Is this copy constructor a bad idea? - c++

So, I have the feeling that this is a bad idea:
class Foo
{
public:
Foo(const Foo& from)
{
memcpy(this, &from, sizeof(Foo));
m_someData = new int[m_dataLength];
memcpy(m_someData, from.m_someData, m_dataLength * sizeof(int));
}
private:
int* m_someData;
int m_dataLength;
};
The question is: why? If the memcpy parameters are the same type (and size), with identical layout, where's the bad?
One potential issue I see is if there is a string or vector<> field, but I'm not sure if that's a valid concern.

If Foo can be derived from, consider what happens when you have a Bar class derived from Foo, and copy-construct a Foo from that Bar instance.
If you have any virtual methods, your sizeof(Foo) includes any information added by the compiler to implement virtual methods (meaning the vtable), which you definitely don't want to copy.
If you don't have any virtual methods, but Bar adds a field to Foo, then you still have a potential problem: that field can be stored in the padding bytes of Foo. They would be clobbered by a memcpy.
Finally:
One potential issue I see is if there is a string or vector<> field, but I'm not sure if that's a valid concern.
Why wouldn't it be? It would clearly break, and it would break badly.
You can avoid this problem by using the default automatically generated copy constructor. If you want to add logic to that, and not be forced to mention all fields you want to copy, use a hidden data container:
class Foo
{
public:
Foo(const Foo& from)
{
m_Data = from.m_Data;
m_Data.m_someData = new int[m_Data.m_dataLength];
memcpy(m_Data.m_someData, from.m_Data.m_someData, m_Data.m_dataLength * sizeof(int));
}
private:
struct Data {
int* m_someData;
int m_dataLength;
// more fields
};
Data m_Data;
};
Note how m_Data = from.m_Data; here has the exact effect you were trying to achieve with the memcpy, except it does it safely.

why it's wrong:
struct boom1 {
boom1(const boom1& from)
// reason 1: not using an initialisation list means double-initialisation of members. inefficient.
{
// reason 2: undefined behaviour on all subsequent access to
// this->_s or from._s after this line
memcpy(this, &from, sizeof(from));
// reason 3: what if someone derived from this class? didn't you just overwrite the RTTI info pointer??
}
// reason 4: c++ already generates a copy constructor that does the right thing automatically. why are you laying mines for other developers?
std::string _s;
}
"yes but my particular class is a POD and I'm in control of it"...
... until someone else derives from it, modifies it or tries to maintain it.
no, no, no. This is never right. always wrong. make sure your student understands this. One day he may be programming a google car. You wouldn't want it to run over your kids now would you?

Related

Uses of destructor = delete;

