Get data from mat C openCV - c++

I have some C++ openCV code.
Something like
void foo(...., Mat mx){
...
x_d = mx.at<float>(x,y);
...
}
I try rewrite this part in C. I read docs and they say that data is union inside CvMap structure. But i got different error messages while try to get it. Here they are:
void foo(...., CvMat *mx){
...
x_d = *(((float*)mx->data) + y * width + x); // cannot convert to a pointer type
x_d = *(mx->data + y * width + x); // invalid operands to binary + (have 'union <anonymous>' and 'int')
...
}
So i have two questions.
How I can get that float from structure this code?
Is this the data that I need?

You can use Get?D functions, or CV_MAT_ELEM macro.
See the example below:
#include <opencv2\opencv.hpp>
using namespace cv;
int main()
{
CvMat* m = cvCreateMat(2, 3, CV_32FC1);
cvSet(m, cvScalar(1.0f));
cvSet2D(m, 0, 1, cvScalar(2.0f));
// m
// 1.0 2.0 1.0
// 1.0 1.0 1.0
// Using cvGet2d
CvScalar v00 = cvGet2D(m, 0, 0);
float f00 = v00.val[0];
// f00 = 1.0
CvScalar v01 = cvGet2D(m, 0, 1);
float f01 = v01.val[0];
// f00 = 2.0
// Using CV_MAT_ELEM
float g00 = CV_MAT_ELEM(*m, float, 0, 0);
// g00 = 1.0
float g01 = CV_MAT_ELEM(*m, float, 0, 1);
// g01 = 2.0
return 0;
}

The first instruction seems to be almost correct but the error is saying that you try treat the result as pointer. Obviously it's not a pointer, but a number. Probably float. Try this:
x_d = (((float*)mx->data) + y * width + x);

Related

Snake active contour algorithm with C++ and OpenCV 3

I am trying to implement the snake algorithm for active contour using C++ and OpenCV 3. I am working with the version that uses the gradient descent. As base test I am trying to draw a contour of a lip. This is the base image.
This is the evolution of the contour without external forces (alpha = 0.001, beta = 3, step-size=0.3).
When I add the external force, this is the result.
As external force I have used just the edge detection with Sobel derivative.
This is the code I use for points update.
array<Mat, 2> edges = edgeMatrices(croppedImage);
const float ALPHA = 0.001, BETA = 3, GAMMA = 0.3, // Gamma is step size.
a = GAMMA * ALPHA, b = GAMMA * BETA;
const uint16_t CYCLES = 1000;
const float p = b, q = -a - 4 * b, r = 1 + 2 * a + 6 * b;
Mat pMatrix = pentadiagonalMatrix(POINTS_NUM, p, q, r).inv();
for (uint16_t i = 0; i < CYCLES; ++i) {
// Extract the x and y derivatives for current points.
auto externalForces = external(edges, x, y);
x = pMatrix * (x + GAMMA * externalForces[0]);
y = pMatrix * (y + GAMMA * externalForces[1]);
// Draw the points.
if (i % 200 == 0 && i > 0)
drawPoints(croppedImage, x, y, { 0.2f * i, 0.2f * i, 0 });
}
This is the code for computing the derivatives.
array<Mat, 2> edgeMatrices(Mat &img) {
// Convert image.
Mat gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
// Apply scharr filter.
Mat grad_x, grad_y, blurred_x, blurred_y;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
int kernSize = 3;
Sobel(gray, grad_x, ddepth, 1, 0, kernSize, scale, delta, BORDER_DEFAULT);
Sobel(gray, grad_y, ddepth, 0, 1, kernSize, scale, delta, BORDER_DEFAULT);
GaussianBlur(grad_x, blurred_x, Size(5, 5), 30);
GaussianBlur(grad_y, blurred_y, Size(5, 5), 30);
return { blurred_x, blurred_y };
}
array<Mat, 2> external(array<Mat, 2> &edgeMat, Mat &x, Mat &y) {
array<Mat, 2> ext;
ext[0] = { Size{ 1, POINTS_NUM }, CV_32FC1 };
ext[1] = { Size{ 1, POINTS_NUM }, CV_32FC1 };
for (size_t i = 0; i < POINTS_NUM; ++i) {
ext[0].at<float>(0, i) = - edgeMat[0].at<short>(y.at<float>(0, i), x.at<float>(0, i));
ext[1].at<float>(0, i) = - edgeMat[1].at<short>(y.at<float>(0, i), x.at<float>(0, i));
}
return ext;
}
As you can see, the contour points converge in a very strange way and not towards the edge of the lip (that was the result I would expect).
