What i want to do: I need to create a new variables for each value labels of a variable and do some recoding. I have all the value labels output from a SPSS file (see sample).
Sample:
proc format; library = library ;
value SEXF
1 = 'Homme'
2 = 'Femme' ;
value FUMERT1F
0 = 'Non'
1 = 'Oui , occasionnellement'
2 = 'Oui , régulièrement'
3 = 'Non mais j''ai déjà fumé' ;
value ... (many more with different amount of levels)
The new variable name would be the actual one without F and with underscore+level (example: FUMERT1F level 0 would become FUMERT1_0).
After that i need to recode the variables on this pattern:
data ds; set ds;
FUMERT1_0=0;
if FUMERT1=0 then FUMERT1_0=1;
FUMERT1_1=0;
if FUMERT1=1 then FUMERT1_1=1;
FUMERT1_2=0;
if FUMERT1=2 then FUMERT1_2=1;
FUMERT1_3=0;
if FUMERT1=3 then FUMERT1_3=1;
run;
Any help will be appreciated :)
EDIT: Both answers from Joe and the one of data_null_ are working but stackoverflow won't let me pin more than one right answer.
Update to add an _ underscore to the end of each name. It looks like there is not option for PROC TRANSREG to put an underscore between the variable name and the value of the class variable so we can just do a temporary rename. Create rename name=newname pairs to rename class variable to end in underscore and to rename them back. CAT functions and SQL into macro variables.
data have;
call streaminit(1234);
do caseID = 1 to 1e4;
fumert1 = rand('table',.2,.2,.2) - 1;
sex = first(substrn('MF',rand('table',.5),1));
output;
end;
stop;
run;
%let class=sex fumert1;
proc transpose data=have(obs=0) out=vnames;
var &class;
run;
proc print;
run;
proc sql noprint;
select catx('=',_name_,cats(_name_,'_')), catx('=',cats(_name_,'_'),_name_), cats(_name_,'_')
into :rename1 separated by ' ', :rename2 separated by ' ', :class2 separated by ' '
from vnames;
quit;
%put NOTE: &=rename1;
%put NOTE: &=rename2;
%put NOTE: &=class2;
proc transreg data=have(rename=(&rename1));
model class(&class2 / zero=none);
id caseid;
output out=design(drop=_: inter: rename=(&rename2)) design;
run;
%put NOTE: _TRGIND(&_trgindn)=&_trgind;
First try:
Looking at the code you supplied and the output from Joe's I don't really understand the need for the formats. It looks to me like you just want to create dummies for a list of class variables. That can be done with TRANSREG.
data have;
call streaminit(1234);
do caseID = 1 to 1e4;
fumert1 = rand('table',.2,.2,.2) - 1;
sex = first(substrn('MF',rand('table',.5),1));
output;
end;
stop;
run;
proc transreg data=have;
model class(sex fumert1 / zero=none);
id caseid;
output out=design(drop=_: inter:) design;
run;
proc contents;
run;
proc print data=design(obs=40);
run;
One good alternative to your code is to use proc transpose. It won't get you 0's in the non-1 cells, but those are easy enough to get. It does have the disadvantage that it makes it harder to get your variables in a particular order.
Basically, transpose once to vertical, then transpose back using the old variable name concatenated to the variable value as the new variable name. Hat tip to Data null for showing this feature in a recent SAS-L post. If your version of SAS doesn't support concatenation in PROC TRANSPOSE, do it in the data step beforehand.
I show using PROC EXPAND to then set the missings to 0, but you can do this in a data step as well if you don't have ETS or if PROC EXPAND is too slow. There are other ways to do this - including setting up the dataset with 0s pre-proc-transpose - and if you have a complicated scenario where that would be needed, this might make a good separate question.
data have;
do caseID = 1 to 1e4;
fumert1 = rand('Binomial',.3,3);
sex = rand('Binomial',.5,1)+1;
output;
end;
run;
proc transpose data=have out=want_pre;
by caseID;
var fumert1 sex;
copy fumert1 sex;
run;
data want_pre_t;
set want_pre;
x=1; *dummy variable;
run;
proc transpose data=want_pre_t out=want delim=_;
by caseID;
var x;
id _name_ col1;
copy fumert1 sex;
run;
proc expand data=want out=want_e method=none;
convert _numeric_ /transformin=(setmiss 0);
run;
For this method, you need to use two concepts: the cntlout dataset from proc format, and code generation. This method will likely be faster than the other option I presented (as it passes through the data only once), but it does rely on the variable name <-> format relationship being straightforward. If it's not, a slightly more complex variation will be required; you should post to that effect, and this can be modified.
