Why is the binary equivalent calculation getting incorrect? - c++

I wrote the following program to output the binary equivalent of a integer taking(I checked that int on my system is of 4 bytes) it is of 4 bytes. But the output doesn't come the right. The code is:
#include<iostream>
#include<iomanip>
using namespace std;
void printBinary(int k){
for(int i = 0; i <= 31; i++){
if(k & ((1 << 31) >> i))
cout << "1";
else
cout << "0";
}
}
int main(){
printBinary(12);
}
Where am I getting it wrong?

The problem is in 1<<31. Because 231 cannot be represented with a 32-bit signed integer (range −231 to 231 − 1), the result is undefined [1].
The fix is easy: 1U<<31.
[1]: The behavior is implementation-defined since C++14.

This expression is incorrect:
if(k & ((1<<31)>>i))
int is a signed type, so when you shift 1 31 times, it becomes the sign bit on your system. After that, shifting the result right i times sign-extends the number, meaning that the top bits remain 1s. You end up with a sequence that looks like this:
80000000 // 10000...00
C0000000 // 11000...00
E0000000 // 11100...00
F0000000 // 11110...00
F8000000
FC000000
...
FFFFFFF8
FFFFFFFC
FFFFFFFE // 11111..10
FFFFFFFF // 11111..11
To fix this, replace the expression with 1 & (k>>(31-i)). This way you would avoid undefined behavior* resulting from shifting 1 to the sign bit position.
* C++14 changed the definition so that shifting 1 31 times to the left in a 32-bit int is no longer undefined (Thanks, Matt McNabb, for pointing this out).

A typical internal memory representation of a signed integer value looks like:
The most significant bit (first from the right) is the sign bit and in signed numbers(like int) it represents whether the number is negative or not.
When you shift additional bits sign extension is performed to preserve the number's sign. This is done by appending digits to the most significant side of the number.(following a procedure dependent on the particular signed number representation used).
In unsigned numbers the first bit from the right is just the MSB of the represented number, thus when you shift additional bits no sign extension is performed.
Note: the enumeration of the bits starts from 0, so 1 << 31 replaces your sign bit and after that every bit shift operation to the left >> results in sign extension. (as pointed out by #dasblinkenlight)
So, the simple solution to your problem is to make the number unsigned (this is what U does in 1U << 31) before you start the bit manipulation. (as pointed out by #Yu Hao)
For further reading see signed number representations and two's complement.(as it's the most common)

Related

C/C++ Bitwise Operations not resulting in expected output?

I'm currently working on bitwise operations but I am confused right now... Here's the scoop and why
I have a byte 0xCD in bits this is 1100 1101
I am shifting the bits left 7, then I'm saying & 0xFF since 0xFF in bits is 1111 1111
unsigned int bit = (0xCD << 7) & 0xFF<<7;
Now I would make the assumption that both 0xCD and 0xFF would get shifted to the left 7 times and the remaining bit would be 1&1 = 1 but I'm not getting that for output also I would also make the assumption that shifting 6 would give me bits 0&1 = 0 but I'm getting again a number above 1 like 205 0.o Is there something incorrect about the way I am trying to process bit shifting in my head? If so what is it that I am doing wrong?
Code Below:
unsigned char byte_now = 0xCD;
printf("Bits for byte_now: 0x%02x: ", byte_now);
/*
* We want to get the first bit in a byte.
* To do this we will shift the bits over 7 places for the last bit
* we will compare it to 0xFF since it's (1111 1111) if bit&1 then the bit is one
*/
unsigned int bit_flag = 0;
int bit_pos = 7;
bit_flag = (byte_now << bit_pos) & 0xFF;
printf("%d", bit_flag);
Is there something incorrect about the way I am trying to process bit shifting in my head?
There seems to be.
If so what is it that I am doing wrong?
That's unclear, so I offer a reasonably full explanation.
In the first place, it is important to understand that C does not not perform any arithmetic directly on integers smaller than int. Consider, then, your expression byte_now << bit_pos. "The usual arithmetic promotions" are performed on the operands, resulting in the left operand being converted to the int value 0xCD. The result has the same pattern of least-significant value bits as bit_flag, but also a bunch of leading zero bits.
Left shifting the result by 7 bits produces the bit pattern 110 0110 1000 0000, equivalent to 0x6680. You then perform a bitwise and operation on the result, masking off all but the least-significant 8 bits, thus yielding 0x80. What happens when you assign that to bit_flag depends on the type of that variable, but if it is an integer type that is either unsigned or has more than 7 value bits then the assignment is well-defined and value-preserving. Note that it is bit 7 that is nonzero, not bit 0.
The type of bit_flag is more important when you pass it to printf(). You've paired it with a %d field descriptor, which is correct if bit_flag has type int and incorrect otherwise. If bit_flag does have type int, then I would expect the program to print 128.