I am not able to understand if it is an error about implementation or about tuning the parameters or it is just is normal behaviour and I misunderstood something about the algorithm.
I have some doubts on the derivative matrices, I think that they should be regularized in some way, but I am not sure which is the right one. Can someone help me?
The only implementations I have found are of the greedy method.

convert BGR to Lab without OpenCV

With little experience in color spaces, I used the following code to convert BGR image (array of unsigned characters where each channel ranges from 0 to 255) to lab color space:
double F(double input) // function f(...), which is used for defining L, a and b changes within [4/29,1]
{
if (input > 0.008856)
return (pow(input, 0.333333333)); // maximum 1
else
return ((841/108)*input + 4/29); //841/108 = 29*29/36*16
}
// RGB to XYZ
void RGBtoXYZ(uchar R, uchar G, uchar B, double &X, double &Y, double &Z)
{
// RGB Working Space: sRGB
// Reference White: D65
X = 0.412453*R + 0.357580*G + 0.189423*B; // maximum value = 0.959456 * 255 = 244.66128
Y = 0.212671*R + 0.715160*G + 0.072169*B; // maximum value = 1 * 255 = 255
Z = 0.019334*R + 0.119193*G + 0.950227*B; // maximum value = 1.088754 * 255 = 277.63227
}
// XYZ to CIELab
void XYZtoLab(double X, double Y, double Z, double &L, double &a, double &b)
{
const double Xo = 244.66128; // reference white
const double Yo = 255.0;
const double Zo = 277.63227;
L = 116 * F(Y / Yo) - 16; // maximum L = 100
a = 500 * (F(X / Xo) - F(Y / Yo)); // maximum
b = 200 * (F(Y / Yo) - F(Z / Zo));
}
// RGB to CIELab
void RGBtoLab(double R, double G, double B, double &L, double &a, double &b)
{
double X, Y, Z;
RGBtoXYZ(R, G, B, X, Y, Z);
XYZtoLab(X, Y, Z, L, a, b);
}
I have re-converted the resulting lab image to BGR (using cvtcolor) to display it using OpenCV using the following code (I don't want to do the conversion using OpenCV, I have just used it to display the results. Basically I wanted to understand how color space conversion works):
// Lchannel, Achannel, Bchannel are arrays of type double
cv::Mat temp64bitL(height, width, CV_64FC1, Lchannel);
cv::Mat temp32bitL;
temp64bitL.convertTo(temp32bitL, CV_32F);
cv::Mat temp64bitA(height, width, CV_64FC1, Achannel);
cv::Mat temp32bitA;
temp64bitA.convertTo(temp32bitA, CV_32F);
cv::Mat temp64bitB(height, width, CV_64FC1, Bchannel);
cv::Mat temp32bitB;
temp64bitB.convertTo(temp32bitB, CV_32F);
cv::Mat chan[3] = {
temp32bitL, temp32bitA, temp32bitB
};
cv::Mat merged;
cv::merge(chan, 3, merged);
cv::Mat BGRImage;
cv::cvtColor(merged, BGRImage, CV_Lab2BGR, 3);
However, the computed image is different from the original image. is that due to a problem in the code?
Your code has a bug in double F(double input). It does not work as intended because of the integer division you have. You might be willing to change the function to read something like below. Note the double castings to make the divisions work in the floating-point domain, and the use of cbrt instead of pow.