First, the cntlout option in proc format makes a dataset of the contents of the format catalog. This is not the only way to do this, but it's a very easy one. Specify the appropriate libname as you would when you create a format, but instead of making one, it will dump the dataset out, and you can use it for other purposes.
Second, we create a macro that performs your action one time (creating a variable with the name_value name and then assigning it to the appropriate value) and then use proc sql to make a bunch of calls to that macro, once for each row in your cntlout dataset. Note - you may need a where clause here, or some other modifications, if your format library includes formats for variables that aren't in your dataset - or if it doesn't have the nice neat relationship your example does. Then we just make those calls in a data step.
*Set up formats and dataset;
proc format;
value SEXF
1 = 'Homme'
2 = 'Femme' ;
value FUMERT1F
0 = 'Non'
1 = 'Oui , occasionnellement'
2 = 'Oui , régulièrement'
3 = 'Non mais j''ai déjà fumé' ;
quit;
data have;
do caseID = 1 to 1e4;
fumert1 = rand('Binomial',.3,3);
sex = rand('Binomial',.5,1)+1;
output;
end;
run;
*Dump formats into table;
proc format cntlout=formats;
quit;
*Macro that does the above assignment once;
%macro spread_var(var=, val=);
&var._&val.= (&var.=&val.); *result of boolean expression is 1 or 0 (T=1 F=0);
%mend spread_var;
*make the list. May want NOPRINT option here as it will make a lot of calls in your output window otherwise, but I like to see them as output.;
proc sql;
select cats('%spread_var(var=',substr(fmtname,1,length(Fmtname)-1),',val=',start,')')
into :spreadlist separated by ' '
from formats;
quit;
*Actually use the macro call list generated above;
data want;
set have;
&spreadlist.;
run;
Related
I often work with a large number of variables that have zero or empty values only, but I could not find a SAS command to drop these unwanted variables. I know we can use SAS/IML, but I encountered such cases many times and would like to have a macro that may help me without having to type the variable names to avoid errors. Here is my code for removing variables with zero values only. It works to produce a cleaned output data set y from a raw data set x without using the names of the variables. I hope others could have a better solution or help me to make mine better.
%Macro dropZeroV(x, y) ;
proc means data = &x. ;
var _numeric_;
output out = sumTab ; run;
proc transpose data = sumTab(drop = _TYPE_) out= sumt; var _Numeric_; id _STAT_; run;
%let Vlst =;
proc sql noprint;
select _NAME_ into : dropLst separated by ' '
from sumT
where Max=0 and Min =0;
data &y.;
set &x.; drop &dropLst.;
run;
proc print data = &y.; run;
%Mend dropZeroV;
Use STACKODS and ODS SUMMARY to get the table in the format needed in one step rather than multiple steps. This limits it to the sum, since if the sum = 0, all values are 0. You may also want to look at rounding to avoid any issues with numeric precision.
PROC MEANS + PROC TRANSPOSE go to :
ods select none;
proc means data= &x. stackods sum;
var _numeric_;
ods output summary = sumT;
run;
I have a dataset with X number of categorical variables for a given record. I would like to somehow turn this dataset into a new dataset with dummy variables, but I want to have one command / macro that will take the dataset and make the dummy variables for all variables in the dataset.
I also dont want to specify the name of each variable, because I could have a dataset with 50 variables so it would be too cumbersome to have to specify each variable name.
Lets say I have a table like this, and I want the resulting table, with the above conditions that I want a single command or single macro without specifying each individual variable:
You can use PROC GLMSELECT to generate the design matrix, which is what you are asking for.
data test;
input id v1 $ v2 $ v3 $ ;
datalines;
1 A A A
2 B B B
3 C C C
4 A B C
5 B A A
6 C B A
;
proc glmselect data=test outdesign(fullmodel)=test_design noprint ;
class v1 -- v3;
model id = v1 -- v3 /selection=none noint;
run;
You can use the -- to specify all variables between the first and last. Notice I don't have to type v2. So if you know first and the last, you can get want you want easily.
I prefer GLMMOD myself. One note, if you can, CLASS variables are usually a better way to go, but not supported by all PROCS.
