So I have this class:
class foo {
public:
foo() { };
void me1() const {
while(1) {
std::lock_guard<std::mutex> ldock(m);
std::cout << 0;
}
}
void me2() const {
while(1) {
std::lock_guard<std::mutex> ldock(m);
std::cout << 1;
}
}
private:
std::mutex m;
};
Now I want to run this two methods in some two different threads, I do it like this:
int main() {
foo myfoo;
std::thread firstThread(&foo::me1, &myfoo);
std::thread secondThread(&foo::me2, &myfoo);
firstThread.detach();
secondThread.detach();
//while(1) { }
return 0;
}
I don't want to wait for any of this two methods to finish, they will simultaneously run until the main thread will be killed.
Is it ok to have some kind of infinite-loop at the end of main thread? (like the commented while(1) {}).
Or should I call some kinda sleep function?
You need to define an exit condition in your foo::me1() and foo::me2() . If you don't know how to do that, that
sleep(/*number of seconds you want your program to run*/ );
will do just fine.
If you define a termination clause then the bruteforce would be
to expose something like an atomic:
class foo {
public:
std::atomic<int> me1done = false;
std::atomic<int> me2done = false;
foo() { };
void me1() {
while(/* need exit condition here*/) {
std::lock_guard<std::mutex> ldock(m);
std::cout << 0;
}
me1done = true;
}
void me2() {
while(/*need exit condition here*/) {
std::lock_guard<std::mutex> ldock(m);
std::cout << 1;
}
me2done = true;
}
private:
std::mutex m;
};
and then you can check in main by polling every x-seconds.
int main(void)
{
// start your threads and detach
foo myfoo;
std::thread firstThread(&foo::me1, &myfoo);
std::thread secondThread(&foo::me2, &myfoo);
firstThread.detach();
secondThread.detach();
while( not (myfoo.me1done and myfoo.me2done ) )
{
sleep( /* some time */);
}
return 0;
}
If you want to be more elaborate you will have to work with condition variables.
If you want to determine if the two threads have finished your best bet is actually not to detach() the threads but rather join() them before exiting the main thread. That is, you'd kick off both threads and they'll run concurrently and once kicked off you simply join() each. Of course, that assumes that the threads would terminate.
Having a detach()ed thread effectively means you can never be sure if it has finished. That is generally rarely useful and I consider it a mistake that detach() was added to std::thread. However, even with detach()ed thread you can recognize when an objective is achieved without a busy wait. To that end you'd set up suitable variables indicating completion or progress and have them protected by a std::mutex. The main thread would then wait() on a std::condition_variable which gets notify_once()ed by the respective thread upon the completion/progress update which would be done in reasonable intervals. Once all threads have indicated that they are done or have achieved a suitable objective the main() thread can finish.
Using a timer alone is generally not a good approach. The signalling between threads is typically preferable and tends to create a more responsive system. You can still used a timed version of wait() (i.e., wait_until() or wait_for()), e.g., to alert upon suspecting a somehow hung or timed-out thread.
empty infinite loops as while(1) { } are UB.
adding a sleep inside is OK though.
To run infinitely foo::me1/foo::me2, you have several other choices:
int main()
{
foo myfoo;
std::thread firstThread(&foo::me1, &myfoo);
std::thread secondThread(&foo::me2, &myfoo);
firstThread.join(); // wait infinitely as it never ends.
secondThread.join(); // and so never reach
}
or simply use main thread to do one work:
int main()
{
foo myfoo;
std::thread firstThread(&foo::me1, &myfoo);
myfoo.me2(); // work infinitely as it never ends.
firstThread.join(); // and so never reach
}
Related
I have a working thread similar to the following code. In begin_work, it will check whether the working thread is executing before creating a new working thread. However, begin_work will never create the next working thread when the current thread is exited until I call end_work.
I have tried to call detach at the end of the thread and it works fine. Is it safe to call detach at the end of the thread? Or, how can I do to safely create the next working thread without calling end_work before calling begin_work?
class thread_worker {
private:
std::thread worker;
// ... other menbers
public:
thread_worker() {};
~thread_worker() { end_work(); };
void begin_work() {
if (!worker.joinable()) {
worker = std::thread { &thread_worker::do_work, this };
}
}
void do_work() {
// ... access other members ...
if (exit not by notify) {
worker.detach(); // can I call detach?
}
}
void end_work() {
if (worker.joinable()) {
// notify worker to exit
worker.join();
}
}
};
Edit:
My purpose is to call begin_work without block. If there is one working thread on execution, then the function will return directly or returns an is_working error. Otherwise, create a new working thread seamlessly.
