subset array with Fortran given a condition? - fortran

Suppose I have an array A(n,m). Is it possible to subset that array in Fortran to create a new array? For example,
A = 11 22 43 55
15 56 65 63
54 56 32 78
I want to create an array B with m-1 columns and the rows that satisfies A(:,2) .eq. 56
So B should be:
B = 15 65 63
54 32 78
I don't even know how to start because, for example, the dimension of B should be determined dynamically (I think)
Thanks for the help!

Are you looking for something like this?
function extractB(A) result(B)
integer, dimension(:,:), intent(in) :: A
integer, dimension(:,:), pointer :: B
integer :: nrowB, i, pos
nrowB = count( A(:,2)==56)
allocate( B(nrowB, size(A,2)-1 ) )
pos = 1
do i = 1, size(A,1)
if(A(i,2)==56)then
B(pos,1) = A(i,1)
B(pos,2:) = A(i,3:)
pos = pos+1
end if
end do
end function extractB
That you call like
B = extractB(A)
with B defined like:
integer, dimension(:,:), allocatable :: B
I assumed integer for your arrays. If your compiler implement pointer as return value, you can used pointers in the place of allocatable.
====adding a full program ====
module extract
contains
subroutine testExtract(A, B)
double precision, dimension(:,:), intent(in) :: A
double precision, dimension(:,:), intent(out), allocatable :: B
B = extractB(A)
end subroutine testExtract
function extractB(A) result(B)
double precision, dimension(:,:), intent(in) :: A
double precision, dimension(:,:), allocatable :: B
integer :: nrowB, i, pos
nrowB = count( A(:,2)==56)
allocate( B(nrowB, size(A,2)-1 ) )
pos = 1
do i = 1, size(A,1)
if(A(i,2)==56)then
B(pos,1) = A(i,1)
B(pos,2:) = A(i,3:)
pos = pos+1
end if
end do
end function extractB
end module extract
program test
use extract
integer, parameter :: n = 3
integer, parameter :: m = 4
double precision, dimension(3,4) :: A
double precision, dimension(:,:), allocatable :: B
A(1,:) = [11, 22, 43, 55]
A(2,:) = [15, 56, 65, 63]
A(3,:) = [54, 56, 32, 78]
print*, 'A :'
print*, int(A)
!B = extractB(A)
call testExtract(A, B)
print*, 'B'
print*, int(B)
end program

A loop is clearly a good way to go, but if you want concise, then
integer, dimension(N,M) :: A
integer, allocatable :: B(:,:)
integer i
A = ...
B = A(PACK([(i,i=1,SIZE(A,1))],A(:,2)==56),[1,(i,i=3,SIZE(A,2))])
I should explain this as there are a number of silly things being done here. First note that [..] is an array constructor, and [(..)] is an array constructor with an implied-do.
So [(i,i=1,SIZE(A,1))] creates an array with values 1, ..., N and [1,(i,i=3,SIZE(A,2))] an array with values 1, 3, ..., M. These form the indexes for the rows and columns of A missing out the second column. The PACK part selects those indexes for rows matching the mask condition A(:,2)==56.
Finally, we use vector subscripting to select the suitable rows with the restricted columns.
The only real reason for doing this is to benefit from automatic allocation of B. And that's very marginal.
Don't do this in real code without good documentation.