#include <cmath>
double F(double input) // function f(...), which is used for defining L, a and b
// changes within [4/29,1]
{
if (input > 0.008856)
return std::cbrt(input); // maximum 1 --- prefer cbrt to pow for cubic root
else
return ((double(841) / 108) * input +
double(4) / 29); // 841/108 = 29*29/36*16
}
Then, another problem could be the reference values you are using for the XYZ space. We have the below reference values, coming from D65 / CIE-1931:
double Xo = 95.047;
double Yo = 100;
double Zo = 108.883;
Then, our RGBtoXYZ conversion was working like this:
template <class float_t> struct Convert<XYZ<float_t>> {
template <class real_t> static XYZ<float_t> from(const RGB<real_t> &rhs) {
// Assume RGB has the type invariance satisfied, i.e., channels \in [0,255]
float_t var_R = float_t(rhs.comp1()) / 255;
float_t var_G = float_t(rhs.comp2()) / 255;
float_t var_B = float_t(rhs.comp3()) / 255;
var_R = (var_R > 0.04045) ? std::pow((var_R + 0.055) / 1.055, 2.4)
: var_R / 12.92;
var_G = (var_G > 0.04045) ? std::pow((var_G + 0.055) / 1.055, 2.4)
: var_G / 12.92;
var_B = (var_B > 0.04045) ? std::pow((var_B + 0.055) / 1.055, 2.4)
: var_B / 12.92;
var_R *= 100;
var_G *= 100;
var_B *= 100;
return XYZ<float_t>{var_R * float_t(0.4124) + var_G * float_t(0.3576) +
var_B * float_t(0.1805),
var_R * float_t(0.2126) + var_G * float_t(0.7152) +
var_B * float_t(0.0722),
var_R * float_t(0.0193) + var_G * float_t(0.1192) +
var_B * float_t(0.9505)};
}
};
where RGB was assumed to have its channels inside the valid range, as stated in the comment. Then, the XYZtoLAB function we have is the same except for the cbrt and reference value changes.
EDIT. Above numbers are obtained from EasyRGB's Math page. You can find the conversion from sRGB to XYZ and XYZ to Lab on the page, with a table of XYZ reference values. What we used was the set for "Daylight, sRGB, Adobe RGB."

Error in gauss-newton implementation for pose optimization

I’m using a modified version of a gauss-newton method to refine a pose estimate using OpenCV. The unmodified code can be found here: http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/tutorial-pose-gauss-newton-opencv.html
The details of this approach are outlined in the corresponding paper:
Marchand, Eric, Hideaki Uchiyama, and Fabien Spindler. "Pose
estimation for augmented reality: a hands-on survey." IEEE
transactions on visualization and computer graphics 22.12 (2016):
2633-2651.
A PDF can be found here: https://hal.inria.fr/hal-01246370/document
The part that is relevant (Pages 4 and 5) are screencapped below:
Here is what I have done. First, I’ve (hopefully) “corrected” some errors: (a) dt and dR can be passed by reference to exponential_map() (even though cv::Mat is essentially a pointer). (b) The last entry of each 2x6 Jacobian matrix, J.at<double>(i*2+1,5), was -x[i].y but should be -x[i].x. (c) I’ve also tried using a different formula for the projection. Specifically, one that includes the focal length and principal point:
xq.at<double>(i*2,0) = cx + fx * cX.at<double>(0,0) / cX.at<double>(2,0);
xq.at<double>(i*2+1,0) = cy + fy * cX.at<double>(1,0) / cX.at<double>(2,0);
Here is the relevant code I am using, in its entirety (control starts at optimizePose3()):
void exponential_map(const cv::Mat &v, cv::Mat &dt, cv::Mat &dR)
{
double vx = v.at<double>(0,0);
double vy = v.at<double>(1,0);
double vz = v.at<double>(2,0);
double vtux = v.at<double>(3,0);
double vtuy = v.at<double>(4,0);
double vtuz = v.at<double>(5,0);
cv::Mat tu = (cv::Mat_<double>(3,1) << vtux, vtuy, vtuz); // theta u
cv::Rodrigues(tu, dR);
double theta = sqrt(tu.dot(tu));
double sinc = (fabs(theta) < 1.0e-8) ? 1.0 : sin(theta) / theta;
double mcosc = (fabs(theta) < 2.5e-4) ? 0.5 : (1.-cos(theta)) / theta / theta;
double msinc = (fabs(theta) < 2.5e-4) ? (1./6.) : (1.-sin(theta)/theta) / theta / theta;