Consider the following class:
struct S { ~S() = delete; };
Shortly and for the purpose of the question: I cannot create instances of S like S s{}; for I could not destroy them.
As mentioned in the comments, I can still create an instance by doing S *s = new S;, but I cannot delete it as well.
Therefore, the only use I can see for a deleted destructor is something like this:
struct S {
~S() = delete;
static void f() { }
};
int main() {
S::f();
}
That is, define a class that exposes only a bunch of static functions and forbid any attempt to create an instance of that class.
What are the other uses (if any) of a deleted destructor?
If you have an object which should never, ever be deleted or stored on the stack (automatic storage), or stored as part of another object, =delete will prevent all of these.
struct Handle {
~Handle()=delete;
};
struct Data {
std::array<char,1024> buffer;
};
struct Bundle: Handle {
Data data;
};
using bundle_storage = std::aligned_storage_t<sizeof(Bundle), alignof(Bundle)>;
std::size_t bundle_count = 0;
std::array< bundle_storage, 1000 > global_bundles;
Handle* get_bundle() {
return new ((void*)global_bundles[bundle_count++]) Bundle();
}
void return_bundle( Handle* h ) {
Assert( h == (void*)global_bundles[bundle_count-1] );
--bundle_count;
}
char get_char( Handle const* h, std::size_t i ) {
return static_cast<Bundle*>(h).data[i];
}
void set_char( Handle const* h, std::size_t i, char c ) {
static_cast<Bundle*>(h).data[i] = c;
}
Here we have opaque Handles which may not be declared on the stack nor dynamically allocated. We have a system to get them from a known array.
I believe nothing above is undefined behavior; failing to destroy a Bundle is acceptable, as is creating a new one in its place.
And the interface doesn't have to expose how Bundle works. Just an opaque Handle.
Now this technique can be useful if other parts of the code need to know that all Handles are in that specific buffer, or their lifetime is tracked in specific ways. Possibly this could also be handled with private constructors and friend factory functions.
one scenario could be the prevention of wrong deallocation:
#include <stdlib.h>
struct S {
~S() = delete;
};
int main() {
S* obj= (S*) malloc(sizeof(S));
// correct
free(obj);
// error
delete obj;
return 0;
}
this is very rudimentary, but applies to any special allocation/deallocation-process (e.g. a factory)
a more 'c++'-style example
struct data {
//...
};
struct data_protected {
~data_protected() = delete;
data d;
};
struct data_factory {
~data_factory() {
for (data* d : data_container) {
// this is safe, because no one can call 'delete' on d
delete d;
}
}
data_protected* createData() {
data* d = new data();
data_container.push_back(d);
return (data_protected*)d;
}
std::vector<data*> data_container;
};
Why mark a destructor as delete?
To prevent the destructor from being invoked, of course ;)
What are the use cases?
I can see at least 3 different uses:
The class should never be instantiated; in this case I would also expect a deleted default constructor.
An instance of this class should be leaked; for example, a logging singleton instance
An instance of this class can only be created and disposed off by a specific mechanism; this could notably occur when using FFI
To illustrate the latter point, imagine a C interface:
struct Handle { /**/ };
Handle* xyz_create();
void xyz_dispose(Handle*);
In C++, you would want to wrap it in a unique_ptr to automate the release, but what if you accidentally write: unique_ptr<Handle>? It's a run-time disaster!
So instead, you can tweak the class definition:
struct Handle { /**/ ~Handle() = delete; };
and then the compiler will choke on unique_ptr<Handle> forcing you to correctly use unique_ptr<Handle, xyz_dispose> instead.
There are two plausible use cases. First (as some comments note) it could be acceptable to dynamically allocate objects, fail to delete them and allow the operating system to clean up at the end of the program.
Alternatively (and even more bizarre) you could allocate a buffer and create an object in it and then delete the buffer to recover the place but never prompt an attempt to call the destructor.
#include <iostream>
struct S {
const char* mx;
const char* getx(){return mx;}
S(const char* px) : mx(px) {}
~S() = delete;
};
int main() {
char *buffer=new char[sizeof(S)];
S *s=new(buffer) S("not deleting this...");//Constructs an object of type S in the buffer.
//Code that uses s...
std::cout<<s->getx()<<std::endl;
delete[] buffer;//release memory without requiring destructor call...
return 0;
}
None of these seems like a good idea except in specialist circumstances. If the automatically created destructor would do nothing (because the destructor of all members is trivial) then the compiler will create a no-effect destructor.
If the automatically created destructor would do something non-trivial you very likely compromise the validity of your program by failing to execute its semantics.
Letting a program leave main() and allowing the environment to 'clean-up' is a valid technique but best avoided unless constraints make it strictly necessary. At best it's a great way to mask genuine memory leaks!
I suspect the feature is present for completeness with the ability to delete other automatically generated members.
I would love to see a real practical use of this capability.
There is the notion of a static class (with no constructors) and so logically requiring no destructor. But such classes are more appropriately implemented as a namespace have no (good) place in modern C++ unless templated.
Creating an instance of an object with new and never deleting it is the safest way to implement a C++ Singleton, because it avoids any and all order-of-destruction issues. A typical example of this problem would be a "Logging" Singleton which is being accessed in the destructor of another Singleton class. Alexandrescu once devoted an entire section in his classical "Modern C++ Design" book on ways to cope with order-of-destruction issues in Singleton implementations.
A deleted destructor is nice to have so that even the Singleton class itself cannot accidentally delete the instance. It also prevents crazy usage like delete &SingletonClass::Instance() (if Instance() returns a reference, as it should; there is no reason for it to return a pointer).
At the end of the day, nothing of this is really noteworthy, though. And of course, you shouldn't use Singletons in the first place anyway.

C++ force dynamic allocation with unique_ptr?