/*Run model within PROC GLMMOD for it to create design matrix
Include all variables that might be in the model*/
proc glmmod data=sashelp.class outdesign=want outparm=p;
class sex age;
model weight=sex age height;
run;
/*Create rename statement automatically
THIS WILL NOT WORK IF YOUR VARIABLE NAMES WILL END UP OVER 32 CHARS*/
data p;
set p;
if _n_=1 and effname='Intercept' then
var='Col1=Intercept';
else
var=catt("Col", _colnum_, "=", catx("_", effname, vvaluex(effname)));
run;
proc sql ;
select var into :rename_list separated by " " from p;
quit;
/*Rename variables*/
proc datasets library=work nodetails nolist;
modify want;
rename &rename_list;
run;
quit;
proc print data=want;
run;
Originally from here and the post has links to several other methods.
https://communities.sas.com/t5/SAS-Communities-Library/How-to-create-dummy-variables-Categorical-Variables/ta-p/308484
Here is a worked example using your simple three observation dataset and a modified version of the PROC GLMMOD method posted by #Reeza
First let's make a sample dataset with a long character ID variable. We will introduce a numeric ROW variable that we can later use to merge the design matrix back with the input data.
data have;
input id :$21. education_lvl $ income_lvl $ ;
row+1;
datalines;
1 A A
2 B B
3 C C
;
You could set the list of variables into a macro variable since we will need to use it in multiple places.
%let varlist=education_lvl income_lvl;
Use PROC GLMMOD to generate the design matrix and the parameter list that we will later use to generate user friendly variable names.
proc glmmod data=have outdesign=design outparm=parm noprint;
class &varlist;
model row=&varlist / noint ;
run;
Now let's use the parameter list to generate rename statement to a temporary text file.
filename code temp;
data _null_;
set parm end=eof;
length rename $65 ;
rename = catx('=',cats('col',_colnum_),catx('_',effname,of &varlist));
file code ;
if _n_=1 then put 'rename ' ;
put #3 rename ;
if eof then put ';' ;
run;
Now let's merge back with the input data and rename the variables in the design matrix.
data want;
merge have design;
by row ;
%inc code / source2;
run;
I want to grab the number of variable levels as well as the variable for the output of the unique identifiers but currently my method does not work. I want to then use the unique ID's and associate numbers 1-num_levels from proc freq.
Here is what I have for proc freq:
PROC FREQ DATA=my_data (keep=IDs) nlevels;
table all/out=out_data;
%let dim=levels;
%let IDs;
run;
Then I tried to use the macro variables but it didn't work so I am including the manual version of my proc format to give a good idea of what I am trying to achieve but hopefully trying to make it more automated.
PROC FORMAT;
INVALUE INDEX
"1234" = 1
"2345" = 2
.
.
.
"8901" =25;
/*25 represents the output of the levels
variable from proc freq but I couldn't figure out how to grab that either*/
RUN;
Any help would be appreciated.
Thank you!
Here's a fully worked solution, that illustrates a the PROC FORMAT CNTLIN way of doing this. The idea here is to mask names with the observation number instead.
*Create list of unique names;
proc freq data=sashelp.class noprint;
table name/out = mask;
run;
*create control data set. Variables that need to be set are:
fmtname, start, label and type;
data name_fmt;
set mask;
fmtname = 'namefmt';
type='J';
*J specified character informat, C would be character format;
start=name;
label = put(_n_, z2.); *Use the row number as the recoded value;
run;
*create the format;
proc format cntlin=name_fmt;
run;
*Sample usage;
data class;
set sashelp.class;
name_masked = input(name, $namefmt.);
drop name;
run;
I have a null dataset such as
data a;
if 0;
run;
Now I wish to use proc report to print this dataset. Of course, there will be nothing in the report, but I want one sentence in the report said "It is a null dataset". Any ideas?
Thanks.
You can test to see if there are any observations in the dataset first. If there are observations, then use the dataset, otherwise use a dummy dataset that looks like this and print it:
data use_this_if_no_obs;
msg = 'It is a null dataset';
run;
There are plenty of ways to test datasets to see if they contain any observations or not. My personal favorite is the %nobs macro found here: https://stackoverflow.com/a/5665758/214994 (other than my answer, there are several alternate approaches to pick from, or do a google search).
Using this %nobs macro we can then determine the dataset to use in a single line of code:
%let ds = %sysfunc(ifc(%nobs(iDs=sashelp.class) eq 0, use_this_if_no_obs, sashelp.class));
proc print data=&ds;
run;
Here's some code showing the alternate outcome:
data for_testing_only;
if 0;
run;
%let ds = %sysfunc(ifc(%nobs(iDs=for_testing_only) eq 0, use_this_if_no_obs, sashelp.class));
proc print data=&ds;
run;
I've used proc print to simplify the example, but you can adapt it to use proc report as necessary.