Related

issues with Fortran function reshape

I'm using codeblocks and gnu compiler to run Fortran code but I noticed something very strange.
Once I have an array (1,2,3,...,16) if I want to reshape to a 4x4 matrix I use the built-in reshape function, which should in theory use a column-major order for the numbers and so give (1 5 9 13; 2 6 10 14; 3 7 11 15; 4 8 12 16);
instead I get (1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16).
This is a major inconsistency, I wonder if it is related to using codeblocks or what.
Anyone else with this problem and/or an idea about the reason and a solution.
I could not replicate the issue with Intel Fortran oneAPI HPC
and code for reference
program FortranConsole1
use, intrinsic :: iso_fortran_env
implicit none
interface show
procedure show_matrix_i, show_matrix_r, show_matrix_d
end interface
integer :: row(16), matrix(4,4)
real(real64) :: A(4,4)
row = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
matrix = reshape( row, [4, 4])
call show(matrix)
A = dble(matrix)
A = sqrt( matmul( transpose(A), A) )
call show(A, 8)
call show(A, 12)
call show(A, 16)
contains
subroutine show_matrix_i(A, w)
! Display the matrix 'A' in columns
! A : the array of integers
! w : the column width. Default = 5
integer, intent(in) :: A(:,:)
integer, intent(in), optional :: w
integer :: i,j,n,m, wt
character(len=16) :: fmt
if(present(w)) then
wt = w
else
wt = 5
end if
n = size(A,1)
m = size(A,2)
write( fmt, "(a,g0,a)") "(*(g",wt,".0))"
write( * , fmt ) ( (A(i,j),j=1,m), new_line("A"), i=1,n )
end subroutine
subroutine show_matrix_r(A, w)
! Display the matrix 'A' in columns
! A : the array of real numbers
! w : the column width. deafult = 12
! s : sig. figures w-5 (calculated)
real(real32), intent(in) :: A(:,:)
integer, intent(in), optional :: w
integer :: i,j,n,m,dg,wt
character(len=16) :: fmt
if(present(w)) then
wt = w
else
wt = 12
end if
dg = wt-5
n = size(A,1)
m = size(A,2)
write( fmt, "(a,g0,a,g0,a)") "(*(g",wt,".",dg,"))"
write( * , fmt ) ( (A(i,j),j=1,m), new_line("A"), i=1,n )
end subroutine
subroutine show_matrix_d(A,w)
! Display the matrix 'A' in columns
! A : the array of dble numbers
! w : the column width. default = 12
! Converts 'A' into single precision and calls `show_matrix_r`
real(real64), intent(in) :: A(:,:)
integer, intent(in), optional :: w
call show_matrix_r(real(A),w)
end subroutine
end program FortranConsole1
with results