I've found out that unique_ptr can point to an already existing object.
For example, I can do this :
class Foo {
public:
Foo(int nb) : nb_(nb) {}
private:
int nb_;
};
int main() {
Foo f1(2);
Foo* ptr1(&f1);
unique_ptr<Foo> s_ptr1(&f1);
return 0;
}
My question is :
If I create a class with unique_ptr< Bar > as data members (where Bar is a class where the copy constructor was deleted) and a constructor that takes pointers as argument, can I prevent the user from passing an already existing object/variable as an argument (in that constructor) (i.e. force him to use the new keyword) ?
Because if he does, I won't be able to guarantee a valide state of my class objects (the user could still modify data members with their address from outside of the class) .. and I can't copy the content of Bar to another memory area.
Example :
class Bar {
public:
Bar(/* arguments */) { /* data members allocation */ }
Bar(Bar const& b) = delete;
/* Other member functions */
private:
/* data members */
};
class Bar_Ptr {
public:
Bar_Ptr(Bar* ptr) {
if (ptr != nullptr) { ptr_ = unique_ptr<Bar> (ptr); }
} /* The user can still pass the address of an already existing Bar ... */
/* Other member functions */
private:
unique_ptr<Bar> ptr_;
};
You can't prevent programmers from doing stupid things. Both std::unique_ptr and std::shared_ptr contain the option to create an instance with an existing ptr. I've even seen cases where a custom deleter is passed in order to prevent deletion. (Shared ptr is more elegant for those cases)
So if you have a pointer, you have to know the ownership of it. This is why I prefer to use std::unique_ptr, std::shared_ptr and std::weak_ptr for the 'owning' pointers, while the raw pointers represent non-owning pointers. If you propagate this to the location where the object is created, most static analyzers can tell you that you have made a mistake.
Therefore, I would rewrite the class Bar_ptr to something like:
class Bar_ptr {
public:
explicit Bar_ptr(std::unique_ptr<Bar> &&bar)
: ptr(std::move(bar)) {}
// ...
}
With this, the API of your class enforces the ownership transfer and it is up to the caller to provide a valid unique_ptr. In other words, you shouldn't worry about passing a pointer which isn't allocated.
No one prevents the caller from writing:
Bar bar{};
Bar_ptr barPtr{std::unique_ptr<Bar>{&bar}};
Though if you have a decent static analyzer or even just a code review I would expect this code from being rejected.
No you can't. You can't stop people from doing stupid stuff. Declare a templated function that returns a new object based on the templated parameter.
I've seen something similar before.
The trick is that you create a function (let's call it make_unique) that takes the object (not pointer, the object, so maybe with an implicit constructor, it can "take" the class constructor arguments) and this function will create and return the unique_ptr. Something like this:
template <class T> std::unique_ptr<T> make_unique(T b);
By the way, you can recommend people to use this function, but no one will force them doing what you recommend...
You cannot stop people from doing the wrong thing. But you can encourage them to do the right thing. Or at least, if they do the wrong thing, make it more obvious.
For example, with Bar, don't let the constructor take naked pointers. Make it take unique_ptrs, either by value or by &&. That way, you force the caller to create those unique_ptrs. You're just moving them into your member variables.
That way, if the caller does the wrong thing, the error is in the caller's code, not yours.

