Unhandled exception. Access violation reading location - c++

I'm currently writing a BLOB detection algorithm. When I run it I get the error
Unhandled exception at 0x00007FF70476CDA7 in blobdetector.exe: 0xC0000005:
Access violation reading location 0x0000007BDDA0347D.
This is the part of the code where it breaks.
The debugger stops at the last line before the if(val == 255)
void connectivity(BlobBurnMat temp, size_t y, size_t x){
uchar* ptr = (uchar*)temp.getTemp().data;
size_t min_y = temp.getTemp().rows, min_x = temp.getTemp().cols, max_y = 0, max_x = 0;
for (int i = 0; i < 4; i++){
int kernel[4][2] = { { 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 } };
int temp_y = y + kernel[i][0];
int temp_x = x + kernel[i][1];
uchar val = ptr[temp.getTemp().step * temp_y + temp_x]; //breaks here
if (val == 255) {
temp.setValZero(x, y);
x = temp_x;
y = temp_y;
if (temp_x > max_x)
max_x = temp_x;
if(temp_x < min_x)
min_x = temp_x;
if (temp_y > max_y)
max_y = temp_y;
if (temp_y < min_y)
min_y = temp_y;
int pass_x = ((max_x - min_x) / 2);
int pass_y((max_y - min_y) / 2);
setCoordinates(pass_x, pass_y);
connectivity(temp, y, x);
}
}
}
Here is the rest of the code. The above connectivity() method is in the BLOB class.
#include "opencv2/opencv.hpp"
#include<stdio.h>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace std;
class BlobBurnMat{
//Class used to store a copy of the source image where pixels get burned in BLOB finding.
private:
Mat temp;
public:
void initiate(Mat temp){
this -> temp = temp;
}
Mat getTemp(){
return temp;
}
void setValZero(int x, int y){
temp.at<uchar>(y, x) = 0;
}
};
class BLOB{
//BLOB class to store coordinates of the BLOBs before they are added to the vector-array-list-thingamajig
private:
int x, y;
public:
void setCoordinates(int x, int y){
this->x = x;
this->y = y;
}
int getX(){
return x;
}
int getY(){
return y;
}
void connectivity(BlobBurnMat temp){
connectivity(temp, x, y);
}
void connectivity(BlobBurnMat temp, int y, int x){
uchar* ptr = (uchar*)temp.getTemp().data;
int min_y = temp.getTemp().rows, min_x = temp.getTemp().cols, max_y = 0, max_x = 0;
for (int i = 0; i < 4; i++){
int kernel[4][2] = { { 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 } };
int temp_y = y + kernel[i][0];
int temp_x = x + kernel[i][1];
uchar val = ptr[temp.getTemp().step * temp_y + temp_x];
if (val == 255) {
temp.setValZero(x, y);
x = temp_x;
y = temp_y;
if (temp_x > max_x)
max_x = temp_x;
if(temp_x < min_x)
min_x = temp_x;
if (temp_y > max_y)
max_y = temp_y;
if (temp_y < min_y)
min_y = temp_y;
int pass_x = ((max_x - min_x) / 2);
int pass_y((max_y - min_y) / 2);
setCoordinates(pass_x, pass_y);
connectivity(temp, y, x);
}
}
}
};
vector<Point2i> getBlobCoordinates(Mat src){
BlobBurnMat *temp = new BlobBurnMat();
temp->initiate(src.clone());
vector<Point2i> blobCoordinates; //Vector holding all BLOB coordinates
Point2i blobCoords; //Coordinates of a single BLOB
//Go through the binary matrix looking for white pixels.
for (size_t y = 0; y < src.rows; y++) {
for (size_t x = 0; x < src.cols; x++) {
uchar* ptr = (uchar*)temp->getTemp().data;
uchar val = ptr[temp->getTemp().step * y + x];
if (val == 255){
BLOB *blob = new BLOB();
blob->setCoordinates(x, y);
blob->connectivity(*temp);
blobCoords.x = blob->getX();
blobCoords.y = blob->getY();
blobCoordinates.push_back(blobCoords); //add a new element to the vector.
}
}
}
return blobCoordinates;
}
int main(int, char){
Mat src;
String path = "C:/Users/Runagar/Desktop/segment.jpg";
src = imread(path, 0);
if (src.data && !src.empty()){
imshow("blobie", src);
}
else cout << "You fucked up ";
vector <Point2i> blobCoordinates = getBlobCoordinates(src);
for (int k = 0; k < blobCoordinates.size(); k++)
cout << blobCoordinates[k];
waitKey(0);
return 0;
}
Thanks in advance!