reversing two's complement for 18bit int

I have an 18 bit integer that is in two's complement and I'd like to convert it to a signed number so I can better use it. On the platform I'm using, ints are 4 bytes (i.e. 32 bits). Based on this post:
Convert Raw 14 bit Two's Complement to Signed 16 bit Integer
I tried the following to convert the number:
using SomeType = uint64_t;
SomeType largeNum = 0x32020e6ed2006400;
int twosCompNum = (largeNum & 0x3FFFF);
int regularNum = (int) ((twosCompNum << 14) / 8192);
I shifted the number left 14 places to get the sign bit as the most significant bit and then divided by 8192 (in binary, it's 1 followed by 13 zeroes) to restore the magnitude (as mentioned in the post above). However, this doesn't seem to work for me. As an example, inputting 249344 gives me -25600, which prima facie doesn't seem correct. What am I doing wrong?
The almost-portable way (with assumption that negative integers are natively 2s-complement) is to simply inspect bit 17, and use that to conditionally mask in the sign bits:
constexpr SomeType sign_bits = ~SomeType{} << 18;
int regularNum = twosCompNum & 1<<17 ? twosCompNum | sign_bits : twosCompNum;
Note that this doesn't depend on the size of your int type.
The constant 8192 is wrong, it should be 16384 = (1<<14).
int regularNum = (twosCompNum << 14) / (1<<14);
With this, the answer is correct, -12800.
It is correct, because the input (unsigned) number is 249344 (0x3CE00). It has its highest bit set, so it is a negative number. We can calculate its signed value by subtracting "max unsigned value+1" from it: 0x3CE00-0x40000=-12800.
Note, that if you are on a platform, for which right signed shift does the right thing (like on x86), then you can avoid division:
int regularNum = (twosCompNum << 14) >> 14;
This version can be slightly faster (but has implementation-defined behavior), if the compiler doesn't notice that division can be exactly replaced by a shift (clang 7 notices, but gcc 8 doesn't).
Two problems: first your test input is not an 18-bit two's complement number. With n bits, two's compliment permits -(2 ^ (n - 1)) <= value < 2 ^ (n - 1). In the case of 18 bits, that's -131072 <= value < 131071. You say you input 249344 which is outside of this range and would actually be interpreted as -12800.
The second problem is that your powers of two are off. In the answer you cite, the solution offered is of the form
mBitOutput = (mBitCast)(nBitInput << (m - n)) / (1 << (m - n));
For your particular problem, you desire
int output = (nBitInput << (32 - 18)) / (1 << (32 - 18));
// or equivalent
int output = (nBitInput << 14) / 16384;
Try this out.

What is the purpose of "int mask = ~0;"?

I saw the following line of code here in C.
int mask = ~0;
I have printed the value of mask in C and C++. It always prints -1.
So I do have some questions:
Why assigning value ~0 to the mask variable?
What is the purpose of ~0?
Can we use -1 instead of ~0?
It's a portable way to set all the binary bits in an integer to 1 bits without having to know how many bits are in the integer on the current architecture.
C and C++ allow 3 different signed integer formats: sign-magnitude, one's complement and two's complement
~0 will produce all-one bits regardless of the sign format the system uses. So it's more portable than -1
You can add the U suffix (i.e. -1U) to generate an all-one bit pattern portably1. However ~0 indicates the intention clearer: invert all the bits in the value 0 whereas -1 will show that a value of minus one is needed, not its binary representation
1 because unsigned operations are always reduced modulo the number that is one greater than the largest value that can be represented by the resulting type
That on a 2's complement platform (that is assumed) gives you -1, but writing -1 directly is forbidden by the rules (only integers 0..255, unary !, ~ and binary &, ^, |, +, << and >> are allowed).
You are studying a coding challenge with a number of restrictions on operators and language constructions to perform given tasks.
The first problem is return the value -1 without the use of the - operator.
On machines that represent negative numbers with two's complement, the value -1 is represented with all bits set to 1, so ~0 evaluates to -1:
/*
* minusOne - return a value of -1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 2
* Rating: 1
*/
int minusOne(void) {
// ~0 = 111...111 = -1
return ~0;
}
Other problems in the file are not always implemented correctly. The second problem, returning a boolean value representing the fact the an int value would fit in a 16 bit signed short has a flaw:
/*
* fitsShort - return 1 if x can be represented as a
* 16-bit, two's complement integer.
* Examples: fitsShort(33000) = 0, fitsShort(-32768) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 8
* Rating: 1
*/
int fitsShort(int x) {
/*
* after left shift 16 and right shift 16, the left 16 of x is 00000..00 or 111...1111
* so after shift, if x remains the same, then it means that x can be represent as 16-bit
*/
return !(((x << 16) >> 16) ^ x);
}
Left shifting a negative value or a number whose shifted value is beyond the range of int has undefined behavior, right shifting a negative value is implementation defined, so the above solution is incorrect (although it is probably the expected solution).
Loooong ago this was how you saved memory on extremely limited equipment such as the 1K ZX 80 or ZX 81 computer. In BASIC, you would
Let X = NOT PI
rather than
LET X = 0
Since numbers were stored as 4 byte floating points, the latter takes 2 bytes more than the first NOT PI alternative, where each of NOT and PI takes up a single byte.
There are multiple ways of encoding numbers across all computer architectures. When using 2's complement this will always be true:~0 == -1. On the other hand, some computers use 1's complement for encoding negative numbers for which the above example is untrue, because ~0 == -0. Yup, 1s complement has negative zero, and that is why it is not very intuitive.
So to your questions
the ~0 is assigned to mask so all the bits in mask are equal 1 -> making mask & sth == sth
the ~0 is used to make all bits equal to 1 regardless of the platform used
you can use -1 instead of ~0 if you are sure that your computer platform uses 2's complement number encoding
My personal thought - make your code as much platform-independent as you can. The cost is relatively small and the code becomes fail proof