Since std::thread::joinable() always returns true until join or detach is called. As a result, the future call of begin_work will never create the new working thread even though the current working thread has exited.
Therefore, I need a mechanism to automatically detach at the end of the thread.
I have tried to call detach at the end of the thread and it works fine
There's data race in the access to worker - it's undefined behaviour. When begin_work tests worker.joinable(), do_work might be detaching it at the same time (the call to worker.detach()).
You can instead detach the immediately when creating it:
worker = std::thread { &thread_worker::do_work, this };
worker.detach();
However, this can leave multiple threads running at the same time, which contradicts your requirement of running one worker thread at a time (but why only one? that just makes threading pointless).
Instead you can do:
void begin_work() {
end_work();
worker = std::thread { &thread_worker::do_work, this };
}
which ensures the previous thread completed.
Based on yuor edit, you only need to check whether you can join without wait - that seems to be reason you want to detach. You can instead do that with an atomic flag. Basically, you just to take care of the data race noted above.
class thread_worker {
private:
std::thread worker;
std::atomic_bool w_done {true};
// ... other menbers
public:
thread_worker() {};
~thread_worker() { end_work(); };
void begin_work() {
if (w_done) {
end_work();
worker = std::thread { &thread_worker::do_work, this };
}
}
void do_work() {
// ... access other members ...
w_done = true;
}
void end_work() {
w_done = false;
if (worker.joinable()) {
// notify worker to exit
worker.join();
}
}
};
I have a function that must not be called from more than one thread at the same time. Can you suggest some elegant assert for this?
You can use a thin RAII wrapper around std::atomic<>:
namespace {
std::atomic<int> access_counter;
struct access_checker {
access_checker() { check = ++access_counter; }
access_checker( const access_checker & ) = delete;
~access_checker() { --access_counter; }
int check;
};
}
void foobar()
{
access_checker checker;
// assert than checker.check == 1 and react accordingly
...
}
it is simplified version for single use to show the idea and can be improved to use for multiple functions if necessary
Sounds like you need a mutex. Assuming you are using std::thread you can look at the coding example in the following link for specifically using std::mutex: http://www.cplusplus.com/reference/mutex/mutex/
// mutex example
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex
std::mutex mtx; // mutex for critical section
void print_block (int n, char c) {
// critical section (exclusive access to std::cout signaled by locking mtx):
mtx.lock();
for (int i=0; i<n; ++i) { std::cout << c; }
std::cout << '\n';
mtx.unlock();
}
int main ()
{
std::thread th1 (print_block,50,'*');
std::thread th2 (print_block,50,'$');
th1.join();
th2.join();
return 0;
}
In the above code print_block locks mtx, does what it needs to do, and then unlocks mtx. If print_block is called from two different threads, one thread will lock mtx first and the other thread will block on mtx.lock() and be force to wait until the other thread calls mtx.unlock(). This means only one thread can execute the code between mtx.lock() and mtx.unlock() (exclusive) at the same time.
This assumes by "at the same time" you mean at the same literal time. If you only want one thread to be able to call a function I would recommend looking into std::this_thread::get_id which will get you the id of the current thread. An assert could be as simple as storing the owning thread in owning_thread_id and then calling assert(owning_thread_id == std::this_thread::get_id()).
This is a separate question but related to the previous question I asked here
I am using an std::thread in my C++ code to constantly poll for some data & add it to a buffer. I use a C++ lambda to start the thread like this:
StartMyThread() {
thread_running = true;
the_thread = std::thread { [this] {
while(thread_running) {
GetData();
}
}};
}
thread_running is an atomic<bool> declared in class header. Here is my GetData function:
GetData() {
//Some heavy logic
}
Next I also have a StopMyThread function where I set thread_running to false so that it exits out of the while loop in the lambda block.
StopMyThread() {
thread_running = false;
the_thread.join();
}
As I understand, I can pause & resume the thread using a std::condition_variable as pointed out here in my earlier question.
But is there a disadvantage if I just use the std::atomic<bool> thread_running to execute or not execute the logic in GetData() like below ?
GetData() {
if (thread_running == false)
return;
//Some heavy logic
}
Will this burn more CPU cycles compared to the approach of using an std::condition_variable as described here ?
A condition variable is useful when you want to conditionally halt another thread or not. So you might have an always-running "worker" thread that waits when it notices it has nothing to do to be running.
The atomic solution requires your UI interaction synchronize with the worker thread, or very complex logic to do it asynchronously.