dt.at<double>(0,0) = vx*(sinc + vtux*vtux*msinc)
+ vy*(vtux*vtuy*msinc - vtuz*mcosc)
+ vz*(vtux*vtuz*msinc + vtuy*mcosc);
dt.at<double>(1,0) = vx*(vtux*vtuy*msinc + vtuz*mcosc)
+ vy*(sinc + vtuy*vtuy*msinc)
+ vz*(vtuy*vtuz*msinc - vtux*mcosc);
dt.at<double>(2,0) = vx*(vtux*vtuz*msinc - vtuy*mcosc)
+ vy*(vtuy*vtuz*msinc + vtux*mcosc)
+ vz*(sinc + vtuz*vtuz*msinc);
}
void optimizePose3(const PoseEstimation &pose,
std::vector<FeatureMatch> &feature_matches,
PoseEstimation &optimized_pose) {
//Set camera parameters
double fx = camera_matrix.at<double>(0, 0); //Focal length
double fy = camera_matrix.at<double>(1, 1);
double cx = camera_matrix.at<double>(0, 2); //Principal point
double cy = camera_matrix.at<double>(1, 2);
auto inlier_matches = getInliers(pose, feature_matches);
std::vector<cv::Point3d> wX;
std::vector<cv::Point2d> x;
const unsigned int npoints = inlier_matches.size();
cv::Mat J(2*npoints, 6, CV_64F);
double lambda = 0.25;
cv::Mat xq(npoints*2, 1, CV_64F);
cv::Mat xn(npoints*2, 1, CV_64F);
double residual=0, residual_prev;
cv::Mat Jp;
for(auto i = 0u; i < npoints; i++) {
//Model points
const cv::Point2d &M = inlier_matches[i].model_point();
wX.emplace_back(M.x, M.y, 0.0);
//Imaged points
const cv::Point2d &I = inlier_matches[i].image_point();
xn.at<double>(i*2,0) = I.x; // x
xn.at<double>(i*2+1,0) = I.y; // y
x.push_back(I);
}
//Initial estimation
cv::Mat cRw = pose.rotation_matrix;
cv::Mat ctw = pose.translation_vector;
int nIters = 0;
// Iterative Gauss-Newton minimization loop
do {
for (auto i = 0u; i < npoints; i++) {
cv::Mat cX = cRw * cv::Mat(wX[i]) + ctw; // Update cX, cY, cZ
// Update x(q)
//xq.at<double>(i*2,0) = cX.at<double>(0,0) / cX.at<double>(2,0); // x(q) = cX/cZ
//xq.at<double>(i*2+1,0) = cX.at<double>(1,0) / cX.at<double>(2,0); // y(q) = cY/cZ
xq.at<double>(i*2,0) = cx + fx * cX.at<double>(0,0) / cX.at<double>(2,0);
xq.at<double>(i*2+1,0) = cy + fy * cX.at<double>(1,0) / cX.at<double>(2,0);
// Update J using equation (11)
J.at<double>(i*2,0) = -1 / cX.at<double>(2,0); // -1/cZ
J.at<double>(i*2,1) = 0;
J.at<double>(i*2,2) = x[i].x / cX.at<double>(2,0); // x/cZ
J.at<double>(i*2,3) = x[i].x * x[i].y; // xy
J.at<double>(i*2,4) = -(1 + x[i].x * x[i].x); // -(1+x^2)
J.at<double>(i*2,5) = x[i].y; // y
J.at<double>(i*2+1,0) = 0;
J.at<double>(i*2+1,1) = -1 / cX.at<double>(2,0); // -1/cZ
J.at<double>(i*2+1,2) = x[i].y / cX.at<double>(2,0); // y/cZ
J.at<double>(i*2+1,3) = 1 + x[i].y * x[i].y; // 1+y^2
J.at<double>(i*2+1,4) = -x[i].x * x[i].y; // -xy
J.at<double>(i*2+1,5) = -x[i].x; // -x
}
cv::Mat e_q = xq - xn; // Equation (7)
cv::Mat Jp = J.inv(cv::DECOMP_SVD); // Compute pseudo inverse of the Jacobian
cv::Mat dq = -lambda * Jp * e_q; // Equation (10)
cv::Mat dctw(3, 1, CV_64F), dcRw(3, 3, CV_64F);
exponential_map(dq, dctw, dcRw);
cRw = dcRw.t() * cRw; // Update the pose
ctw = dcRw.t() * (ctw - dctw);
residual_prev = residual; // Memorize previous residual
residual = e_q.dot(e_q); // Compute the actual residual
std::cout << "residual_prev: " << residual_prev << std::endl;
std::cout << "residual: " << residual << std::endl << std::endl;
nIters++;
} while (fabs(residual - residual_prev) > 0);
//} while (nIters < 30);
optimized_pose.rotation_matrix = cRw;
optimized_pose.translation_vector = ctw;
cv::Rodrigues(optimized_pose.rotation_matrix, optimized_pose.rotation_vector);
}
Even when I use the functions as given, it does not produce the correct results. My initial pose estimate is very close to optimal, but when I try run the program, the method takes a very long time to converge - and when it does, the results are very wrong. I’m not sure what could be wrong and I’m out of ideas. I’m confident my inliers are actually inliers (they were chosen using an M-estimator). I’ve compared the results from exponential map with those from other implementations, and they seem to agree.