Shift left/right adding zeroes/ones and dropping first bits

I've got to program a function that receives
a binary number like 10001, and
a decimal number that indicates how many shifts I should perform.
The problem is that if I use the C++ operator <<, the zeroes are pushed from behind but the first numbers aren't dropped... For example
shifLeftAddingZeroes(10001,1)
returns 100010 instead of 00010 that is what I want.
I hope I've made myself clear =P
I assume you are storing that information in int. Take into consideration, that this number actually has more leading zeroes than what you see, ergo your number is most likely 16 bits, meaning 00000000 00000001 . Maybe try AND-ing it with number having as many 1 as the number you want to have after shifting? (Assuming you want to stick to bitwise operations).
What you want is to bit shift and then limit the number of output bits which can be active (hold a value of 1). One way to do this is to create a mask for the number of bits you want, then AND the bitshifted value with that mask. Below is a code sample for doing that, just replace int_type with the type of value your using -- or make it a template type.
int_type shiftLeftLimitingBitSize(int_type value, int numshift, int_type numbits=some_default) {
int_type mask = 0;
for (unsigned int bit=0; bit < numbits; bit++) {
mask += 1 << bit;
}
return (value << numshift) & mask;
}
Your output for 10001,1 would now be shiftLeftLimitingBitSize(0b10001, 1, 5) == 0b00010.
Realize that unless your numbits is exactly the length of your integer type, you will always have excess 0 bits on the 'front' of your number.

