Big-O of your algorithm, but it does relate to the statement "premature optimization. . .."
Expected behavior of your algorithm is -- very dumbed down -- how fast you can expect your algorithm to work on data you're most likely to see.
For instance, if you're searching for a value in a list, it's O(n), but if you know that most lists you see have your value up front, typical behavior of your algorithm is faster.
To really nail it down, you need to be able to describe the probability distribution of your "input space" (if you need to sort a list, how often is that list already going to be sorted? how often is it totally reversed? how often is it mostly sorted?) It's not always feasible that you know that, but sometimes you do.
great question!
Disclaimer: this answer contains false statements see the comments below.
If you're using the Big O, you're talking about the worse case (more on what that means later). Additionally, there is capital theta for average case and a big omega for best case.
Check out this site for a lovely formal definition of Big O: https://xlinux.nist.gov/dads/HTML/bigOnotation.html
f(n) = O(g(n)) means there are positive constants c and k, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the function f and must not depend on n.
Ok, so now what do we mean by "best-case" and "worst-case" complexities?
This is probably most clearly illustrated through examples. For example if we are using linear search to find a number in a sorted array then the worst case is when we decide to search for the last element of the array as this would take as many steps as there are items in the array. The best case would be when we search for the first element since we would be done after the first check.
The point of all these adjective-case complexities is that we're looking for a way to graph the amount of time a hypothetical program runs to completion in terms of the size of particular variables. However for many algorithms you can argue that there is not a single time for a particular size of input. Notice that this contradicts with the fundamental requirement of a function, any input should have no more than one output. So we come up with multiple functions to describe an algorithm's complexity. Now, even though searching an array of size n may take varying amounts of time depending on what you're looking for in the array and depending proportionally to n, we can create an informative description of the algorithm using best-case, average-case, and worst-case classes.
Sorry this is so poorly written and lacks much technical information. But hopefully it'll make time complexity classes easier to think about. Once you become comfortable with these it becomes a simple matter of parsing through your program and looking for things like for-loops that depend on array sizes and reasoning based on your data structures what kind of input would result in trivial cases and what input would result in worst-cases.
I don't know how to programmatically solve this, but the first thing people do is that we sample the algorithm for certain patterns in the number of operations done, say 4n^2 + 2n + 1 we have 2 rules:
If we have a sum of terms, the term with the largest growth rate is kept, with other terms omitted.
If we have a product of several factors constant factors are omitted.
If we simplify f(x), where f(x) is the formula for number of operations done, (4n^2 + 2n + 1 explained above), we obtain the big-O value [O(n^2) in this case]. But this would have to account for Lagrange interpolation in the program, which may be hard to implement. And what if the real big-O value was O(2^n), and we might have something like O(x^n), so this algorithm probably wouldn't be programmable. But if someone proves me wrong, give me the code . . . .
For code A, the outer loop will execute for n+1 times, the '1' time means the process which checks the whether i still meets the requirement. And inner loop runs n times, n-2 times.... Thus,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²).
For code B, though inner loop wouldn't step in and execute the foo(), the inner loop will be executed for n times depend on outer loop execution time, which is O(n)