So, where is the error in this gauss-newton implementation for pose optimization? I’ve tried to make things as easy as possible for anyone willing to lend a hand. Let me know if there is anymore information I can provide. Any help would be greatly appreciated. Thanks.
Edit: 2019/05/13
There is now solvePnPRefineVVS function in OpenCV.
Also, you should use x and y calculated from the current estimated pose instead.
In the cited paper, they expressed the measurements x in the normalized camera frame (at z=1).
When working with real data, you have:
(u,v): 2D image coordinates (e.g. keypoints, corner locations, etc.)
K: the intrinsic parameters (obtained after calibrating the camera)
D: the distortion coefficients (obtained after calibrating the camera)
To compute the 2D image coordinates in the normalized camera frame, you can use in OpenCV the function cv::undistortPoints() (link to my answer about cv::projectPoints() and cv::undistortPoints()).
When there is no distortion, the computation (also called "reverse perspective transformation") is:
x = (u - cx) / fx
y = (v - cy) / fy

Halide Jit compilation

Im trying to compile my halide program to jit to use it later in code few times on different images. But i think i making something wrong, can anyone correct me?
First I create halide function to run:
void m_gammaFunctionTMOGenerate()
{
Halide::ImageParam img(Halide::type_of<float>(), 3);
img.set_stride(0, 4);
img.set_stride(2, 1);
Halide::Var x, y, c;
Halide::Param<float> key, sat, clampMax, clampMin;
Halide::Param<bool> cS;
Halide::Func gamma;
// algorytm
//img.width() , img.height();
if (cS.get())
{
float k1 = 1.6774;
float k2 = 0.9925;
sat.set((1 + k1) * pow(key.get(), k2) / (1 + k1 * pow(key.get(), k2)));
}
Halide::Expr luminance = img(x, y, 0) * 0.072186f + img(x, y, 1) * 0.715158f + img(x, y, 2) * 0.212656f;
Halide::Expr ldr_lum = (luminance - clampMin) / (clampMax - clampMin);
Halide::clamp(ldr_lum, 0.f, 1.f);
ldr_lum = Halide::pow(ldr_lum, key);
Halide::Expr imLum = img(x, y, c) / luminance;
imLum = Halide::pow(imLum, sat) * ldr_lum;
Halide::clamp(imLum, 0.f, 1.f);
gamma(x, y, c) = imLum;
// rozkład
gamma.vectorize(x, 16).parallel(y);
// kompilacja
auto & obuff = gamma.output_buffer();
obuff.set_stride(0, 4);
obuff.set_stride(2, 1);
obuff.set_extent(2, 3);
std::vector<Halide::Argument> arguments = { img, key, sat, clampMax, clampMin, cS };
m_gammaFunction = (gammafunction)(gamma.compile_jit());
}
store it in pointer:
typedef int(*gammafunction)(buffer_t*, float, float, float, float, bool, buffer_t*);
gammafunction m_gammaFunction;
then i try to run it:
buffer_t output_buf = { 0 };
//// The host pointers point to the start of the image data:
buffer_t buf = { 0 };
buf.host = (uint8_t *)data; // Might also need const_cast
float * output = new float[width * height * 4];
output_buf.host = (uint8_t*)(output);
// // If the buffer doesn't start at (0, 0), then assign mins
output_buf.extent[0] = buf.extent[0] = width; // In elements, not bytes
output_buf.extent[1] = buf.extent[1] = height; // In elements, not bytes
output_buf.extent[2] = buf.extent[2] = 4; // Assuming RGBA
// // No need to assign additional extents as they were init'ed to zero above
output_buf.stride[0] = buf.stride[0] = 4; // RGBA interleaved
output_buf.stride[1] = buf.stride[1] = width * 4; // Assuming no line padding
output_buf.stride[2] = buf.stride[2] = 1; // Channel interleaved
output_buf.elem_size = buf.elem_size = sizeof(float);
// Run the pipeline
int error = m_photoFunction(&buf, params[0], &output_buf);
But it doesn't work...
Error:
Exception thrown at 0x000002974F552DE0 in Viewer.exe: 0xC0000005: Access violation executing location 0x000002974F552DE0.
If there is a handler for this exception, the program may be safely continued.
