Persistent and ephemeral nodes in ZooKeeper - c++

I want to know how to create persistent nodes in ZooKeeper, using C++ client. I know from documentation, that there is a method zoo_acreate. And documentation says about this method that:
This method will create a node in ZooKeeper. A node can only be created if it does not already exists. The Create Flags affect the creation of nodes. If ZOO_EPHEMERAL flag is set, the node will automatically get removed if the client session goes away. If the ZOO_SEQUENCE flag is set, a unique monotonically increasing sequence number is appended to the path name.
But, unfortunatelly, almost as always with C++ libraries, this library completely lacks reasonable teeny-weeny examples demonstarting the usage of the library methods. As for example in this case where documentation page is about zoo_acreate method, but some terribly looking example is totally about something else (it does not even mention zoo_acreate method).
So, my question is how to set these flags ZOO_EPHEMERAL and ZOO_SEQUENCE. It would be great to see this in the context of some tiny examples. Thanks!

Googling for "zoo_acreate ZOO_EPHEMERAL" gave this as the seventh result:
string path = "/nodes/";
string value = "data";
int rc = zoo_acreate(zh, path.c_str(), value.c_str(), value.length(),
&ZOO_OPEN_ACL_UNSAFE, ZOO_EPHEMERAL | ZOO_SEQUENCE, &czoo_created, &where);
Source: https://issues.apache.org/jira/browse/ZOOKEEPER-348

Related

Setting a WinRt AdvertisementFilter() to a substring of LocalName

C++, WinRT, VS2017, Win10
I create a watcher to look for my Bluetooth LE device with
BluetoothLEAdvertisementWatcher watcher;
Now I want to set a filter for for the device that I am specifically looking for. Let's say that the LocalName for the device is "MyDevice_ABC1234". I can do this with
watcher.AdvertisementFilter().Advertisement().LocalName().c_str() == L"MyDevice_ABC1234";
But what I really want to do is set the filter to the manufacture's name and not the specific model number. I want to filter for "MyDevice" being in the LocalName. This would be easy enough given the luxury of a few lines of code but how would it be done in the context of
watcher.AdvertisementFilter().Advertisement().LocalName()
LocalName() has an operator for basic_string_view which has a find() method but for the life of me I can't get that to work properly. The find() is supposed to return the npos so I tried:
watcher.AdvertisementFilter().Advertisement().LocalName().operator std::basic_string_view<wchar_t, std::char_traits<wchar_t>>.find("MyDevice") == 8;
I actually tried this as simple code so I could debug the results with
hstring hstrLocalName = L"MyDevice_aBC1234";
bool bFind = hstrLocalName.operator std::basic_string_view<wchar_t, std::char_traits<wchar_t>>.find("MyDevice", 0) == 8;
and also
int iFind = hstrLocalName.operator std::basic_string_view<wchar_t, std::char_traits<wchar_t>>.find("MyDevice", 0);
But neither of these worked. They compiled but just never executed. Is there a way to get the basic_string_view.find() to work or would there be a better way to do this?
I see now, that when I do use the method mentioned above from StackOverflow here, it does filter for the LocalName that I set. However, and I remember this warning from the docs somewhere, that some advertisement packets come with the local name but not Uuids and visa versa. As it happenes, that is why I thought the filter was catching nothing. I was ignoring any packets that did not have services and these were the ones with the LocalName. Catch22.
For what it is worth, here is the method for setting a filter mentioned in the link above that also worked for me (with caveats)
auto filter = BluetoothLEAdvertisementFilter();
auto advert = BluetoothLEAdvertisement();
advert.LocalName(L"MyDevice_ABC1234");
filter.Advertisement(advert);
watcher.AdvertisementFilter(filter);

c++ best way to realise global switches/flags to control program behaviour without tying the classes to a common point