When i == 2 and x == 0, temp_x == -1 so you read 1 byte before ptr outside the memory allocaded.
You have to handle the case when x == 0, y == 0, x == src.cols and y == src.rows.

Mat getTemp() returns a copy of your Mat instance.
uchar* ptr = (uchar*)temp.getTemp().data; retrieves a pointer from a temporary Mat instance. This instance is then immediately deleted, and you're left with a pointer to (presumably) properly deleted data.
Try Mat & getTemp() instead.

Related

Region Growing OpenCv c/c++ with onMouse

I am encountering an issue with my code. I aim to generate three seeds at different locations in the image and observe the pixels growing. I am using the onMouse function to select the areas, however, only the last point is being recognized. What changes do I need to make for this code to function correctly?
Pont seed,seed2,seed3;
bool clicked = false;
void onmouse(int event, int x, int y, int flags, void* userdata)
{
if (event == EVENT_LBUTTONDOWN) {
seed = Point2i(y, x);
seed2 = Point2i(y, x);
seed3 = Point2i(y, x);
clicked = true;
}
}
int main() {
string path = "C:/img_4.jpg";
Mat im_gray = imread(path, IMREAD_GRAYSCALE);
Mat im_new;
int threshold = 50;
imshow("Image", im_gray);
setMouseCallback("Image", onmouse, NULL);
while (!clicked) {
waitKey(0);
}
regionGrowing_teste1(im_gray, im_new, seed, seed2, seed3, threshold);
imshow("Segmented", im_new);
waitKey(0);
return 0;
}
Mat regionGrowing_teste1(Mat& src, Mat& dst, Point2i seed1, Point2i seed2, Point2i seed3, int threshold) {
dst = Mat::zeros(src.rows, src.cols, CV_8UC1);
vector<Point2i> queue1, queue2, queue3;
queue1.push_back(seed1);
queue2.push_back(seed2);
queue3.push_back(seed3);
int intensity1 = (int)src.at<uchar>(seed1);
int intensity2 = (int)src.at<uchar>(seed2);
int intensity3 = (int)src.at<uchar>(seed3);
int x, y;
while (!queue1.empty() || !queue2.empty() || !queue3.empty()) {
if (!queue1.empty()) {
Point2i p = queue1.back();
queue1.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity1 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue1.push_back(Point2i(x + 1, y));
queue1.push_back(Point2i(x - 1, y));
queue1.push_back(Point2i(x, y + 1));
queue1.push_back(Point2i(x, y - 1));
}
}
}
}
if (!queue2.empty()) {
Point2i p = queue2.back();
queue2.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity2 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue2.push_back(Point2i(x + 1, y));
queue2.push_back(Point2i(x - 1, y));
queue2.push_back(Point2i(x, y + 1));
queue2.push_back(Point2i(x, y - 1));
}
}
}
}
// process points in queue3
if (!queue3.empty()) {
Point2i p = queue3.back();
queue3.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity3 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue3.push_back(Point2i(x + 1, y));
queue3.push_back(Point2i(x - 1, y));
queue3.push_back(Point2i(x, y + 1));
queue3.push_back(Point2i(x, y - 1));
}
}
}
}
}
for (int i = 0; i < src.rows; i++) {
for (int j = 0; j < src.cols; j++) {
if (dst.at<uchar>(i, j) == 0) {
dst.at<uchar>(i, j) = src.at<uchar>(i, j);
}
}
}
return dst;
}
I hope to see the placement of three points and watch them grow.

Scaling png font down

Is there a way to scale down with highest quality a font which is png image in opengl at startup? I tried gluScaleImage but there are many artefacts. Is there anything that uses lanczos or something like that? I don't want to write a shader or anything that does the scaling runtime.