Right shift with zeros at the beginning

I'm trying to do a kind of left shift that would add zeros at the beginning instead of ones. For example, if I left shift 0xff, I get this:
0xff << 3 = 11111000
However, if I right shift it, I get this:
0xff >> 3 = 11111111
Is there any operation I could use to get the equivalent of a left shift? i.e. I would like to get this:
00011111
Any suggestion?
Edit
To answer the comments, here is the code I'm using:
int number = ~0;
number = number << 4;
std::cout << std::hex << number << std::endl;
number = ~0;
number = number >> 4;
std::cout << std::hex << number << std::endl;
output:
fffffff0
ffffffff
Since it seems that in general it should work, I'm interested as to why this specific code doesn't. Any idea?
This is how C and binary arithmetic both work:
If you left shift 0xff << 3, you get binary: 00000000 11111111 << 3 = 00000111 11111000
If you right shift 0xff >> 3, you get binary: 00000000 11111111 >> 3 = 00000000 00011111
0xff is a (signed) int with the positive value 255. Since it is positive, the outcome of shifting it is well-defined behavior in both C and C++. It will not do any arithmetic shifts nor any kind or poorly-defined behavior.
#include <stdio.h>
int main()
{
printf("%.4X %d\n", 0xff << 3, 0xff << 3);
printf("%.4X %d\n", 0xff >> 3, 0xff >> 3);
}
Output:
07F8 2040
001F 31
So you are doing something strange in your program because it doesn't work as expected. Perhaps you are using char variables or C++ character literals.
Source: ISO 9899:2011 6.5.7.
EDIT after question update
int number = ~0; gives you a negative number equivalent to -1, assuming two's complement.
number = number << 4; invokes undefined behavior, since you left shift a negative number. The program implements undefined behavior correctly, since it either does something or nothing at all. It may print fffffff0 or it may print a pink elephant, or it may format the hard drive.
number = number >> 4; invokes implementation-defined behavior. In your case, your compiler preserves the sign bit. This is known as arithmetic shift, and arithmetic right shift works in such a way that the MSB is filled with whatever bit value it had before the shift. So if you have a negative number, you will experience that the program is "shifting in ones".
In 99% of all real world cases, it doesn't make sense to use bitwise operators on signed numbers. Therefore, always ensure that you are using unsigned numbers, and that none of the dangerous implicit conversion rules in C/C++ transforms them into signed numbers (for more info about dangerous conversions, see "the integer promotion rules" and "the usual arithmetic conversions", plenty of good info about those on SO).
EDIT 2, some info from the C99 standard's rationale document V5.10:
6.5.7 Bitwise shift operators
The description of shift operators in K&R suggests that shifting by a
long count should force the left operand to be widened to long before
being shifted. A more intuitive practice, endorsed by the C89
Committee, is that the type of the shift count has no bearing on the
type of the result.
QUIET CHANGE IN C89
Shifting by a long count no longer coerces the shifted operand to
long. The C89 Committee affirmed the freedom in implementation granted
by K&R in not requiring the signed right shift operation to sign
extend, since such a requirement might slow down fast code and since
the usefulness of sign extended shifts is marginal. (Shifting a
negative two’s complement integer arithmetically right one place is
not the same as dividing by two!)
If you explicitly shift 0xff it works as you expected
cout << (0xff >> 3) << endl; // 31
It should be possible only if 0xff is in type of signed width 8 (char and signed char on popular platforms).
So, in common case:
You need to use unsigned ints
(unsigned type)0xff
right shift works as division by 2(with rounding down, if I understand correctly).
So when you have 1 as first bit, you have negative value and after division it's negative again.
The two kinds of right shift you're talking about are called Logical Shift and Arithmetic Shift. C and C++ use logical shift for unsigned integers and most compilers will use arithmetic shift for a signed integer but this is not guaranteed by the standard meaning that the value of right shifting a negative signed int is implementation defined.
Since you want a logical shift you need to switch to using an unsigned integer. You can do this by replacing your constant with 0xffU.
To explain your real code you just need the C++ versions of the quotes from the C standard that Lundin gave in comments:
int number = ~0;
number = number << 4;
Undefined behavior. [expr.shift] says
The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated
bits are zero-filled. If E1 has an unsigned type, the value of the
result is E1 × 2E2, reduced modulo one more than the maximum value
representable in the result type. Otherwise, if E1 has a signed type
and non-negative value, and E1×2E2 is representable in the result
type, then that is the resulting value; otherwise, the behavior is
undefined.
number = ~0;
number = number >> 4;
Implementation-defined result, in this case your implementation gave you an arithmetic shift:
The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has
an unsigned type or if E1 has a signed type and a non-negative value,
the value of the result is the integral part of the quotient of
E1/2E2. If E1 has a signed type and a negative value, the resulting
value is implementation-defined
You should use an unsigned type:
unsigned int number = -1;
number = number >> 4;
std::cout << std::hex << number << std::endl;
Output:
0x0fffffff
To add my 5 cents worth here...
I'm facing exactly the same problem as this.lau! I've done some perfunctory research on this and these are my results:
typedef unsigned int Uint;
#define U31 0x7FFFFFFF
#define U32 0xFFFFFFFF
printf ("U31 right shifted: 0x%08x\n", (U31 >> 30));
printf ("U32 right shifted: 0x%08x\n", (U32 >> 30));
Output:
U31 right shifted: 0x00000001 (expected)
U32 right shifted: 0xffffffff (not expected)
It would appear (in the absence of anyone with detailed knowledge) that the C compiler in XCode for Mac OS X v5.0.1 reserves the MSB as a carry bit that gets pulled along with each shift.
Somewhat annoyingly, the converse is NOT true:-
#define ST00 0x00000001
#define ST01 0x00000002
printf ("ST00 left shifted: 0x%08x\n", (ST00 << 30));
printf ("ST01 left shifted: 0x%08x\n", (ST01 << 30));
Output:
ST00 left shifted: 0x40000000
ST01 left shifted: 0x80000000
I concur completely with the people above that assert that the sign of the operand has no bearing on the behaviour of the shift operator.
Can anyone shed any light on the specification for the Posix4 implementation of C? I feel a definitive answer may rest there.
In the meantime, it appears that the only workaround is a construct along the following lines;-
#define CARD2UNIVERSE(c) (((c) == 32) ? 0xFFFFFFFF : (U31 >> (31 - (c))))
This works - exasperating but necessary.
Just in case if you want the first bit of negative number to be 0 after right shift what we can do is to take the XOR of that negative number with INT_MIN that will make its msb zero, I understand that its not appropriate arithmetic shift but will get work done