3d navigation and collision detection - c++

I am new to Open GL. I am trying to navigate through a tubular structure, which was developed using Open GL primitives.I have done almost that. But now my problem is to stop the camera when it is hitting on the tube boundaries. Can anybody give suggestions to solve this problem?

OpenGL is not a scene graph or a game engine. It just draws points, lines or triangles, one at a time, as pixels to a framebuffer. That's it.
Anything that goes beyond that you have to implement yourself. You want collision detection? OpenGL won't do it for you.¹ You want a scene? You'll have to implement the data structures for that yourself.
In the case of a camera in a tube the boundary condition is simple: If the camera's distance from the tube centerline (most easily expressed in cylindrical coordinates) approaches the tube radius, stop the movement in that direction.
¹ Not entirely true: You can use OpenGL to implement things like collision detection, but this is not straightforward and usually less efficient than doing it with special purpose collision detection code.

Related

Preventing Overdraw in Isometric Art

Background:
I am creating a game that presents the world in an isometric perspective, achieved by drawing isometric tiles. My current implementation is naive, using the painter's method, drawing from back to front, from bottom to top, using surface blits from tile images.
The Problem:
I'm concerned (maybe unduly so, please let me know if this is the case) about overdraw. Here's a small snapshot of a single layer of tiles:
The areas hi-lit in pink are the areas where the back-to-front, bottom-to-top method blits pixels to the canvas more than once. This is a small and contrived example, but in practice I hope to accomplish something more along the lines of this:
(image credit eBoy)
With an image as complex as this, and a tile-based implementation, each screen pixel is drawn to several times before the final image is composited, which feels like it's really inefficient. Since these are just 2D images with, in the end, one-bit alpha masks, there aren't as many concerns as there would be with 3D (e.g. no wasted lighting or transform math) but it still seems there should be a more elegant way of determining whether a pixel should be drawn or not based on whether or not it would be occluded in the final composition.
Solutions?
The best solution I've come up with so far is to:
Reverse the drawing order and draw front-to-back, top-to-bottom.
Keep a single bit per pixel fake z buffer that records whether or not a pixel has been drawn yet.
Only draw a tile if some of the pixels it covers haven't been drawn yet.
Is there a better way to do this? Are blit operations superefficient and I'm tilting at windmills here?
Windmills. Especially if you're using OpenGL-accelerated SDL2 blits.

OpenGL water refraction

I'm trying to create an OpenGL application with water waves and refraction. I need to either cast rays from the sun and then the camera and figure out where they intersect, or I need to start from the ocean floor and figure out in which direction(s, if any) I have to go in order to hit the sun or the camera. I'm kind of stuck, can any one give me an inpoint into either OpenGL ray casting or a crash course in advanced geometry? I don't want the ocean floor to be at a constant depth and I don't want the water waves to be simple sinusoidal waves.
First things first: The effect you're trying to achieve can be implemented using OpenGL, but it is not a feature of OpenGL. OpenGL by itself is just a sophisticated triangle to screen drawing API. You got some input data and write a program that performs relatively simple rasterizing drawing operations based on the input data using the OpenGL API. Shaders give it some space; you can implement a raytracer in the fragment shader.
In your case that means, you must implement a some algorithm that generates a picture like you intend. For water is must be some kind of raytracer or fake refraction method to get the effect of looking into the water. The caustics require either a full features photon mapper, or you're good with a fake effect based on the 2nd derivative of the water surface.
There is a WebGL demo, rendering stunningly good looking, interactive water: http://madebyevan.com/webgl-water/ And here's a video of it on YouTube http://www.youtube.com/watch?v=R0O_9bp3EKQ
This demo uses true raytracing (the water surface, the sphere and the pool are raytraced), the caustics are a "fake caustics" effect, based on projecting the 2nd derivative of the water surface heightmap.
There's nothing very OpenGL-specific about this.
Are you talking about caustics? Here's another good Gamasutra article.
Reflections are normally achieved by reflecting the camera in the plane of the mirror and rendering to a texture, you can apply distortion and then use it to texture the water surface. This only works well for small waves.
What you're after here is lots of little ways to cheat :-)
Techincally, all you perceive is a result of lightwaves/photons bouncing off the surfaces and propagating through mediums. For the "real deal" you'll have to trace the light directly from the Sun with each ray following the path:
hit the water surface
refract+reflect, reflected goes into the camera(*), refracted part goes further
hits the ocean bottom
reflects
hits the water from beneath
reflect+refracts, refracted part gets out of the water and hits the camera(*), reflected again goes to the ocean bottom, reflects etc.
(*) Actually, most of the rays will miss the camera, but that will be overly expensive, so this is a cheat.
Do this for at least three wavelengths - "red", "green" and "blue". Each of them will refract and reflect differently. You'll get the whole picture by combining the three.
Then you just create a texture with the rays that got into the camera and overlay it in OpenGL.
That's a straighforward, simple and very computationally expensive way that gives an approximation to the physics beyond the caustics.