This is based on an algorithm, I copied decades ago from the German c't Magazin, and still use it from time to time for similar issues like described by OP.
bool scaleDown(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w > 0 && w <= wSrc && h > 0 && h <= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
const double sxy = sx * sy;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd - (yEndInt == yEnd);
const double tFrm = 1 + yStartInt - yStart, bFrm = yEnd - yEndInt;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc);
const int xStartInt = (int)xStart;
const int xEndInt = (int)xEnd - (xEndInt == xEnd);
double lFrm = 1 + xStartInt - xStart, rFrm = xEnd - xEndInt;
double pixel[3] = { 0.0, 0.0, 0.0 }; // values of target pixel
for (int i = yStartInt; i <= yEndInt; ++i) {
int jData = i * bPRSrc + xStartInt * 3;
for (int j = xStartInt; j <= xEndInt; ++j) {
double pixelAdd[3];
for (int k = 0; k < 3; ++k) {
pixelAdd[k] = (double)dataSrc[jData++] / sxy;
}
if (j == xStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= lFrm;
} else if (j == xEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= rFrm;
}
if (i == yStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= tFrm;
} else if (i == yEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= bFrm;
}
for (int k = 0; k < 3; ++k) pixel[k] += pixelAdd[k];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
// done
return true;
}
If I got it right, this implements a bilinear interpolation.
I don't dare to call it a Minimal Complete Verifiable Example although this is what I intended to do.
The complete sample application:
A simplified class Image
image.h:
#ifndef IMAGE_H
#define IMAGE_H
#include <vector>
// convenience type for bytes
typedef unsigned char uint8;
// image helper class
class Image {
private: // variables:
int _w, _h; // image size
size_t _bPR; // bytes per row
std::vector<uint8> _data; // image data
public: // methods:
// constructor.
Image(): _w(0), _h(0), _bPR(0) { }
// destructor.
~Image() = default;
// copy constructor.
Image(const Image&) = delete; // = default; would work as well.
// copy assignment.
Image& operator=(const Image&) = delete; // = default; would work as well.
// returns width of image.
int w() const { return _w; }
// returns height of image.
int h() const { return _h; }
// returns bytes per row.
size_t bPR() const { return _bPR; }
// returns pointer to image data.
const uint8* data(
int y = 0) // row number
const {
return &_data[y * _bPR];
}
// returns data size (in bytes).
size_t size() const { return _data.size(); }
// clears image.
void clear();
// resizes image.
uint8* resize( // returns allocated buffer
int w, // image width
int h, // image height
int bPR); // bytes per row
// returns pixel.
int getPixel(
int x, // column
int y) // row
const;
// sets pixel.
void setPixel(
int x, // column
int y, // row
uint8 r, uint8 g, uint8 b);
// sets pixel.
void setPixel(
int x, // column
int y, // row
int value) // RGB value
{
setPixel(x, y, value & 0xff, value >> 8 & 0xff, value >> 16 & 0xff);
}
};
// helper functions:
inline uint8 getR(int value) { return value & 0xff; }
inline uint8 getG(int value) { return value >> 8 & 0xff; }
inline uint8 getB(int value) { return value >> 16 & 0xff; }
#endif // IMAGE_H
image.cc:
#include <cassert>
#include "image.h"
// clears image.
void Image::clear()
{
_data.clear(); _w = _h = _bPR = 0;
}
// allocates image data.
uint8* Image::resize( // returns allocated buffer
int w, // image width
int h, // image height
int bPR) // bits per row
{
assert(w >= 0 && 3 * w <= bPR);
assert(h >= 0);
_w = w; _h = h; _bPR = bPR;
const size_t size = h * bPR;
_data.resize(size);
return _data.data();
}
// returns pixel.
int Image::getPixel(
int x, // column
int y) // row
const {
assert(x >= 0 && x < _w);
assert(y >= 0 && y < _h);
const size_t offs = y * _bPR + 3 * x;
return _data[offs + 0]
| _data[offs + 1] << 8
| _data[offs + 2] << 16;
}
// sets pixel.
void Image::setPixel(
int x, // column
int y, // row
uint8 r, uint8 g, uint8 b) // R, G, B values
{
assert(x >= 0 && x < _w);
assert(y >= 0 && y < _h);
const size_t offs = y * _bPR + 3 * x;
_data[offs + 0] = r;
_data[offs + 1] = g;
_data[offs + 2] = b;
}
Image Scaling
imageScale.h:
#ifndef IMAGE_SCALE_H
#define IMAGE_SCALE_H
#include "image.h"
/* scales an image to a certain width and height.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
bool scaleTo( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
int w, int h, // destination width and height
int align = 4); // row alignment
/* scales an image about a certain horizontal/vertical scaling factor.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
inline bool scaleXY( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
double sX, // horizontal scaling factor (must be > 0 but not too large)
double sY, // vertical scaling factor (must be > 0 but not too large)
int align = 4) // row alignment
{
return sX > 0.0 && sY > 0.0
? scaleTo(imgSrc, imgDst,
(int)(sX * imgSrc.w()), (int)(sY * imgSrc.h()), align)
: false;
}
/* scales an image about a certain scaling factor.