Let me elaborate on the title:
I want to implement a system that would allow me to enable/disable/modify the general behavior of my program. Here are some examples:
I could switch off and on logging
I could change if my graphing program should use floating or pixel coordinates
I could change if my calculations should be based upon some method or some other method
I could enable/disable certain aspects like maybe a extension api
I could enable/disable some basic integrated profiler (if I had one)
These are some made-up examples.
Now I want to know what the most common solution for this sort of thing is.
I could imagine this working with some sort of singelton class that gets instanced globally or in some other globally available object. Another thing that would be possible would be just constexpr or other variables floating around in a namespace, again globally.
However doing something like that, globally, feels like bad practise.
second part of the question
This might sound like I cant decide what I want, but I want a way to modify all these switches/flags or whatever they are actually called in a single location, without tying any of my classes to it. I don't know if this is possible however.
Why don't I want to do that? Well I like to make my classes somewhat reusable and I don't like tying classes together, unless its required by the DRY principle and or inheritance. I basically couldn't get rid of the flags without modifying the possible hundreds of classes that used them.
What I have tried in the past
Having it all as compiler defines. This worked reasonably well, however I didnt like that I couldnt make it so if the flag file was gone there were some sort of default settings that would make the classes themselves still operational and changeable (through these default values)
Having it as a class and instancing it globally (system class). Worked ok, however I didnt like instancing anything globally. Also same problem as above
Instancing the system class locally and passing it to the classes on construction. This was kinda cool, since I could make multiple instruction sets. However at the same time that kinda ruined the point since it would lead to things that needed to have one flag set the same to have them set differently and therefore failing to properly work together. Also passing it on every construction was a pain.
A static class. This one worked ok for the longest time, however there is still the problem when there are missing dependencies.
Summary
Basically I am looking for a way to have a single "place" where I can mess with some values (bools, floats etc.) and that will change the behaviour of all classes using them for whatever, where said values either overwrite default values or get replaced by default values if said "place" isnt defined.
If a Singleton class does not work for you , maybe using a DI container may fit in your third approach? It may help with the construction and make the code more testable.
There are some DI frameworks for c++, like https://github.com/google/fruit/wiki or https://github.com/boost-experimental/di which you can use.
If you decide to use switch/flags, pay attention for "cyclometric complexity".
If you do not change the skeleton of your algorithm but only his behaviour according to the objets in parameter, have a look at "template design pattern". This method allow you to define a generic algorithm and specify particular step for a particular situation.
Here's an approach I found useful; I don't know if it's what you're looking for, but maybe it will give you some ideas.
First, I created a BehaviorFlags.h file that declares the following function:
// Returns true iff the given feature/behavior flag was specified for us to use
bool IsBehaviorFlagEnabled(const char * flagName);
The idea being that any code in any of your classes could call this function to find out if a particular behavior should be enabled or not. For example, you might put this code at the top of your ExtensionsAPI.cpp file:
#include "BehaviorFlags.h"
static const enableExtensionAPI = IsBehaviorFlagEnabled("enable_extensions_api");
[...]
void DoTheExtensionsAPIStuff()
{
if (enableExtensionsAPI == false) return;
[... otherwise do the extensions API stuff ...]
}
Note that the IsBehaviorFlagEnabled() call is only executed once at program startup, for best run-time efficiency; but you also have the option of calling IsBehaviorFlagEnabled() on every call to DoTheExtensionsAPIStuff(), if run-time efficiency is less important that being able to change your program's behavior without having to restart your program.
As far as how the IsBehaviorFlagEnabled() function itself is implemented, it looks something like this (simplified version for demonstration purposes):
bool IsBehaviorFlagEnabled(const char * fileName)
{
// Note: a real implementation would find the user's home directory
// using the proper API and not just rely on ~ to expand to the home-dir path