Edit:
Here is my code for running function:
buffer_t output_buf = { 0 };
//// The host pointers point to the start of the image data:
buffer_t buf = { 0 };
buf.host = (uint8_t *)data; // Might also need const_cast
float * output = new float[width * height * 4];
output_buf.host = (uint8_t*)(output);
// // If the buffer doesn't start at (0, 0), then assign mins
output_buf.extent[0] = buf.extent[0] = width; // In elements, not bytes
output_buf.extent[1] = buf.extent[1] = height; // In elements, not bytes
output_buf.extent[2] = buf.extent[2] = 3; // Assuming RGBA
// // No need to assign additional extents as they were init'ed to zero above
output_buf.stride[0] = buf.stride[0] = 4; // RGBA interleaved
output_buf.stride[1] = buf.stride[1] = width * 4; // Assuming no line padding
output_buf.stride[2] = buf.stride[2] = 1; // Channel interleaved
output_buf.elem_size = buf.elem_size = sizeof(float);
// Run the pipeline
int error = m_gammaFunction(&buf, params[0], params[1], params[2], params[3], params[4] > 0.5 ? true : false, &output_buf);
if (error) {
printf("Halide returned an error: %d\n", error);
return -1;
}
memcpy(output, data, size * sizeof(float));
can anyone help me with it?
Edit:
Thanks to #KhouriGiordano I found out what I was doing wrong. Indeed I switched from AOT compiling to this code. So now my code looks like that:
class GammaOperator
{
public:
GammaOperator();
int realize(buffer_t * input, float params[], buffer_t * output, int width);
private:
HalideFloat m_key;
HalideFloat m_sat;
HalideFloat m_clampMax;
HalideFloat m_clampMin;
HalideBool m_cS;
Halide::ImageParam m_img;
Halide::Var x, y, c;
Halide::Func m_gamma;
};
GammaOperator::GammaOperator()
: m_img( Halide::type_of<float>(), 3)
{
Halide::Expr w = (1.f + 1.6774f) * pow(m_key.get(), 0.9925f) / (1.f + 1.6774f * pow(m_key.get(), 0.9925f));
Halide::Expr sat = Halide::select(m_cS, m_sat, w);
Halide::Expr luminance = m_img(x, y, 0) * 0.072186f + m_img(x, y, 1) * 0.715158f + m_img(x, y, 2) * 0.212656f;
Halide::Expr ldr_lum = (luminance - m_clampMin) / (m_clampMax - m_clampMin);
ldr_lum = Halide::clamp(ldr_lum, 0.f, 1.f);
ldr_lum = Halide::pow(ldr_lum, m_key);
Halide::Expr imLum = m_img(x, y, c) / luminance;
imLum = Halide::pow(imLum, sat) * ldr_lum;
imLum = Halide::clamp(imLum, 0.f, 1.f);
m_gamma(x, y, c) = imLum;
}
int GammaOperator::realize(buffer_t * input, float params[], buffer_t * output, int width)
{
m_img.set(Halide::Buffer(Halide::type_of<float>(), input));
m_img.set_stride(0, 4);
m_img.set_stride(1, width * 4);
m_img.set_stride(2, 4);
// algorytm
m_gamma.vectorize(x, 16).parallel(y);
//params[0], params[1], params[2], params[3], params[4] > 0.5 ? true : false
//{ img, key, sat, clampMax, clampMin, cS };
m_key.set(params[0]);
m_sat.set(params[1]);
m_clampMax.set(params[2]);
m_clampMin.set(params[3]);
m_cS.set(params[4] > 0.5f ? true : false);
//// kompilacja
m_gamma.realize(Halide::Buffer(Halide::type_of<float>(), output));
return 0;
}
and i use it like that:
buffer_t output_buf = { 0 };
//// The host pointers point to the start of the image data:
buffer_t buf = { 0 };
buf.host = (uint8_t *)data; // Might also need const_cast
float * output = new float[width * height * 4];
output_buf.host = (uint8_t*)(output);
// // If the buffer doesn't start at (0, 0), then assign mins
output_buf.extent[0] = buf.extent[0] = width; // In elements, not bytes
output_buf.extent[1] = buf.extent[1] = height; // In elements, not bytes
output_buf.extent[2] = buf.extent[2] = 4; // Assuming RGBA
// // No need to assign additional extents as they were init'ed to zero above
output_buf.stride[0] = buf.stride[0] = 4; // RGBA interleaved
output_buf.stride[1] = buf.stride[1] = width * 4; // Assuming no line padding
output_buf.stride[2] = buf.stride[2] = 1; // Channel interleaved
output_buf.elem_size = buf.elem_size = sizeof(float);
// Run the pipeline
int error = s_gamma->realize(&buf, params, &output_buf, width);
but it is still crashing on m_gamma.realize function with info in console:
Error: Constraint violated: f0.stride.0 (4) == 1 (1)
By using Halide::Param::get(), you are extracting the (default of 0) value from the Param object at the time you call get(). If you want to use the parameter value given at the time you call the generated function, just use it without calling get and it should be implicitly converted to an Expr.
