I'm trying to use ocamlbuild to automatically invoke piqi to generate ocaml modules from protobuf definitions. This is a 2 step process where I have to go from a %.protobuf file to a %.proto.piqi and finally to %_piqi.ml.
My rule for the first step looks as follows:
rule "piqi: .proto -> .piqi"
~dep:"%.proto"
~prod:"%.proto.piqi"
begin fun env build ->
Cmd (S [ A piqi ; A "of-proto"
; A "-I"; P protobuf_include
; P (env "%.proto") ]
)
end;
But this doesn't work because the %.proto.piqi target is actually dependent on all the "*.proto" files in my source directory because the individual .proto files import each other in the source. However, I'm not sure how to express this dependency between them in ocamlbuild. It would be enough if all of the proto files where copied over to _build rather than just the one in ~dep
Calling build on a file from inside a rule action will register it as a dynamic dependency of the target. You can just loop over all *.proto files that you know may be accessed by the current one (either globbing the source directory or, more cleverly if that gives any benefit, parsing the include statements) and build them.
(Another way to think of this solution is to remark that, if you wanted to have some foo.proto file generated by some preprocessing step from a foo.proto.pp, then you would need any compilation needing foo.proto to actually call build on it.)
See the dynamic dependencies section of the new manual draft.
P.S.: I don't know anything about protobuf but from protoc --help it looks like protoc --include-imports --descriptor_set_out FILE may give you the list of a .proto dependencies in some format. Parse that and call build on all of them, and you've got a nice and robust rule.
Related
I'm writing a large OCaml project. I wrote a file foo.ml, which works perfectly. In a subdirectory of foo.ml's directory, there is a file bar.ml.
bar.ml references code in foo.ml, so its opening line is:
open Foo
This gives me an error at compile time:
Unbound module Foo.
What can I do to fix this without changing the location of foo.ml?
The easy path is to use one of OCaml build system like ocamlbuild or oasis. Another option would be jbuilder but jbuilder is quite opiniated about file organization and does not allow for the kind of subdirectory structure that you are asking for.
The more explicit path comes with a warning: OCaml build process is complicated with many moving parts that can be hard to deal with.
After this customary warning, when looking for modules, OCaml compiler first looks for module in the current compilation environment, then looks for compiled interface ".cmi" files in the directories specified by the "-I" option flags (plus the current directory and the standard library directory).
Thus in order to compile your bar.ml file, you will need to add the parent directory in the list of included directories with the -I .. option.
After all this, you will discover that during the linking phase, all object files (i.e. .cmo or .cmx) need to be listed in a topological order compatible with the dependency graph of your project.
Consequently, let me repeat my advice: use a proper build system.
We’re currently upgrading our archaic build system from a bunch of batch scripts to a makefile system using NMake. It’s challenging as we use a custom intermediate language that ends up getting translated to C++ where some of our translators can generate 10’s of files what have a common parts in the file names. The other challenging thing is we use a bunch of CSV files to configure our interfaces and these files get passed through to our configuration tools which generate more source code files. Right now I am focusing on creating the simple rules for our configuration files but can’t seem to figure out a way associate a dependency with a rule if the dependency exists. I tried to use $(wildcard xxx.csv) but found out that this command doesn’t exist for NMake like it does for GNU Make.
So how can I create my rule so that it executes and runs my commands if I have two dependency csv files that will always exists and a third csv file that will exist only when my project calls for it?
[..] will exist only when my project calls for it?
This is a bit unclear. Assuming that there is a command that - depending on some external circumstances - might generate that third csv file, you could use a "stamp file" (I think they call it "pseudo target" in NMAKE):
stamp:
command_that_might_generate_csv3
touch stamp # updates timestamp of "stamp" (or creates it)
target: csv1 csv2 stamp
command_using_all_of csv1 csv2 csv3
I would like to edit an existing software to add a new source file (Source.cpp).
But, I can't manage the compilation process (it seems to be automake and it looks very complicated).
The software (iperf 2: https://sourceforge.net/projects/iperf2/files/?source=navbar) is compiled using a classical ./configure make then make install.
If I just add the file to the corresponding source and include directory, I got this error message:
Settings.cpp:(.text+0x969) : undefined reference to ...
It looks like the makefile isn't able to produce the output file associated with my new source file (Source.cpp). So, I probably need to indicate it manually somewhere.
I searched a bit in the project files and it seemed that the file to edit was: "Makefile.am".
I added my source to the variable iperf_SOURCES in that file but it didn't workded.
Could you help me to find the file where I need to indicate my new source file (it seems a pretty standard compilation scheme but I never used automake softwares and this one seems very complicated).
Thank you in advance
This project is built with the autotools, as you already figured out.
The makefiles are built by automake. It takes its input in files that usually have a am file name extension.
The iperf program is built by the makefile generated from src/Makefile.am. This is indicated by:
bin_PROGRAMS = iperf
All (actually this is a simplification, but which holds in this case) source files of a to be built binary are in the corresponding name_SOURCES variable, thus in this case iperf_SOURCES. Just add your source file to the end of that list, like so (keeping their formatting):
iperf_SOURCES = \
Client.cpp \
# lines omitted
tcp_window_size.c \
my_new_file.c
Now, to reflect this change in any future generated src/Makefile you need to run automake. This will modify src/Makefile.in, which is a template that is used by config.sub at the end of configure to generate the actual makefile.
Running automake can happen in various ways:
If you already have makefiles that were generated after an configure these should take care of rebuilding themselves. This seems to fail sometimes though!