*
* Note:
* imgSrc and imgDst may not be identical.
*/
inline bool scale( // returns true if successful
const Image &imgSrc, // source image
Image &imgDst, // destination image
double s, // scaling factor (must be > 0 but not too large)
int align = 4) // row alignment
{
return scaleXY(imgSrc, imgDst, s, s, align);
}
#endif // IMAGE_SCALE_H
imageScale.cc:
#include <cassert>
#include <algorithm>
#include "imageScale.h"
namespace {
template <typename VALUE>
VALUE clip(VALUE value, VALUE min, VALUE max)
{
return value < min ? min : value > max ? max : value;
}
bool scaleDown(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w > 0 && w <= wSrc && h > 0 && h <= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
const double sxy = sx * sy;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd - (yEndInt == yEnd);
const double tFrm = 1 + yStartInt - yStart, bFrm = yEnd - yEndInt;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc);
const int xStartInt = (int)xStart;
const int xEndInt = (int)xEnd - (xEndInt == xEnd);
double lFrm = 1 + xStartInt - xStart, rFrm = xEnd - xEndInt;
double pixel[3] = { 0.0, 0.0, 0.0 }; // values of target pixel
for (int i = yStartInt; i <= yEndInt; ++i) {
int jData = i * bPRSrc + xStartInt * 3;
for (int j = xStartInt; j <= xEndInt; ++j) {
double pixelAdd[3];
for (int k = 0; k < 3; ++k) {
pixelAdd[k] = (double)dataSrc[jData++] / sxy;
}
if (j == xStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= lFrm;
} else if (j == xEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= rFrm;
}
if (i == yStartInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= tFrm;
} else if (i == yEndInt) {
for (int k = 0; k < 3; ++k) pixelAdd[k] *= bFrm;
}
for (int k = 0; k < 3; ++k) pixel[k] += pixelAdd[k];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
// done
return true;
}
bool scaleUp(
const Image &imgSrc,
Image &imgDst,
int w, int h,
int align)
{
const int wSrc = imgSrc.w(), hSrc = imgSrc.h();
assert(w && w >= wSrc && h && h >= hSrc);
// compute scaling factors
const double sx = (double)wSrc / (double)w;
const double sy = (double)hSrc / (double)h;
// prepare destination image
imgDst.resize(w, h, (w * 3 + align - 1) / align * align);
// cache some data
const uint8 *const dataSrc = imgSrc.data();
const int bPRSrc = imgSrc.bPR();
// perform scaling
for (int y = 0; y < h; ++y) {
const double yStart = sy * y;
const double yEnd = std::min(sy * (y + 1), (double)hSrc - 1);
const int yStartInt = (int)yStart;
const int yEndInt = (int)yEnd;
if (yStartInt < yEndInt) {
const double bFract = clip((double)((yEnd - yEndInt) / sy), 0.0, 1.0);
const double tFract = 1.0 - bFract;
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc - 1);
const int xStartInt = (int)xStart, xEndInt = (int)xEnd;
double pixel[4];
if (xStartInt < xEndInt) {
const double rFract
= clip((double)((xEnd - xEndInt) / sx), 0.0, 1.0);
const double lFract = 1.0 - rFract;
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = tFract * lFract * dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += tFract * rFract * dataSrc[jData++];
}
jData = yEndInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * lFract *dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * rFract *dataSrc[jData++];
}
} else {
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = tFract * dataSrc[jData++];
}
jData = yEndInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] += bFract * dataSrc[jData++];
}
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
} else {
for (int x = 0; x < w; ++x) {
const double xStart = sx * x;
const double xEnd = std::min(sx * (x + 1), (double)wSrc - 1);
const int xStartInt = (int)xStart, xEndInt = (int)xEnd;
double pixel[3];
if (xStartInt < xEndInt) {
const double rFract
= clip((double)((xEnd - xEndInt) / sx), 0.0, 1.0);
const double lFract = 1.0 - rFract;
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) {
pixel[k] = lFract * dataSrc[jData++];
}
for (int k = 0; k < 3; ++k) {
pixel[k] += rFract * dataSrc[jData++];
}
} else {
int jData = yStartInt * bPRSrc + xStartInt * 3;
for (int k = 0; k < 3; ++k) pixel[k] = dataSrc[jData++];
}
imgDst.setPixel(x, y,
(uint8)pixel[0], (uint8)pixel[1], (uint8)pixel[2]);
}
}
}
// done
return true;
}
} // namespace
bool scaleTo(const Image &imgSrc, Image &imgDst, int w, int h, int align)
{
Image imgTmp;
return w <= 0 || h <= 0 ? false
: w >= imgSrc.w() && h >= imgSrc.h()
? scaleUp(imgSrc, imgDst, w, h, align)
: w <= imgSrc.w() && h <= imgSrc.h()
? scaleDown(imgSrc, imgDst, w, h, align)
: w >= imgSrc.w()
? scaleUp(imgSrc, imgTmp, w, imgSrc.h(), 1)
&& scaleDown(imgTmp, imgDst, w, h, align)
: scaleDown(imgSrc, imgTmp, w, imgSrc.h(), 1)
&& scaleUp(imgTmp, imgDst, w, h, align);
}
PPM file IO
imagePPM.h:
#ifndef IMAGE_PPM_H
#define IMAGE_PPM_H
#include <iostream>
#include "image.h"
// reads a binary PPM file.