Since Param is not convertible to a boolean, the Halide way of doing an if is Halide::select().
You aren't using the clamped return value of Halide::clamp().
I don't see cS being used by the Halide code, only the C code.
Now to your JIT problem. It looks like you started doing AOT compilation and switched to JIT.
You make a std::vector<Halide::Argument> but don't pass it anywhere. How can Halide know what Param you want to use? It looks at the Func and finds references to ImageParam and Param objects.
How can you know what order it expects the Param? You have no control over this. I was able to dump the bitcode by defining HL_GENBITCODE=1 and then view that with llvm-dis to see your function:
int gamma
( buffer_t *img
, float clampMax
, float key
, float clampMin
, float sat
, void *user_context
, buffer_t *result
);
Use gamma.realize(Halide::Buffer(Halide::type_of<float>(), &output_buf)) instead of using gamma.compile_jit() and trying to call the generated function properly.
For one time use:
Use Image instead of ImageParam.
Use Expr instead of Param.
For repeated use with a single JIT compile:
Keep the ImageParam and Param around and set them before realizing the Func.

Can normal maps be generated from a texture?

If I have a texture, is it then possible to generate a normal-map for this texture, so it can be used for bump-mapping?
Or how are normal maps usually made?
Yes. Well, sort of. Normal maps can be accurately made from height-maps. Generally, you can also put a regular texture through and get decent results as well. Keep in mind there are other methods of making a normal map, such as taking a high-resolution model, making it low resolution, then doing ray casting to see what the normal should be for the low-resolution model to simulate the higher one.
For height-map to normal-map, you can use the Sobel Operator. This operator can be run in the x-direction, telling you the x-component of the normal, and then the y-direction, telling you the y-component. You can calculate z with 1.0 / strength where strength is the emphasis or "deepness" of the normal map. Then, take that x, y, and z, throw them into a vector, normalize it, and you have your normal at that point. Encode it into the pixel and you're done.
Here's some older incomplete-code that demonstrates this:
// pretend types, something like this
struct pixel
{
uint8_t red;
uint8_t green;
uint8_t blue;
};
struct vector3d; // a 3-vector with doubles
struct texture; // a 2d array of pixels
// determine intensity of pixel, from 0 - 1
const double intensity(const pixel& pPixel)
{
const double r = static_cast<double>(pPixel.red);
const double g = static_cast<double>(pPixel.green);
const double b = static_cast<double>(pPixel.blue);
const double average = (r + g + b) / 3.0;
return average / 255.0;
}
const int clamp(int pX, int pMax)
{
if (pX > pMax)
{
return pMax;
}
else if (pX < 0)
{
return 0;
}
else
{
return pX;
}
}
// transform -1 - 1 to 0 - 255
const uint8_t map_component(double pX)
{
return (pX + 1.0) * (255.0 / 2.0);
}
texture normal_from_height(const texture& pTexture, double pStrength = 2.0)
{
// assume square texture, not necessarily true in real code
texture result(pTexture.size(), pTexture.size());
const int textureSize = static_cast<int>(pTexture.size());
for (size_t row = 0; row < textureSize; ++row)
{
for (size_t column = 0; column < textureSize; ++column)
{
// surrounding pixels
const pixel topLeft = pTexture(clamp(row - 1, textureSize), clamp(column - 1, textureSize));
const pixel top = pTexture(clamp(row - 1, textureSize), clamp(column, textureSize));
const pixel topRight = pTexture(clamp(row - 1, textureSize), clamp(column + 1, textureSize));
const pixel right = pTexture(clamp(row, textureSize), clamp(column + 1, textureSize));
const pixel bottomRight = pTexture(clamp(row + 1, textureSize), clamp(column + 1, textureSize));
const pixel bottom = pTexture(clamp(row + 1, textureSize), clamp(column, textureSize));
const pixel bottomLeft = pTexture(clamp(row + 1, textureSize), clamp(column - 1, textureSize));
const pixel left = pTexture(clamp(row, textureSize), clamp(column - 1, textureSize));
// their intensities
const double tl = intensity(topLeft);
const double t = intensity(top);
const double tr = intensity(topRight);
const double r = intensity(right);
const double br = intensity(bottomRight);
const double b = intensity(bottom);
const double bl = intensity(bottomLeft);
const double l = intensity(left);
// sobel filter
const double dX = (tr + 2.0 * r + br) - (tl + 2.0 * l + bl);
const double dY = (bl + 2.0 * b + br) - (tl + 2.0 * t + tr);
const double dZ = 1.0 / pStrength;
math::vector3d v(dX, dY, dZ);
v.normalize();
// convert to rgb
result(row, column) = pixel(map_component(v.x), map_component(v.y), map_component(v.z));
}
}
return result;
}
There's probably many ways to generate a Normal map, but like others said, you can do it from a Height Map, and 3d packages like XSI/3dsmax/Blender/any of them can output one for you as an image.