Can someone describe the algorithm used by Ken Silverman's Voxlap engine?

From what I gathered he used sparse voxel octrees and raycasting. It doesn't seem like he used opengl or direct3d and when I look at the game Voxelstein it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square. Which caught me off guard I'm not sure how he is doing that without opengl or direct3d.
I tried to read through the source code but it was difficult for me to understand what was going on. I would like to implement something similar and would like the algorithm to do so.
I'm interested in how he performed rendering, culling, occlusion, and lighting. Any help is appreciated.
The algorithm is closer to ray-casting than ray-tracing. You can get an explanation from Ken Silverman himself here:
https://web.archive.org/web/20120321063223/http://www.jonof.id.au/forum/index.php?topic=30.0
In short: on a grid, store an rle list of surface voxels for each x,y stack of voxels (if z means 'up'). Assuming 4 degrees of freedom, ray-cast across it for each vertical line on the screen, and maintain a list of visible spans which is clipped as each cube is drawn. For 6 degrees of freedom, do something similar but with scanlines which are tilted in screenspace.
I didn't look at the algorithm itself, but I can tell the following based off the screenshots:
it appears that miniature cubes are actually being drawn instead of just a bunch of 2d square
Yep, that's how ray-tracing works. It doesn't draw 2d squares, it traces rays. If you trace your rays against many miniature cubes, you'll see many miniature cubes. The scene is represented by many miniature cubes (voxels), hence you see them when you look up close. It would be nice to actually smoothen the data somehow (trace against smoothed energy function) to make them look smoother.
I'm interested in how he performed rendering
by ray-tracing
culling
no need for culling when ray-tracing, particularly in a voxel scene. As you move along the ray you check only the voxels that the ray intersects.
occlusion
voxel-voxel occlusion is handled naturally by ray-tracing; it would return the first voxel hit, which is the closest. If you draw sprites you can use a Z-buffer generated by the ray-tracer.
and lighting
It's possible to approximate the local normal by looking at nearby cells and looking which are occupied and which are not. Then performing the lighting calculation. Alternatively each voxel can store the normal along with its color or other material properties.