bool readPPM( // returns true if successful
std::istream &in, // input stream (must be opened with std::ios::binary)
Image &img, // image to read into
int align = 4); // row alignment
// writes binary PPM file.
bool writePPM( // returns true if successful
std::ostream &out, // output stream (must be opened with std::ios::binary)
const Image &img); // image to write from
#endif // IMAGE_PPM_H
imagePPM.cc:
#include <sstream>
#include <string>
#include "imagePPM.h"
// reads a binary PPM file.
bool readPPM( // returns true if successful
std::istream &in, // input stream (must be opened with std::ios::binary)
Image &img, // image to read into
int align) // row alignment
{
// parse header
std::string buffer;
if (!getline(in, buffer)) return false;
if (buffer != "P6") {
std::cerr << "Wrong header! 'P6' expected.\n";
return false;
}
int w = 0, h = 0, t = 0;
for (int i = 0; i < 3;) {
if (!getline(in, buffer)) return false;
if (buffer.empty()) continue; // skip empty lines
if (buffer[0] == '#') continue; // skip comments
std::istringstream str(buffer);
switch (i) {
case 0:
if (!(str >> w)) continue;
++i;
case 1:
if (!(str >> h)) continue;
++i;
case 2:
if (!(str >> t)) continue;
++i;
}
}
if (t != 255) {
std::cerr << "Unsupported format! t = 255 expected.\n";
return false;
}
// allocate image buffer
uint8 *data = img.resize(w, h, (w * 3 + align - 1) / align * align);
// read data
for (int i = 0; i < h; ++i) {
if (!in.read((char*)data, 3 * img.w())) return false;
data += img.bPR();
}
// done
return true;
}
// writes binary PPM file.
bool writePPM( // returns true if successful
std::ostream &out, // output stream (must be opened with std::ios::binary)
const Image &img) // image to write from
{
// write header
if (!(out << "P6\n" << img.w() << ' ' << img.h() << " 255\n")) return false;
// write image data
for (size_t y = 0; y < img.h(); ++y) {
const uint8 *const data = img.data(y);
if (!out.write((const char*)data, 3 * img.w())) return false;
}
// done
return true;
}
The main application
scaleRGBImg.cc:
#include <iostream>
#include <fstream>
#include <string>
#include "image.h"
#include "imagePPM.h"
#include "imageScale.h"
int main(int argc, char **argv)
{
// read command line arguments
if (argc <= 3) {
std::cerr << "Missing arguments!\n";
std::cout
<< "Usage:\n"
<< " scaleRGBImg IN_FILE SCALE OUT_FILE\n";
return 1;
}
const std::string inFile = argv[1];
char *end;
const double s = std::strtod(argv[2], &end);
if (end == argv[2] || *end != '\0') {
std::cerr << "Invalid scale factor '" << argv[2] << "'!\n";
return 1;
}
if (s <= 0.0) {
std::cerr << "Invalid scale factor " << s << "!\n";
return 1;
}
const std::string outFile = argv[3];
// read image
Image imgSrc;
{ std::ifstream fIn(inFile.c_str(), std::ios::binary);
if (!readPPM(fIn, imgSrc)) {
std::cerr << "Reading '" << inFile << "' failed!\n";
return 1;
}
}
// scale image
Image imgDst;
if (!scale(imgSrc, imgDst, s)) {
std::cerr << "Scaling failed!\n";
return 1;
}
// write image
{ std::ofstream fOut(outFile.c_str(), std::ios::binary);
if (!writePPM(fOut, imgDst) || (fOut.close(), !fOut.good())) {
std::cerr << "Writing '" << outFile << "' failed!\n";
return 1;
}
}
// done
return 0;
}
Test
Compiled in cygwin64:
$ g++ -std=c++11 -o scaleRGBImg scaleRGBImg.cc image.cc imagePPM.cc imageScale.cc
$
A sample image test.ppm for a test – converted to PPM in GIMP:
Test with the sample image:
$ for I in 0.8 0.6 0.4 0.2 ; do echo ./scaleRGBImg test.ppm $I test.$I.ppm ; done
./scaleRGBImg test.ppm 0.8 test.0.8.ppm
./scaleRGBImg test.ppm 0.6 test.0.6.ppm
./scaleRGBImg test.ppm 0.4 test.0.4.ppm
./scaleRGBImg test.ppm 0.2 test.0.2.ppm
$ for I in 0.8 0.6 0.4 0.2 ; do ./scaleRGBImg test.ppm $I test.$I.ppm ; done
$
This is what came out:
test.0.8.ppm:
test.0.6.ppm:
test.0.4.ppm:
test.0.2.ppm:

Error in OpenCV Edgeboxes sample program

I have tried the new OpenCV edge boxes implementation. I ran the edgeboxes_demo program from OpenCV ximgproc samples and it causes the following assertion failure.
OpenCV(3.4.1) Error: Assertion failed ((unsigned)(i1 *
DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())) in
cv::Mat::at, file
C:\OpenCV\opencv-3.4.1\modules\core\include\opencv2/core/mat.inl.hpp,
line 1107
Tried to follow the error and found that it was caused by the prepDataStructsfuntion of the edge boxes class. The code of the function is given below.
I have tried changing
for (i = 0; i < n; i++) _sDone.at<int>(0,i) = -1;
to
for (i = 0; i < n; i++) _sDone.at<int>(i,0) = -1;
but the problem remains.
void EdgeBoxesImpl::prepDataStructs(Mat &edgeMap)
{
int y, x, i;
// create _segIImg
Mat E1 = Mat::zeros(w, h, DataType<float>::type);
for (i=0; i < _segCnt; i++)
{
if (_segMag[i] > 0) E1.at<float>(_segP[i].x, _segP[i].y) = _segMag[i];
}
_segIImg = Mat::zeros(w+1, h+1, DataType<float>::type);
_magIImg = Mat::zeros(w+1, h+1, DataType<float>::type);
for (x=1; x < w; x++)
{
const float *e_ptr = edgeMap.ptr<float>(x);
const float *e1_ptr = E1.ptr<float>(x);
const float *si0_ptr = _segIImg.ptr<float>(x);
float *si1_ptr = _segIImg.ptr<float>(x+1);
const float *mi0_ptr = _magIImg.ptr<float>(x);
float *mi1_ptr =_magIImg.ptr<float>(x+1);
for (y=1; y < h; y++)
{
// create _segIImg
si1_ptr[y+1] = e1_ptr[y] + si0_ptr[y+1] + si1_ptr[y] - si0_ptr[y];
float e = e_ptr[y] > _edgeMinMag ? e_ptr[y] : 0;
// create _magIImg
mi1_ptr[y+1] = e +mi0_ptr[y+1] + mi1_ptr[y] - mi0_ptr[y];
}
}
// create remaining data structures
int s = 0;
int s1;
_hIdxs.resize(h);
_hIdxImg = Mat::zeros(w, h, DataType<int>::type);
for (y = 0; y < h; y++)
{
s = 0;
_hIdxs[y].push_back(s);
for (x = 0; x < w; x++)
{
s1 = _segIds.at<int>(x, y);
if (s1 != s)
{
s = s1;
_hIdxs[y].push_back(s);
}
_hIdxImg.at<int>(x, y) = (int)_hIdxs[y].size() - 1;
}
}
_vIdxs.resize(w);
_vIdxImg = Mat::zeros(w, h, DataType<int>::type);
for (x = 0; x < w; x++)
{
s = 0;
_vIdxs[x].push_back(s);
for (y = 0; y < h; y++)
{
s1 = _segIds.at<int>(x, y);
if (s1 != s)
{
s = s1;
_vIdxs[x].push_back(s);
}
_vIdxImg.at<int>(x, y) = (int)_vIdxs[x].size() - 1;
}
}
// initialize scoreBox() data structures
int n = _segCnt + 1;
_sWts = Mat::zeros(n, 1, DataType<float>::type);
_sDone = Mat::zeros(n, 1, DataType<int>::type);
_sMap = Mat::zeros(n, 1, DataType<int>::type);
_sIds = Mat::zeros(n, 1, DataType<int>::type);
for (i = 0; i < n; i++) _sDone.at<int>(0, i) = -1;
_sId = 0;
}
After changing in the src file it is required to rebuild the OpenCV library and link it to the project.