Default Initialize or Check For Null

I'd like to know is it better to specify a default initialization for a smart-pointer or do a NULL value check before accessing the smart-pointers methods?
Currently I've been using the method below to avoid calling increment() on a NULL pointer. Is this a reasonable way of doing things or is there a pitfall that I don't see?
Note: We use a custom smart-pointer class and I don't have the Boost libraries on my current configuration to test compile this code. This should compile, but YMMV.
Example.h
#include <boost/shared_ptr.hpp>
class Foo
{
public:
Foo() : mFoo(0) {}
Foo(int rawValue) : mFoo(rawValue) {}
void increment() { mFoo++; }
private:
int mFoo;
};
typedef boost::shared_ptr<Foo> FooSP;
class MyClass
{
public:
MyClass() : mFoo(new Foo()) {}
FooSP foo() { return mFoo; }
void setFoo(FooSP newFoo) { mFoo = newFoo; }
private:
FooSP mFoo;
};
Main.cpp
#include <Example.h>
int main()
{
MyClass temp; // Default-constructed
temp.foo()->increment(); // Increment Foo's member integer
// Before: mFoo = 0
// After: mFoo = 1
FooSP tempFoo = new Foo(10); // Create a Foo with a default size
temp.setFoo(FooSP(new Foo(10))); // Explicitly set the FooSP member
temp.foo()->increment(); // Increment the new FooSP
// Before: mFoo = 10
// After: mFoo = 11
return 0;
}
If you are using a smart pointer as a general replacement for a pointer type, you cannot get away from a check for null. This is because a class defined with a smart pointer with a default constructor is likely to allow the smart pointer to be created with its default constructor. Dynamically creating a new object just to fill the pointer until you can set it seems to be a waste of resources.
shared_ptr's constructor is explicit, so your initialization of tempFoo won't compile. If you wanted to save a line of code, you can avoid declaring the temporary like this:
temp.setFoo(FooSP(new Foo(10)));
You can also declare the method of setFoo to take a constant reference, to avoid manipulating the reference count when taking in the parameter.
void setFoo(const FooSP &newFoo) { mFoo = newFoo; }
Or use swap on the parameter instance.
void setFoo(FooSP newFoo) { std::swap(mFoo, newFoo); }
If I were required to implement something along the lines of what you are proposing, I would create a static instance of Foo to serve as the null version, and then have the increment method throw an exception if it was the null version.
class Foo
{
public:
static Foo Null;
//...
void increment() {
if (this == &Null) throw Null;
mFoo++;
}
//...
};
struct DeleteFoo {
void operator () (Foo *t) const {
if (t != &Foo::Null) delete t;
}
};
class MyClass
{
public:
MyClass() : mFoo(&Foo::Null, DeleteFoo()) {}
//...
};
Note the custom deleter for FooSP to properly deal with Foo::Null.
is it better to specify a default initialization for a smart-pointer or do a NULL value check before accessing the smart-pointers methods?
There is no right answer which applies to every case (more soon). If I had to err to one or the other, I would err toward NULL testing without default initialization because that's an obvious programmer error which can be detected and corrected easily.
However, I think the right answer is that there are good reasons we use multiple idioms for construction and initialization, and that you should choose the best approach for your program.
Typically, I will be explicit (no default or no default initialization) in the lower level classes, as well as complex higher level classes. When the classes are mid-level and defaults and ownership are more obvious (often because of limited use cases), then a default may be sensible.
Often, you will just want to be consistent, to avoid surprising clients. You'll also need to be aware of the complexity of allocating default-initialized objects. If it's big and complex to create, and a default does not make sense, then you are simply wasting a lot of resources when the default-constructed object is the wrong choice.
a) do not apply a default where it does not make sense. the default should be obvious.
b) avoid wasted allocations.
In addition to the approaches you have mentioned, there are a few other angles you might also consider:
Matching Foo's declared constructors in MyClass. At least, the ones which pertain to MyClass.
If copyable and efficient to copy, passing a Foo to MyClass's constructor.
Passing Foo in a container (smart pointer in this case) to MyClass's constructor to remove any ambiguity and to offer the client the option to construct (and share, in the case of a shared pointer) Foo as they desire.
Is this a reasonable way of doing things or is there a pitfall that I don't see?
Wasted allocations. Surprising results. It can restrict capabilities. The most obvious, broadly applicable problems are time and resource consumption.
To illustrate some scenarios:
say Foo reads a 1MB file every time it is constructed. when construction parameters are necessary and the default is not the right option, the file would have to be read a second time. the innocent default would double the disk io required.
in another case, an omitted construction parameter may be another large or complex shared pointer. if absent, Foo may create its own -- when the resource could/should have been shared.
Constructors parameters are often very important, and often should not be erased from the interface. It's certainly fine to do so in some cases, but these conveniences can introduce a lot of restrictions or introduce much unnecessary allocations and CPU time as the contained object's complexity increases.
Using both approaches in your programs is fine. Using additional approaches I outlined is also fine. Specifically, using the right approach for the problem is ideal - there are multiple ways to implement ideal solutions available; you just have to determine what that is in the context of what it is your program is trying to do. All these approaches have separate pros and cons - there is often an ideal match for the context of your program's operation and exposed interfaces.