You could run automake (in the top level directory) by hand. I've never done this, as there is the better solution to...
Run autoreconf --install (possibly add --force to the arguments) in the top level directory. This will regenerate the entire build system, calling all needed programs such as autoheader, autoconf and of course automake. This is my favorite solution.
The later two options require calling configure again, IMO ideally doing an out of source built:
# in top level dir
mkdir build
cd build
../configure # arguments
make # should now also compile and link your new source file
As of yet, at least to my knowledge, there is no standard way in CMake to specify the addition of a precompiled header (PCH) to a project in a cross-platform manner because the way PCHs are handled by C++ compilers is very different among vendors. For G++, this is usually this is worked around by simply adding a custom command which takes care of invoking the compiler with the appropriate input and has it generate the PCH.
My current problem is that CMake will not parse the dependencies of the dependencies you specify for the custom command. For instance, assume the following structure:
pch.h
|- dependA.h
|- dependB.h
...
Only providing pch.h as a dependency will lead to the generation of the appropriate target in the corresponding makefile, which tracks changes to pch.h. However, CMake does not parse the includes inside pch.h and will therefore not recognize changes to dependA.h and dependB.h. This extends furhter if there are dependencies for dependsA.h and so on.
Note: I'm aware that the fact that PCH dependencies can and do change regularly puts the whole process in question. However, this is just the way it is and I can't really do anything about it.
Since the task isn't too hard, there are a couple of obvious ideas that come to mind:
Solution A:
Enter all the dependencies by hand. Obviously this works, but is tedious as hell and doesn't scale at all.
Solution B:
If possible, write a CMake function that automates the process and parse the includes "manually".
Solution C:
Do something similar using a different language, for instance Python, and just provide CMake a list of dependencies to add to the custom command.
Solution D:
Use gcc/g++'s feature to parse and print out the dependency tree of the PCH and parse the output to extract the list of dependencies.
My question is: does anyone know a more convenient and faster way to get this done?
The IMPLICIT_DEPENDS option of the add_custom_command might do the trick:
add_custom_command(
OUTPUT outFile
COMMAND ...
IMPLICIT_DEPENDS CXX "pch.h")
The IMPLICIT_DEPENDS option makes the generated build system scan the implicit dependencies of the given input file at build time. It is only supported for Makefile generators, though.
Is there a way to compile a C++Builder project (a specific build configuration) from the command line?
Something like:
CommandToBuild ProjectNameToBuild BuildConfiguration ...
There are different ways for automating your builds in C++Builder (as of my experience, I'm speaking about old C++Builder versions like 5 and 6).
You can manually call compilers - bcc32.exe (also dcc32.exe, brcc32.exe and tasm32.exe if you have to compile Delphi units, resource files or assembly language lines of code in your sources) and linker - ilink32.exe.
In this case, you will need to manually provide the necessary input files, paths, and keys as arguments for each stage of compilation and linking.
All data necessary for compilation and linking is stored in project files and, hopefully there are special utilities, included in the C++Builder installation, which can automate this dirty work, provide necessary parameters to compilers and linker and run them. Their names are bpr2mak.exe and make.exe.
First you have to run bpr2mak.exe, passing your project *.bpr or *.bpk file as a parameter and then you will get a special *.mak file as output, which you can use to feed on make.exe, which finally will build your project.
Look at this simple cmd script:
#bpr2mak.exe YourProject.bpr
#ren YourProject.mak makefile
#make.exe
You can provide the real name of "YourProject.mak" as a parameter to make.exe, but the most straightforward way is to rename the *.mak file to "makefile", and then make.exe will find it.
To have different build options, you can do the following:
The first way: you can open your project in the IDE, edit options and save it with a different project name in the same folder (usually there are two project files for debug and release compile options). Then you can provide your building script with different *.bpr files. This way, it looks simple, because it doesn't involves scripting, but the user will have to manually maintain coherency of all project files if something changes (forms or units added and so on).
The second way is to make a script which edits the project file or make file. You will have to parse files, find compiler and linker related lines and put in the necessary keys. You can do it even in a cmd script, but surely a specialised scripting language like Python is preferable.
Use:
msbuild project.cbproj /p:config=[build configuration]
More specifics can be found in Building a Project Using an MSBuild Command.
A little detail not mentioned.
Suppose you have external dependencies and that the .dll file does not initially exist in your folder
You will need to include the external dependencies in the ILINK32.CFG file.
This file is usually in the folder
C:\Program Files (x86)\Borland\CBuilder6\Bin\ilink32.cfg
(consider your installation location)
In this file, place the note for your dependencies.
Example: A dependency for TeeChart, would look like this (consider the last parameter):
-L"C:\Program Files (x86)\Borland\CBuilder6\lib";"C:\Program Files (x86)\Borland\CBuilder6\lib\obj";"C:\Program Files (x86)\Borland\CBuilder6\lib\release";"C:\Program Files (x86)\Steema Software\TeeChart 805 for Builder 6\Builder6\Include\";"C:\Program Files (x86)\Steema Software\TeeChart 805 for Builder 6\Builder6\Lib\"
You will also need to include the -f command to compile.
In cmd, do:
//first generate the file.mak
1 - bpr2mak.exe MyProject.bpr
//then compile the .mak
2 - make.exe -f MyProject.mak
You can also generate a temporary mak file with another name, as the answer above says, directly with bpr2mak
bpr2mak.exe MyProject.bpr -oMyTempMak.mak