Implementation of Harris Corner Detector using Sobel and Gaussian Blur in C++

I want to implement the harris corner detector. I found this page to be very helpful, since it shows how the detector is implemented using the basic opencv functions (like gaussianBlur and Sobel):
https://compvisionlab.wordpress.com/2013/03/02/harris-interest-point-detection-implementation-opencv/
Now I even want to implement Gaussian Blur and Sobel. If I run my Gaussian or Sobel over some Images it works but in combination with my Corner Detector it does not work. Can anybody help me please. The full Code is below, thx.
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray, dst;
int thresh = 200;
int max_thresh = 255;
char* source_window = "Source Image";
char* corners_window = "Corner Image";
/// Function header
void cornerHarris_demo(int, void*);
void cornerHarrisMe(int, int, double);
int xGradient(Mat, int, int);
int yGradient(Mat, int, int);
void SobelMe(Mat&,Mat&,int,int);
int borderCheck(int M, int x);
void SepGaussian(Mat&, Mat&, int, int);
/** #function main */
int main(int argc, char** argv)
{
/// Load source image and convert it to gray
src = imread("data/a-real-big-church.jpg", 1);
//Mat src_gray(src.size(), CV_8UC1);
cvtColor(src, src_gray, CV_BGR2GRAY);
/// Create a window and a trackbar
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
createTrackbar("Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo);
imshow(source_window, src);
cornerHarris_demo(0, 0);
waitKey(0);
return(0);
}
/** #function cornerHarris_demo */
void cornerHarris_demo(int, void*)
{
Mat dst_norm, dst_norm_scaled;
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
cornerHarrisMe(blockSize, apertureSize, k);
/// Normalizing
normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(dst_norm, dst_norm_scaled);
/// Drawing a circle around corners
for (int j = 0; j < dst_norm.rows; j++)
{
for (int i = 0; i < dst_norm.cols; i++)
{
if ((int)dst_norm.at<float>(j, i) > thresh)
{
circle(dst_norm_scaled, Point(i, j), 5, Scalar(255), 2, 8, 0);
}
}
}
/// Showing the result
namedWindow(corners_window, CV_WINDOW_AUTOSIZE);
imshow(corners_window, dst_norm_scaled);
}
void cornerHarrisMe(int blockSize, int apertureSize, double k)
{
Mat x2y2, xy, mtrace, x_der, y_der, x2_der, y2_der, xy_der, x2g_der, y2g_der, xyg_der;
//1: calculate x and y derivative of image via Sobel
SobelMe(src_gray, x_der, 1, 0);
SobelMe(src_gray, y_der, 0, 1);
//2: calculate other three images in M
pow(x_der, blockSize, x2_der);
pow(y_der, blockSize, y2_der);
multiply(x_der, y_der, xy_der);
//3: gaussain
SepGaussian(x2_der, x2g_der, 1, 0);
SepGaussian(y2_der, y2g_der, 0, 1);
SepGaussian(xy_der, xyg_der, 1, 1);
//4. calculating R with k
multiply(x2g_der, y2g_der, x2y2);
multiply(xyg_der, xyg_der, xy);
pow((x2g_der + y2g_der), blockSize, mtrace);
dst = (x2y2 - xy) - k * mtrace;
}
// gradient in the x direction
int xGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y, x - 1) +
image.at<uchar>(y + 1, x - 1) -
image.at<uchar>(y - 1, x + 1) -
2 * image.at<uchar>(y, x + 1) -
image.at<uchar>(y + 1, x + 1);
}
// gradient in the y direction
int yGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y - 1, x) +
image.at<uchar>(y - 1, x + 1) -
image.at<uchar>(y + 1, x - 1) -
2 * image.at<uchar>(y + 1, x) -
image.at<uchar>(y + 1, x + 1);
}
void SobelMe(Mat& source, Mat& destination, int xOrder, int yOrder){
int gradX, gradY, sum;
destination = source.clone();
if (xOrder == 1 && yOrder == 0){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