As a general rule, your UI response thread should never block on non-ready state from worker threads.
struct worker_thread {
worker_thread( std::function<void()> t, bool play = true ):
task(std::move(t)),
execute(play)
{
thread = std::async( std::launch::async, [this]{
work();
});
}
// move is not safe. If you need this movable,
// use unique_ptr<worker_thread>.
worker_thread(worker_thread&& )=delete;
~worker_thread() {
if (!exit) finalize();
wait();
}
void finalize() {
auto l = lock();
exit = true;
cv.notify_one();
}
void pause() {
auto l = lock();
execute = false;
}
void play() {
auto l = lock();
execute = true;
cv.notify_one();
}
void wait() {
Assert(exit);
if (thread)
thread.get();
}
private:
void work() {
while(true) {
bool done = false;
{
auto l = lock();
cv.wait( l, [&]{
return exit || execute;
});
done = exit; // have lock here
}
if (done) break;
task();
}
}
std::unique_lock<std::mutex> lock() {
return std::unique_lock<std::mutex>(m);
}
std::mutex m;
std::condition_variable cv;
bool exit = false;
bool execute = true;
std::function<void()> task;
std::future<void> thread;
};
or somesuch.
This owns a thread. The thread repeatedly runs task so long as it is in play() mode. If you pause() the next time task() finishes, the worker thread stops. If you play() before the task() call finishes, it doesn't notice the pause().
The only wait is on destruction of worker_thread, where it automatically informs the worker thread it should exit and it waits for it to finish.
You can manually .wait() or .finalize() as well. .finalize() is async, but if your app is shutting down you can call it early and give the worker thread more time to clean up while the main thread cleans things up elsewhere.
.finalize() cannot be reversed.
Code not tested.
Unless I'm missing something, you already answered this in your original question: You'll be creating and destroying the worker thread each time it's needed. This may or may not be an issue in your actual application.
There's two different problems being solved and it may depend on what you're actually doing. One problem is "I want my thread to run until I tell it to stop." The other seems to be a case of "I have a producer/consumer pair and want to be able to notify the consumer when data is ready." The thread_running and join method works well for the first of those. The second you may want to use a mutex and condition because you're doing more than just using the state to trigger work. Suppose you have a vector<Work>. You guard that with the mutex, so the condition becomes [&work] (){ return !work.empty(); } or something similar. When the wait returns, you hold the mutex so you can take things out of work and do them. When you're done, you go back to wait, releasing the mutex so the producer can add things to the queue.
You may want to combine these techniques. Have a "done processing" atomic that all of your threads periodically check to know when to exit so that you can join them. Use the condition to cover the case of data delivery between threads.
std::thread::join does not return, even if the thread routine is exited.
Guess, I have a class.
class A
{
public:
A()
{
this->thr = std::thread(&A::foo, this);
}
~A()
{
this->join();
}
void join()
{
this->cond.notify_all();
if (this->thr.joinable())
{
this->thr.join();
}
}
private:
void foo()
{
std::mutex mtx;
std::unique_lock<std::mutex> lck(mtx);
this->cond.wait(lck);
MessageBox(L"I'm done!");
}
private:
std::thread thr;
std::condition_variable cond;
};
My application contains the only instance of A. It is a global variable.
If A::join is called from the destructor, std::thread::join blocks forever.
If I call A::join manually (e.g. before exiting main), everything is alright.
My main looks like this:
A a;
int main()
{
auto timeout = std::chrono::seconds(3);
std::this_thread::sleep_for(timeout);
// a.join();
}
By the way, MessageBox is always executed.
Is that the same problem as here?
Yes it is the same bug as in the referenced link since your example also hangs on _Thrd_join. You could be interrested in this question which contains a far more detailed analysis.
from your comment
"It doesn't seem to be a great solution. I works, but what if the main
is not so trivial? There're a lot of different ways of exiting from my
application. Thus, I've got to join my threads manually every time I
need it?"
how about making A a std::unique_ptr within your main. that way, no matter how your main exits, it'll always destroy A before exiting main() and you won't have this problem.
I have a vector of Timer Objects. Each Timer Object launches an std::thread that simulates a growing period. I am using a Command pattern.