Swap method with const members

I want to implement a Swap() method for my class (let's call it A) to make copy-and-swap operator=(). As far as I know, swap method should be implemented by swapping all members of the class, for example:
class A
{
public:
void swap(A& rhv)
{
std::swap(x, rhv.x);
std::swap(y, rhv.y);
std::swap(z, rhv.z);
}
private:
int x,y,z;
};
But what should I do if I have a const member? I can't call std::swap for it, so I can't code A::Swap().
EDIT: Actually my class is little bit more complicated. I want to Serialize and Deserialize it. Const member is a piece of data that won't change (its ID for example) within this object. So I was thinking of writing something like:
class A
{
public:
void Serialize(FILE* file) const
{
fwrite(&read_a, 1, sizeof(read_a), file);
}
void Deserialize(FILE* file) const
{
size_t read_a;
fread(&read_a, 1, sizeof(read_a), file);
A tmp(read_a);
this->Swap(tmp);
}
private:
const size_t a;
};
and call this code:
A a;
FILE* f = fopen(...);
a.Deserialize(f);
I'm sorry for such vague wording.
I think what you really want is to have an internal data structure that you can easily exchange between objects. For example:
class A
{
private:
struct A_Data {
int x;
int y;
const int z;
A_Data(int initial_z) : z(initial_z) {}
};
std::auto_ptr<A_Data> p_data;
public:
A(int initial_z) : p_data(new A_Data(initial_z)) {}
void swap(A& rhv) {
std::swap(p_data, rhv.p_data);
}
};
This keeps the z value constant within any instance of A object internal data, but you can swap the internal data of two A objects (including the constant z value) without violating const-correctness.
After a good nights sleep I think the best answer is to use a non-const pointer to a const value -- after all these are the semantics you are trying to capture.
f0b0s, a good design principle is to design your objects to be immutable. This means that the object can't change once created. To "change" the object, you must copy the object and make sure to change the elements you want.
That being said, in this case you should look at using a copy constructor instead to copy the objects you want to swap, and then actually swap the references to the object. I can understand it'd be tempting just to be able to change the elements of an object under the hood, but it'd be better to make a copy of the object and replace the references to that object with the NEW object instead. This gets you around any const nastiness.
Hope this helps.
I suggest you use pointers to the instances. The pointers can be swapped much easier than the data in the class or struct.
The only way to swap a constant value is to create another object, or clone the current object.
Given a struct:
struct My_Struct
{
const unsigned int ID;
std::string name;
My_Struct(unsigned int new_id)
: ID(new_id)
{ ; }
};
My understanding is that you want to swap instances of something like My_Struct above. You can copy the mutable (non-const) members but not the const member. The only method to alter the const member is to create a new instance with a new value for the const member.
Perhaps you need to rethink your design.
IMHO you must consider not to swap CONST members.
PD: I think you could consider to use reflection in your approach. so you don't have to maintain the function.
This is why const_cast was created. Just remember not to shoot your foot off.
Edit: OK, I concede - const_cast wasn't made for this problem at all. This might work with your compiler, but you can't count on it and if demons come flying out of your nostrils, please don't blame me.
tl;dr; : It's Undefined Behavior.
Reference/reason: CppCon 2017: Scott Schurr “Type Punning in C++17: Avoiding Pun-defined Behavior, #24m52s +- ”
My interpretation, by example:
Suppose you create an object of type T, which have some const members. You can pass this object as a non-const reference to a function f(&T) that manipulates it, but you'd expect the const members to remain unalterable after the call. swap can be called in non-const references, and it can happen inside the function f, breaking the premise of const members to the caller.
Every part of your code that uses swap would have to assert that the object of type T being swapped does not belong to any context where the const members are assumed constant. That is impossible to automatically verify*.
*I just assumed that this is impossible to verify because it seems like an extension of the undecidability of the halting problem.