std::string filePath = "~/MyProgram_Settings/";
filePath += fileName;
FILE * fpIn = fopen(filePath.c_str(), "r"); // i.e. does the file exist?
bool ret = (fpIn != NULL);
fclose(fpIn);
return ret;
}
The idea being that if you want to change your program's behavior, you can do so by creating a file (or folder) in the ~/MyProgram_Settings directory with the appropriate name. E.g. if you want to enable your Extensions API, you could just do a
touch ~/MyProgram_Settings/enable_extensions_api
... and then re-start your program, and now IsBehaviorFlagEnabled("enable_extensions_api") returns true and so your Extensions API is enabled.
The benefits I see of doing it this way (as opposed to parsing a .ini file at startup or something like that) are:
There's no need to modify any "central header file" or "registry file" every time you add a new behavior-flag.
You don't have to put a ParseINIFile() function at the top of main() in order for your flags-functionality to work correctly.
You don't have to use a text editor or memorize a .ini syntax to change the program's behavior
In a pinch (e.g. no shell access) you can create/remove settings simply using the "New Folder" and "Delete" functionality of the desktop's window manager.
The settings are persistent across runs of the program (i.e. no need to specify the same command line arguments every time)
The settings are persistent across reboots of the computer
The flags can be easily modified by a script (via e.g. touch ~/MyProgram_Settings/blah or rm -f ~/MyProgram_Settings/blah) -- much easier than getting a shell script to correctly modify a .ini file
If you have code in multiple different .cpp files that needs to be controlled by the same flag-file, you can just call IsBehaviorFlagEnabled("that_file") from each of them; no need to have every call site refer to the same global boolean variable if you don't want them to.
Extra credit: If you're using a bug-tracker and therefore have bug/feature ticket numbers assigned to various issues, you can creep the elegance a little bit further by also adding a class like this one:
/** This class encapsulates a feature that can be selectively disabled/enabled by putting an
* "enable_behavior_xxxx" or "disable_behavior_xxxx" file into the ~/MyProgram_Settings folder.
*/
class ConditionalBehavior
{
public:
/** Constructor.
* #param bugNumber Bug-Tracker ID number associated with this bug/feature.
* #param defaultState If true, this beheavior will be enabled by default (i.e. if no corresponding
* file exists in ~/MyProgram_Settings). If false, it will be disabled by default.
* #param switchAtVersion If specified, this feature's default-enabled state will be inverted if
* GetMyProgramVersion() returns any version number greater than this.
*/
ConditionalBehavior(int bugNumber, bool defaultState, int switchAtVersion = -1)
{
if ((switchAtVersion >= 0)&&(GetMyProgramVersion() >= switchAtVersion)) _enabled = !_enabled;
std::string fn = defaultState ? "disable" : "enable";
fn += "_behavior_";
fn += to_string(bugNumber);
if ((IsBehaviorFlagEnabled(fn))
||(IsBehaviorFlagEnabled("enable_everything")))
{
_enabled = !_enabled;
printf("Note: %s Behavior #%i\n", _enabled?"Enabling":"Disabling", bugNumber);
}
}
/** Returns true iff this feature should be enabled. */
bool IsEnabled() const {return _enabled;}
private:
bool _enabled;
};
Then, in your ExtensionsAPI.cpp file, you might have something like this:
// Extensions API feature is tracker #4321; disabled by default for now
// but you can try it out via "touch ~/MyProgram_Settings/enable_feature_4321"
static const ConditionalBehavior _feature4321(4321, false);
// Also tracker #4222 is now enabled-by-default, but you can disable
// it manually via "touch ~/MyProgram_Settings/disable_feature_4222"
static const ConditionalBehavior _feature4222(4222, true);
[...]
void DoTheExtensionsAPIStuff()
{
if (_feature4321.IsEnabled() == false) return;
[... otherwise do the extensions API stuff ...]
}
... or if you know that you are planning to make your Extensions API enabled-by-default starting with version 4500 of your program, you can set it so that Extensions API will be enabled-by-default only if GetMyProgramVersion() returns 4500 or greater:
static ConditionalBehavior _feature4321(4321, false, 4500);
[...]
... also, if you wanted to get more elaborate, the API could be extended so that IsBehaviorFlagEnabled() can optionally return a string to the caller containing the contents of the file it found (if any), so that you could do shell commands like:
echo "opengl" > ~/MyProgram_Settings/graphics_renderer
... to tell your program to use OpenGL for its 3D graphics, or etc:
// In Renderer.cpp
std::string rendererType;
if (IsDebugFlagEnabled("graphics_renderer", &rendererType))
{
printf("The user wants me to use [%s] for rendering 3D graphics!\n", rendererType.c_str());
}
else printf("The user didn't specify what renderer to use.\n");