sum = abs(gradX);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 0 && yOrder == 1){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradY = yGradient(source, x, y);
sum = abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 1 && yOrder == 1)
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
gradY = yGradient(source, x, y);
sum = abs(gradX) + abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
int borderCheck(int M, int x){
if (x < 0)
return -x - 1;
if (x >= M)
return 2 * M - x - 1;
return x;
}
void SepGaussian(Mat& source, Mat& desination, int sigmaX, int sigmaY){
// coefficients of 1D gaussian kernel with sigma = 1
double coeffs[] = { 0.0545, 0.2442, 0.4026, 0.2442, 0.0545 };
Mat tempX, tempY;
float sum, x1, y1;
desination = source.clone();
tempY = source.clone();
tempX = source.clone();
// along y - direction
if (sigmaX == 0 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along x - direction
else if (sigmaX == 1 && sigmaY == 0){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along xy - direction
else if (sigmaX == 1 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
tempY.at<uchar>(y, x) = sum;
}
}
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * tempY.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
}
The Result:
Here is the a picture of the Result.
The Result is now the other way around, it detects areas where are no Corners.
In case there are some questions, feel free to ask me.

sub2Ind matlab to c++/opencv conversion

I'm trying to create this code in c++/ I'm using openCV but don't have to.
wi = size(Gr, 2);
he = size(Gr, 1);
cropFactor = 0.10;
[x, y] = meshgrid( round(cropFactor * wi):round( (1-cropFactor)*wi ), round(cropFactor * he):round((1-cropFactor)*he) );
xy = sub2ind(size(Gr), y(:), x(:));
here is what I have so far
int width = dst.cols;
int height = dst.rows;
double cropFactor = 0.10;
cv::Mat1i X,Y;
Utilities::Meshgrid(Utilities::MatlabRound(cropFactor * width), Utilities::MatlabRound((1 - cropFactor) * width), Utilities::MatlabRound(cropFactor * height), Utilities::MatlabRound((1-cropFactor) * height),X, Y);
Utilities::Sub2Ind(width, height, X, Y);
round() function
int Utilities::MatlabRound(double numberToRound)
{
return floor( numberToRound + 0.5);
}
this is my meshgrid() function it works as expected
void Utilities::Meshgrid(int startX, int endX, int startY, int endY, cv::Mat1i &X, cv::Mat1i & Y)
{
std::vector<int> vec_x, vec_y;
for (int i = startX; i <= endX; i++)
{
vec_x.push_back(i);
}
for (int i = startY; i <= endY; i++)
{
vec_y.push_back(i);
}
cv::Mat x = cv::Mat(vec_x);
cv::Mat y = cv::Mat(vec_y);
cv::repeat(x.reshape(1,1), y.total(), 1, X);
cv::repeat(y.reshape(1,1).t(), 1, x.total(), Y);
}
however i'm having trouble understanding what are subscripts and how to implement Sub2Ind function
Can you please explain?
update I have implemented sub2ind please see my answer
I have implemented sub2Ind for 2D matrix
it is tested and work fine
cv::Mat Utilities::Sub2Ind(int width, int height, cv::Mat X, cv::Mat Y)
{
/*sub2ind(size(a), rowsub, colsub)
sub2ind(size(a), 2 , 3 ) = 6
a = 1 2 3 ;
4 5 6
rowsub + colsub-1 * numberof rows in matrix*/
std::vector<int> index;
cv::transpose(Y,Y);
cv::MatConstIterator_<int> iterX = X.begin<int>(), it_endX = X.end<int>();
cv::MatConstIterator_<int> iterY = Y.begin<int>(), it_endY = Y.end<int>();
for (int j = 0; j < X.cols; ++j,++iterX)
{
//running on each col of y matrix
for (int i =0 ;i < Y.cols; ++i,++iterY )
{
int rowsub = *iterY;
int colsub = *iterX;
int res = rowsub + ((colsub-1)*height);
index.push_back(res);
}
int x = 5;
}
cv::Mat M(index) ;
return M;
}