OpenGL Collision Detection

I am currently working on designing my first FPS game using JOGL. (Java bindings for OpenGL).
So far I have been able to generate the 'world' (a series of cubes), and a player model. I have the collision detection between the player and the cubes working great.
Now I am trying to add in the guns. I have the gun models drawn correctly and loading onto player model. The first gun I'm trying to implement is a laser gun, which shoots and instantaneous line-of-sight laser at whatever you're aiming at. Before I work on implementing the enemy models, I would like to get the collision detection between the laser and the walls working.
My laser, currently, is drawn by a series of small cubes, one after the other. The first cube is drawn at the end of the players gun, then it draws continuously from there. The idea was to continue drawing the cubes of the laser until a collision was detected with something, namely the cubes in the world.
I know the locations of the cubes in the world. The problem is that I have to call glMatrixPush to draw my character model. The laser is then drawn within this modelview. Meaning that I have lost my old coordinate system - so I'm drawing the world in one system, then the lazer in another. Within this player matrix, I have go call glRotate and glTranslate several times, in order to sync everything up with the way the camera is rotating. The lazer is then built by translating along the z-axis of this new system.
My problem is that through all of these transformations, I no longer have any idea where my laser exists in the map coordinate system, primarily due to the rotations involving the camera.
Does anyone know of a method - or have any ideas, for how to solve this problem? I believe I need a way to convert the new coordinates of the laser into the old coordinates of the map, but I'm not sure how to go about undoing all of the transformations that have been done to it. There may also be some functionality provided by OpenGL to handle this sort of problem that I'm just unaware of.
You shouldn't be considering the laser as a spacial child of the character that fires it. Once its been fired, the laser is an entity of its own, so you should render as follows:
glPushMatrix(viewMatrix);
glPushMatrix(playerMatrix);
DrawPlayer();
glPopMatrix();
glPushMatrix(laserMatrix);
DrawLaser();
glPopMatrix();
glPopMatrix();
Also, be sure that you don't mix your rendering transformation logic with the game logic. You should always store the world-space position of your objects to be able to test for intersections regardless of your current OpenGL matrix stack.
Remember to be careful with spacial parent/child relationships. In practice, they aren't that frequent. For more information, google about the problems of scene graphs.
The point that was being made in the first answer is that you should never depend on the matrix to position the object in the first place. You should be keeping track of the position and rotation of the laser before you even think about drawing it. Then you use the translate and rotate commands to put it where you know it should be.
You're trying to do things backwards, and yes, that does mean you'll have to do the matrix math, and OpenGL doesn't keep track of that because the ModelView matrix is the ONLY thing that OpenGL does keep track of in regards to object positions. OpenGL has no concept of "world space" or "camera space". There is only the matrix that all input is multiplied by. It's elegantly simple... but in some cases I do prefer the way DirectX has a a separate view matrix and model matrix.
So, if you don't know where an object is located without matrix math, then I would consider that a fundamental design problem. If you don't need to know the object position, then matrix-transform to your hearts content, but if you do need it's position, start with the position.
(pretty much what the first answer says, just in a different way...)

Drawing "point-like" shapes in OpenGL, indifferent to zoom

I'm working with Qt and QWt3D Plotting tools, and extending them to provide some 3-D and 2-D plotting functionality that I need, so I'm learning some OpenGL in the process.
I am currently able to plot points using OpenGL, but only as circles (or "squares" by turning anti-aliasing off). These points act the way I like - i.e. they don't change size as I zoom in, although their x/y/z locations move appropriately as I zoom, pan, etc.
What I'd like to be able to do is plot points using a myriad of shapes (^,<,>,*,., etc.). From what I understand of OpenGL (which isn't very much) this is not trivial to accomplish because OpenGL treats everything as a "real" 3-D object, so zooming in on any openGL shape but a "point" changes the object's projected size.
After doing some reading, I think there are (at least) 2 possible solutions to this problem:
Use OpenGL textures. This doesn't seem to difficult, but I believe that the texture images will get larger and smaller as I zoom in - is that correct?
Use OpenGL polygons, lines, etc. and draw *'s, triangles, or whatever. But here again I run into the same problem - how do I prevent OpenGL from re-sizing the "points" as I zoom?
Is the solution to simply bite the bullet and re-draw the whole data set each time the user zooms or pans to make sure that the points stay the same size? Is there some way to just tell openGL to not re-calculate an object's size?
Sorry if this is in the OpenGL doc somewhere - I could not find it.
What you want is called a "point sprite." OpenGL1.4 supports these through the ARB_point_sprite extension.
Try this tutorial
http://www.ploksoftware.org/ExNihilo/pages/Tutorialpointsprite.htm
and see if it's what you're looking for.
The scene is re-drawn every time the user zooms or pans, anyway, so you might as well re-calculate the size.
You suggested using a textured poly, or using polygons directly, which sound like good ideas to me. It sounds like you want the plot points to remain in the correct position in the graph as the camera moves, but you want to prevent them from changing size when the user zooms. To do this, just resize the plot point polygons so the ratio between the polygon's size and the distance to the camera remains constant. If you've got a lot of plot points, computing the distance to the camera might get expensive because of the square-root involved, but a lookup table would probably solve that.
In addition to resizing, you'll want to keep the plot points facing the camera, so billboarding is your solution, there.
An alternative is to project each of the 3D plot point locations to find out their 2D screen coordinates. Then simply render the polygons at those screen coordinates. No re-scaling necessary. However, gluProject is quite slow, so I'd be very surprised if this wasn't orders of magnitude slower than simply rescaling the plot point polygons like I first suggested.
Good luck!
There's no easy way to do what you want to do. You'll have to dynamically resize the primitives you're drawing depending on the camera's current zoom. You can use a technique known as billboarding to make sure that your objects always face the camera.