You can then output and RGB image with the Nvidia plugin for photoshop, an algorithm to convert it or you might be able to output it directly from those 3d packages with 3rd party plugins.
Be aware that in some case, you might need to invert channels (R, G or B) from the generated normal map.
Here's some resources link with examples and more complete explanation:
http://developer.nvidia.com/object/photoshop_dds_plugins.html
http://en.wikipedia.org/wiki/Normal_mapping
http://www.vrgeo.org/fileadmin/VRGeo/Bilder/VRGeo_Papers/jgt2002normalmaps.pdf
I don't think normal maps are generated from a texture. they are generated from a model.
just as texturing allows you to define complex colour detail with minimal polys (as opposed to just using millions of ploys and just vertex colours to define the colour on your mesh)
A normal map allows you to define complex normal detail with minimal polys.
I believe normal maps are usually generated from a higher res mesh, and then is used with a low res mesh.
I'm sure 3D tools, such as 3ds max or maya, as well as more specific tools will do this for you. unlike textures, I don't think they are usually done by hand.
but they are generated from the mesh, not the texture.
I suggest starting with OpenCV, due to its richness in algorithms. Here's one I wrote that iteratively blurs the normal map and weights those to the overall value, essentially creating more of a topological map.
#define ROW_PTR(img, y) ((uchar*)((img).data + (img).step * y))
cv::Mat normalMap(const cv::Mat& bwTexture, double pStrength)
{
// assume square texture, not necessarily true in real code
int scale = 1.0;
int delta = 127;
cv::Mat sobelZ, sobelX, sobelY;
cv::Sobel(bwTexture, sobelX, CV_8U, 1, 0, 13, scale, delta, cv::BORDER_DEFAULT);
cv::Sobel(bwTexture, sobelY, CV_8U, 0, 1, 13, scale, delta, cv::BORDER_DEFAULT);
sobelZ = cv::Mat(bwTexture.rows, bwTexture.cols, CV_8UC1);
for(int y=0; y<bwTexture.rows; y++) {
const uchar *sobelXPtr = ROW_PTR(sobelX, y);
const uchar *sobelYPtr = ROW_PTR(sobelY, y);
uchar *sobelZPtr = ROW_PTR(sobelZ, y);
for(int x=0; x<bwTexture.cols; x++) {
double Gx = double(sobelXPtr[x]) / 255.0;
double Gy = double(sobelYPtr[x]) / 255.0;
double Gz = pStrength * sqrt(Gx * Gx + Gy * Gy);
uchar value = uchar(Gz * 255.0);
sobelZPtr[x] = value;
}
}
std::vector<cv::Mat>planes;
planes.push_back(sobelX);
planes.push_back(sobelY);
planes.push_back(sobelZ);
cv::Mat normalMap;
cv::merge(planes, normalMap);
cv::Mat originalNormalMap = normalMap.clone();
cv::Mat normalMapBlurred;
for (int i=0; i<3; i++) {
cv::GaussianBlur(normalMap, normalMapBlurred, cv::Size(13, 13), 5, 5);
addWeighted(normalMap, 0.4, normalMapBlurred, 0.6, 0, normalMap);
}
addWeighted(originalNormalMap, 0.3, normalMapBlurred, 0.7, 0, normalMap);
return normalMap;
}