What is happening is each Timer is getting executed one after another but what I really want is for one to be executed....then once finished, the next one...once finished the next...while not interfering with the main execution of the program
class Timer
{
public:
bool _bTimerStarted;
bool _bTimerCompleted;
int _timerDuration;
virtual ~Timer() { }
virtual void execute()=0;
virtual void runTimer()=0;
inline void setDuration(int _s) { _timerDuration = _s; };
inline int getDuration() { return _timerDuration; };
inline bool isTimerComplete() { return _bTimerCompleted; };
};
class GrowingTimer : public Timer
{
public:
void execute()
{
//std::cout << "Timer execute..." << std::endl;
_bTimerStarted = false;
_bTimerCompleted = false;
//std::thread t1(&GrowingTimer::runTimer, this); //Launch a thread
//t1.detach();
runTimer();
}
void runTimer()
{
//std::cout << "Timer runTimer..." << std::endl;
_bTimerStarted = true;
auto start = std::chrono::high_resolution_clock::now();
std::this_thread::sleep_until(start + std::chrono::seconds(20));
_bTimerCompleted = true;
std::cout << "Growing Timer Finished..." << std::endl;
}
};
class Timers
{
std::vector<Timer*> _timers;
struct ExecuteTimer
{
void operator()(Timer* _timer) { _timer->execute(); }
};
public:
void add_timer(Timer& _timer) { _timers.push_back(&_timer); }
void execute()
{
//std::for_each(_timers.begin(), _timers.end(), ExecuteTimer());
for (int i=0; i < _timers.size(); i++)
{
Timer* _t = _timers.at(i);
_t->execute();
//while ( ! _t->isTimerComplete())
//{
//}
}
}
};
Executing the above like:
Timers _timer;
GrowingTimer _g, g1;
_g.setDuration(BROCCOLI::growTimeSeconds);
_g1.setDuration(BROCCOLI::growTimeSeconds);
_timer.add_timer(_g);
_timer.add_timer(_g1);
start_timers();
}
void start_timers()
{
_timer.execute();
}
In Timers::execute I am trying a few different ways to execute the first and not execute the
next until I somehow signal it is done.
UPDATE:
I am now doing this to execute everything:
Timers _timer;
GrowingTimer _g, g1;
_g.setDuration(BROCCOLI::growTimeSeconds);
_g1.setDuration(BROCCOLI::growTimeSeconds);
_timer.add_timer(_g);
_timer.add_timer(_g1);
//start_timers();
std::thread t1(&Broccoli::start_timers, this); //Launch a thread
t1.detach();
}
void start_timers()
{
_timer.execute();
}
The first time completes (I see the "completed" cout), but crashes at _t->execute(); inside the for loop with an EXEC_BAD_ACCESS. I added a cout to check the size of the vector and it is 2 so both timers are inside. I do see this in the console:
this Timers * 0xbfffd998
_timers std::__1::vector<Timer *, std::__1::allocator<Timer *> >
if I change the detach() to join() everything completes without the crash, but it blocks execution of my app until those timers finish.
Why are you using threads here? Timers::execute() calls execute on a timer, then waits for it to finish, then calls execute on the next, and so forth. Why don't you just call the timer function directly in Timers::execute() rather than spawning a thread and then waiting for it?
Threads allow you to write code that executes concurrently. What you want is serial execution, so threads are the wrong tool.
Update: In the updated code you run start_timers on a background thread, which is good. However, by detaching that thread you leave the thread running past the end of the scope. This means that the timer objects _g and _g1 and even the Timers object _timers are potentially destroyed before the thread has completed. Given the time-consuming nature of the timers thread, and the fact that you used detach rather than join in order to avoid your code blocking, this is certainly the cause of your problem.
If you run code on a thread then you need to ensure that all objects accessed by that thread have a long-enough lifetime that they are still valid when the thread accesses them. For detached threads this is especially hard to achieve, so detached threads are not recommended.
One option is to create an object containing _timers, _g and _g1 along side the thread t1, and have its destructor join with the thread. All you need to do then is to ensure that the object lives until the point that it is safe to wait for the timers to complete.
If you don't want to interfere with the execution of the program, you could do something like #Joel said but also adding a thread in the Timers class which would execute the threads in the vector.
You could include a unique_ptr to the thread in GrowingTimer instead of creating it as a local object in execute and calling detach. You can still create the thread in execute, but you would do it with a unique_ptr::reset call.
Then use join instead of isTimerComplete (add a join function to the Timer base class). The isTimerComplete polling mechanism will be extremely inefficient because it will basically use up that thread's entire time slice continually polling, whereas join will block until the other thread is complete.
An example of join:
#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
void threadMain()
{
this_thread::sleep_for(chrono::seconds(5));
cout << "Done sleeping\n";
}
int main()
{
thread t(threadMain);
for (int i = 0; i < 10; ++i)
{
cout << i << "\n";
}
t.join();
cout << "Press Enter to exit\n";
cin.get();
return 0;
}
Note how the main thread keeps running while the other thread does its thing. Note that Anthony's answer is right in that it doesn't really seem like you need more than one background thread that just executes tasks sequentially rather than starting a thread and waiting for it to finish before starting a new one.