How to call Win32_NetworkAdapterConfiguration::EnableDHCP() for a specific adapter in C++?

One of my tasks it to configure network adapters for DHCP/static IP, and the only way I found to do this is using Win32_NetworkAdapterConfiguration class.
WMI is new to me, and it seems to use it in C++ (Qt/MinGW) is not that easy, and most things I found in the WWW deal with .NET, PowerShell or VBScript. However, I already succeeded in querying information, for example the MAC address for a specific adapter.
I already read the MSDN: Calling a Provider method on MSDN, but in looking forware to WIn32_NetworkAdapterConfiguration there is one thing I don't unstand.
My IEnumWbemClassObject is the result of a SELECT * FROM Win32_NetworkAdapterConfiguration WHERE InterfaceIndex=n (n is a number, of course), and returns IWbemClassObject for the specific adapter.
How to I tell ExecMethod which instance of Win32_NetworkAdapterConiguration to use when calling the EnableDHCP()/EnableStatic() methods (in meaning of the IWbemClassObject I will recieve when i enumerate the result of my query)?
While looking for a example for passing string arrays to ExecMethod() if found this thread at CodeProject which execatly fit to my tasks. As stated in the comments above, the path of the object instance (not the class path!) must be passed to the "strObjectPath" parameter of ExecMethod.

How to exchange custom data between Ops in Nuke?

This questions is addressed to developers using C++ and the NDK of Nuke.
Context: Assume a custom Op which implements the interfaces of DD::Image::NoIop and
DD::Image::Executable. The node iterates of a range of frames extracting information at
each frame, which is stored in a custom data structure. An custom knob, which is a member
variable of the above Op (but invisible in the UI), handles the loading and saving
(serialization) of the data structure.
Now I want to exchange that data structure between Ops.
So far I have come up with the following ideas:
Expression linking
Knobs can share information (matrices, etc.) using expression linking.
Can this feature be exploited for custom data as well?
Serialization to image data
The custom data would be serialized and written into a (new) channel. A
node further down the processing tree could grab that and de-serialize
again. Of course, the channel must not be altered between serialization
and de-serialization or else ... this is a hack, I know, but, hey, any port
in a storm!
GeoOp + renderer
In cases where the custom data is purely point-based (which, unfortunately,
it isn't in my case), I could turn the above node into a 3D node and pass
point data to other 3D nodes. At some point a render node would be required
to come back to 2D.
I am going into the correct direction with this? If not, what is a sensible
approach to make this data structure available to other nodes, which rely on the
information contained in it?
This question has been answered on the Nuke-dev mailing list:
If you know the actual class of your Op's input, it's possible to cast the
input to that class type and access it directly. A simple example could be
this snippet below:
//! #file DownstreamOp.cpp
#include "UpstreamOp.h" // The Op that contains your custom data.
// ...
UpstreamOp * upstreamOp = dynamic_cast< UpstreamOp * >( input( 0 ) );
if ( upstreamOp )
{
YourCustomData * data = yourOp->getData();
// ...
}
// ...
UPDATE
Update with reference to a question that I received via email:
I am trying to do this exact same thing, pass custom data from one Iop
plugin to another.
But these two plugins are defined in different dso/dll files.
How did you get this to work ?
Short answer:
Compile your Ops into a single shared object.
Long answer:
Say
UpstreamOp.cpp
DownstreamOp.cpp
define the depending Ops.
In a first attempt I compiled the first plugin using only UpstreamOp.cpp,
as usual. For the second plugin I compiled both DownstreamOp.cpp and
UpstreamOp.cpp into that plugin.
Strangely enough that worked (on Linux; didn't test Windows).
However, by overriding
bool Op::test_input( int input, Op * op ) const;
things will break. Creating and saving a Comp using the above plugins still
works. But loading that same Comp again breaks the connection in the node graph
between UpstreamOp and DownstreamOp and it is no longer possible to connect
them again.
My hypothesis is this: since both plugins contain symbols for UpstreamOp it
depends on the load order of the plugins if a node uses instances of UpstreamOp
from the first or from the second plugin. So, if UpstreamOp from the first plugin
is used then any dynamic_cast in Op::test_input() will fail and the two Op cannot
be connected anymore.
It is still surprising that Nuke would even bother to start at all with the above
configuration, since it can be rather picky about symbols from plugins, e.g if they
are missing.
Anyway, to get around this problem I did the following:
compile both Ops into a single shared object, e.g. myplugins.so, and
add TCL script or Python script (init.py/menu.py)which instructs Nuke how to load
the Ops correctly.
An example for a TCL scripts can be found in the dev guide and the instructions
for your menu.py could be something like this
menu = nuke.menu( 'Nodes' ).addMenu( 'my-plugins' )
menu.addCommand('UpstreamOp', lambda: nuke.createNode('UpstreamOp'))
menu.addCommand('DownstreamOp', lambda: nuke.createNode('DownstreamOp'))
nuke.load('myplugins')
So far, this works reliably for us (on Linux & Windows, haven't tested Mac).