For the no data report you don't need to know how many observations are in the data just that there are none. This example shows how I would approach the problem.
Create example data with zero obs.
data class;
stop;
set sashelp.class;
run;
Check for no obs and add one obs with missing on all vars. Note that no observation are every read from class in this step.
data class;
if eof then output;
stop;
modify class end=eof;
run;
make the report
proc report data=class missing;
column _all_;
define _all_ / display;
define name / order;
compute before name;
retain_name=name;
endcomp;
compute after;
if not missing(retain_name) then l=0;
else l=40;
msg = 'No data for this report';
line msg $varying. l;
endcomp;
run;
I'm working with a rather large several dataset that are provided to me as a CSV files. When I attempt to import one of the files the data will come in fine but, the number of variables in the file is too large for SAS, so it stops reading the variable names and starts assigning them sequential numbers. In order to maintain the variable names off of the data set I read in the file with the data row starting on 1 so it did not read the first row as variable names -
proc import file="X:\xxx\xxx\xxx\Extract\Live\Live.xlsx" out=raw_names dbms=xlsx replace;
SHEET="live";
GETNAMES=no;
DATAROW=1;
run;
I then run a macro to start breaking down the dataset and rename the variables based on the first observations in each variable -
%macro raw_sas_datasets(lib,output,start,end);
data raw_names2;
raw_names;
if _n_ ne 1 then delete;
keep A -- E &start. -- &end.;
run;
proc transpose data=raw_names2 out=raw_names2;
var A -- &end.;
run;
data raw_names2;
set raw_names2;
col1=compress(col1);
run;
data raw_values;
set raw;
keep A -- E &start. -- &end.;
run;
%macro rename(old,new);
data raw_values;
set raw_values;
rename &old.=&new.;
run;
%mend rename;
data _null_;
set raw_names2;
call execute('%rename('||_name_||","||col1||")");
run;
%macro freq(var);
proc freq data=raw_values noprint;
tables &var. / out=&var.;
run;
%mend freq;
data raw_names3;
set raw_names2;
if _n_ < 6 then delete;
run;
data _null_;
set raw_names3;
call execute('%freq('||col1||")");
run;
proc sort data=raw_values;
by StudySubjectID;
run;
data &lib..&output.;
set raw_values;
run;
%mend raw_sas_datasets;
The problem I'm running into is that the variable names are now all set properly and the data is lined up correctly, but the labels are still the original SAS assigned sequential numbers. Is there any way to set all of the labels equal to the variable names?
If you just want to remove the variable labels (at which point they default to the variable name), that's easy. From the SAS Documentation:
proc datasets lib=&lib.;
modify &output.;
attrib _all_ label=' ';
run;
I suspect you have a simpler solution than the above, though.
The actual renaming step needs to be done differently. Right now it's rewriting the entire dataset over and over again - for a lot of variables that is a terrible idea. Get your rename statements all into one datastep, or into a PROC DATASETS, or something else. Look up 'list processing SAS' for details on how to do that; on this site or on google you will find lots of solutions.
You likely can get SAS to read in the whole first line. The number of variables isn't the problem; it is probably the length of the line. There's another question that I'll find if I can on this site from a few months ago that deals with this exact problem.
My preferred option is not to use PROC IMPORT for CSVs anyway; I would suggest writing a metadata table that stores the variable names and the length/types for the variables, then using that to write import code. A little more work at first, but only has to be done once per study and you guarantee PROC IMPORT isn't making silly decisions for you.
In the library sashelp is a table vcolumn. vcolumn contains all the names of your variables for each library by table. You could write a macro that puts all your variable names into macro variables and then from there set the label.
Here's some code that I put together (not very pretty) but it does what you're looking for:
data test.label_var;
x=1;
y=1;
label x = 'xx';
label y = 'yy';
run;
proc sql noprint;
select count(*) into: cnt
from sashelp.vcolumn
where memname = 'LABEL_VAR';quit;
%let cnt = &cnt;
proc sql noprint;
select name into: name1 - :name&cnt
from sashelp.vcolumn
where memname = 'LABEL_VAR';quit;
%macro test;
%do i = 1 %to &cnt;
proc datasets library=test nolist;
modify label_var;
label &&name&i=&&name&i;
quit;
%end;
%mend test;
%test;