auto_ptr question in c++

I am new here.
I am also new on C++
So here is the class and function i wrote.But i got the compiler error
My class:
class fooPlayer
{
public:
void fooPlayerfunc(){}//doing something here
char askYesNo(std::string question);
};
class fooPlayerFactory
{
public:
virtual std::auto_ptr<fooPlayer> MakePlayerX() const;
virtual std::auto_ptr<fooPlayer> MakePlayerO() const;
private:
std::auto_ptr<fooPlayer> MakePlayer(char letter) const;
std::auto_ptr<fooPlayer> my_player;
};
Implement my class:
auto_ptr<fooPlayer> fooPlayerFactory:: MakePlayer(char letter) const
{
my_player->fooPlayerfunc();
return my_player;
}
auto_ptr<fooPlayer> fooPlayerFactory::MakePlayerX() const
{
char go_first = my_player->askYesNo("Do you require the first move?");
MakePlayer(go_first);
return my_player;
}
auto_ptr<fooPlayer> fooPlayerFactory::MakePlayerO() const
{
return my_player;
}
My main() function here:
int main()
{
fooPlayerFactory factory;
factory.MakePlayerX();
factory.MakePlayerO();
}
I got the error:
error C2558: class 'std::auto_ptr<_Ty>' : no copy constructor available or copy constructor is declared 'explicit'
I do not know how to change it even after reading the document on this link:
The reason for the error is that you are calling the copy constructor of auto_ptr my_player in fooPlayerFactory::MakePlayerO() which is a const method. That means that is cannot modify its members.
However the copy constructor of auto_ptr DOES modify the right hand side so returning my_player trys to change its pointer to 0 (NULL), while assigning the original pointer to the auto_ptr in the return value.
The signature of the copy constuctor is
auto_ptr<T>::auto_ptr<T>(auto_ptr<T> & rhs)
not
auto_ptr<T>::auto_ptr<T>(const auto_ptr<T> & rhs)
The copy constructor of auto_ptr assigns ownership of the pointer to the left hand side, the right hand side then holds nothing.
I don't think you want to use auto_ptr here, you probably want boost::smart_ptr
It looks like you have mixed up two uses for auto_ptr
The first is as poor man's boost::scoped_ptr. This is to manage a single instance of a pointer in a class, the class manages the life time of the pointer. In this case you don't normally return this pointer outside your class (you can it is legal, but boost::smart_ptr / boost::weak_ptr would be better so clients can participate the life time of the pointer)
The second is its main purpose which is to return a newly created pointer to the caller of a function in an exception safe way.
eg
auto_ptr<T> foo() {
return new T;
}
void bar() {
auto_ptr<T> t = foo();
}
As I said I think you have mixed these two uses auto_ptr is a subtle beast you should read the auto_ptr docs carefully. It is also covered very well in Effective STL by Scott Meyers.
In your code:
auto_ptr<fooPlayer> fooPlayerFactory:: MakePlayer(char letter) const
{
my_player->fooPlayerfunc();
return my_player;
}
This is a const function, but fooPlayerfunc is not const - my compiler reports this error rather than the one you say you are getting. Are you posting the real code?
I don't think you actually want to constructing dynamic objects here.
A factory object creates and returns an object it normally does not keep a reference to it after creation (unless you are sharing it), and I don't actually see anywhere that you are creating the player.
If you only ever create one player internally in your (fooPlayerFactory). Then create an object and return references to it.
Edit: in response to the comment (which is correct, my bad), I left only the advice part.
Best practice is to have the factory methods just return a plain old pointer to the underlying object, and let the caller decide how to manage ownership (auto_ptr, scoped_ptr, or whatever).
Also your code is buggy, any class that implements virtual methods should have a virtual destructor.
I'm not seeing anywhere you construct my_player, so I have a feeling that some of the code is missing. Specifically, I think your constructor has this line:
my_player = new fooPlayer()
A fooPlayer object is not quite the same thing as an auto_ptr<fooPlayer> object, and auto_ptr is intentionally designed to prevent assigning from one to the other because, frankly, the alternative is worse. For the details, look up (1) conversion constructors, (2) the explicit keyword, and (3) copy constructors and destructive copy semantics.
You should change the constructor to either:
class fooPlayerFactory {
public:
fooPlayerFactory()
{
my_player = std::auto_ptr<fooPlayer>(new fooPlayer());
}
Or (using a member initializer list):
class fooPlayerFactory {
public:
fooPlayerFactory() : my_player(std::auto_ptr<fooPlayer>(new fooPlayer()) { }
The solution isn't pretty but, like I said, the alternative is worse due to some really arcane details.
As a bit of advice, though, you're making life harder than it needs to be; and may in fact be causing strange bugs. auto_ptr exists to manage the lifetime of an object, but the only reason you need to worry about the lifetime of my_player is that you've allocated it with new. But there's no need to call new, and in fact there's no need to keep my_player. And unless fooPlayerFactory is meant to be the base class for some other factory, there's no need to mark functions virtual.
Originally I thought you could get away with simply returning copies of the my_player object, but there's a problem: before returning my_player from MakePlayer() you call a method on it, and I assume that method changes the internal state of my_player. Further calls to MakePlayer() will change the state again, and I think you're going to eventually have my_player in the wrong state. Instead, return a different fooPlayer object with each request. Don't do memory management, just promise to construct the object. That way the user can decide on memory allocation:
fooPlayerFaclotry factory;
fooPlayer on_stack = factory.MakePlayerX();
fooPlayer* on_heap_raw_pointer = new fooPlayer(factory.MakePlayerO());
std::auto_ptr<fooPlayer> on_heap_managed_scope
= std::auto_ptr<fooPlayer>(factory.MakePlayerX());
I would change fooPlayerFactory to look like this:
class fooPlayerFactory
{
private:
fooPlayer MakePlayer(const char letter) const
{
fooPlayer result;
result.fooPlayerfunc();
return result;
}
public:
fooPlayer* MakePlayerX() const
{
char go_first = askYesNo("Do you require the first move?");
return MakePlayer(go_first);
}
fooPlayer MakePlayerO() const
{
return fooPlayer();
}
};