How to dynamically build a new protobuf from a set of already defined descriptors?

At my server, we receive Self Described Messages (as defined here... which btw wasn't all that easy as there aren't any 'good' examples of this in c++).
At this point I am having no issue creating messages from these self-described ones. I can take the FileDescriptorSet, go through each FileDescriptorProto, adding each to a DescriptorPool (using BuildFile, which also gives me every defined FileDescriptor).
From here I can create any of the messages which were defined in the FileDescriptorSet with a DynamicMessageFactory instanced with the DP and calling GetPrototype (which is very easy to do as our SelfDescribedMessage required the messages full_name() and thus we can call the FindMessageTypeByName method of the DP, giving us the properly encoded Message Prototype).
The question is how can I take each already defined Descriptor or message and dynamically BUILD a 'master' message that contains all of the defined messages as nested messages. This would primarily be used for saving the current state of the messages. Currently we're handling this by just instancing a type of each message in the server(to keep a central state across different programs). But when we want to 'save off' the current state, we're forced to stream them to disk as defined here. They're streamed one message at a time (with a size prefix). We'd like to have ONE message (one to rule them all) instead of the steady stream of separate messages. This can be used for other things once it is worked out (network based shared state with optimized and easy serialization)
Since we already have the cross-linked and defined Descriptors, one would think there would be an easy way to build 'new' messages from those already defined ones. So far the solution has alluded us. We've tried creating our own DescriptorProto and adding new fields of the type from our already defined Descriptors but got lost (haven't deep dived into this one yet). We've also looked at possibly adding them as extensions (unknown at this time how to do so). Do we need to create our own DescriptorDatabase (also unknown at this time how to do so)?
Any insights?
Linked example source on BitBucket.
Hopefully this explanation will help.
I am attempting to dynamically build a Message from a set of already defined Messages. The set of already defined messages are created by using the "self-described" method explained(briefly) in the official c++ protobuf tutorial (i.e. these messages not available in compiled form). This newly defined message will need to be created at runtime.
Have tried using the straight Descriptors for each message and attempted to build a FileDescriptorProto. Have tried looking at the DatabaseDescriptor methods. Both with no luck. Currently attempting to add these defined messages as an extension to another message (even tho at compile time those defined messages, and their 'descriptor-set' were not classified as extending anything) which is where the example code starts.
you need a protobuf::DynamicMessageFactory:
{
using namespace google;
protobuf::DynamicMessageFactory dmf;
protobuf::Message* actual_msg = dmf.GetPrototype(some_desc)->New();
const protobuf::Reflection* refl = actual_msg->GetReflection();
const protobuf::FieldDescriptor* fd = trip_desc->FindFieldByName("someField");
refl->SetString(actual_msg, fd, "whee");
...
cout << actual_msg->DebugString() << endl;
}
I was able to solve this problem by dynamically creating a .proto file and loading it with an Importer.
The only requirement is for each client to either send across its proto file (only needed at init... not during full execution). The server then saves each proto file to a temp directory. An alternative if possible is to just point the server to a central location that holds all of the needed proto files.
This was done by first using a DiskSourceTree to map actual path locations to in program virtual ones. Then building the .proto file to import every proto file that was sent across AND define an optional field in a 'master message'.
After the master.proto has been saved to disk, i Import it with the Importer. Now using the Importers DescriptorPool and a DynamicMessageFactory, I'm able to reliably generate the whole message under one message. I will be putting an example of what I am describing up later on tonight or tomorrow.
If anyone has any suggestions on how to make this process better or how to do it different, please say so.
I will be leaving this question unanswered up until the bounty is about to expire just in case someone else has a better solution.
What about serializing all the messages into strings, and making the master message a sequence of (byte) strings, a la
message MessageSet
{
required FileDescriptorSet proto_files = 1;
repeated bytes serialized_sub_message = 2;
}