Using Minpack to solve S-curve

I'd like to use Minpack (fortran) to estimate the D parameter in the following generalized form of the S-curve: y = (A - D) / (1 + (x**B/C)) + D
The idea is that in this application, the user provides A [which is always 0 to force passage through (0,0)], B, and C, and from there Minpack will find a value for D that forces passage through (1,y), where y is also supplied by the user but must be <= 1. I was able to accomplish this task with the code below, however, minpack is claiming it hasn't converged when in fact it appears that it has. For example, when running this code and entering the values 1 (at the first prompt) and 0 4 0.1 (at the second prompting), minpack returns info = 2, which according to the comments in lmdif means:
relative error between two consecutive iterates is at most xtol.
I'm tempted to comment out line 63, but am worried that's playing with fire...are there any seasoned minpack users out there who could comment on this? Line 63 is the one that reads:
if (info /= 1) stop "failed to converge"
Am I mis-using Minpack even though it appears to converge (based on my verifying the value in pars)?
module types
implicit none
private
public dp
integer, parameter :: dp=kind(0d0)
end module
module f_vals
DOUBLE PRECISION, SAVE, DIMENSION(:), POINTER:: fixed_vals
end module
module find_fit_module
! This module contains a general function find_fit() for a nonlinear least
! squares fitting. The function can fit any nonlinear expression to any data.
use minpack, only: lmdif1
use types, only: dp
implicit none
private
public find_fit
contains
subroutine find_fit(data_x, data_y, expr, pars)
! Fits the (data_x, data_y) arrays with the function expr(x, pars).
! The user can provide any nonlinear function 'expr' depending on any number of
! parameters 'pars' and it must return the evaluated expression on the
! array 'x'. The arrays 'data_x' and 'data_y' must have the same
! length.
real(dp), intent(in) :: data_x(:), data_y(:)
interface
function expr(x, pars) result(y)
use types, only: dp
implicit none
real(dp), intent(in) :: x(:), pars(:)
real(dp) :: y(size(x))
end function
end interface
real(dp), intent(inout) :: pars(:)
real(dp) :: tol, fvec(size(data_x))
integer :: iwa(size(pars)), info, m, n
real(dp), allocatable :: wa(:)
tol = sqrt(epsilon(1._dp))
!tol = 0.001
m = size(fvec)
n = size(pars)
allocate(wa(m*n + 5*n + m))
call lmdif1(fcn, m, n, pars, fvec, tol, info, iwa, wa, size(wa))
open(222, FILE='D_Value.txt')
write(222,4) pars(1)
4 format(E20.12)
close(222)
if (info /= 1) stop "failed to converge"
contains
subroutine fcn(m, n, x, fvec, iflag)
integer, intent(in) :: m, n, iflag
real(dp), intent(in) :: x(n)
real(dp), intent(out) :: fvec(m)
! Suppress compiler warning:
fvec(1) = iflag
fvec = data_y - expr(data_x, x)
end subroutine
end subroutine
end module
program snwdeplcrv
! Find a nonlinear fit of the form y = (A - D) / (1 + (x**B/C)) + D.
use find_fit_module, only: find_fit
use types, only: dp
use f_vals
implicit none
real(dp) :: pars(1), y_int_at_1
real(dp) :: y(1) = 1.0 ! Initialization of value to be reset by user (y: value of S-curve # x=1)
real(dp) :: A, B, C
integer :: i
allocate(fixed_vals(3)) ! A, B, C parameters
pars = [1._dp] ! D parameter in S-curve function
! Read PEST-specified parameters
write(*,*) ' Enter value that S-curve should equal when SWE=1 (must be <= 1)'
read(*,*) y_int_at_1
if(y_int_at_1 > 1.0) y_int_at_1 = 1
y = y_int_at_1
! Read PEST-specified parameters
write(*,*) ' Enter S-curve parameters: A, B, & C. D parameter to be estimated '
read(*,*) A, B, C
fixed_vals(1) = A
fixed_vals(2) = B
fixed_vals(3) = C
call find_fit([(real(i, dp), i=1,size(y))], y, expression, pars)
print *, pars
contains
function expression(x, pars) result(y)
use f_vals
real(dp), intent(in) :: x(:), pars(:)
real(dp) :: y(size(x))
real(dp) :: A, B, C, D
A = fixed_vals(1)
B = fixed_vals(2)
C = fixed_vals(3)
D = pars(1)
y = (A - D) / (1 + (x**B / C)) + D
end function
end program

Storing a Variable with a Multi-Dimensional Index in Fortran

Question
Consider the following code:
program example
implicit none
integer, parameter :: n_coeffs = 1000
integer, parameter :: n_indices = 5
integer :: i
real(8), dimension(n_coeffs) :: coeff
integer, dimension(n_coeffs,n_indices) :: index
do i = 1, n_coeffs
coeff(i) = real(i*3,8)
index(i,:) = [2,4,8,16,32]*i
end do
end
For any 5 dimensional index I need to obtain the associated coefficient, without knowing or calculating i. For instance, given [2,4,8,16,32] I need to obtain 3.0 without computing i.
Is there a reasonable solution, perhaps using sparse matrices, that would work for n_indices in the order of 100 (though n_coeffs still in the order of 1000)?
A Bad Solution
One solution would be to define a 5 dimensional array as in
real(8), dimension(2000,4000,8000,16000,32000) :: coeff2
do i = 1, ncoeffs
coeff2(index(i,1),index(i,2),index(i,3),index(i,4),index(i,5)) = coeff(i)
end do
then, to get the coefficient associated with [2,4,8,16,32], call
coeff2(2,4,8,16,32)
However, besides being very wasteful of memory, this solution would not allow n_indices to be set to a number higher than 7 given the limit of 7 dimensions to an array.
OBS: This question is a spin-off of this one. I have tried to ask the question more precisely having failed in the first attempt, an effort that greatly benefited from the answer of #Rodrigo_Rodrigues.
Actual Code
In case it helps here is the code for the actual problem I am trying to solve. It is an adaptive sparse grid method for approximating a function. The main goal is to make the interpolation at the and as fast as possible:
MODULE MOD_PARAMETERS
IMPLICIT NONE
SAVE
INTEGER, PARAMETER :: d = 2 ! number of dimensions
INTEGER, PARAMETER :: L_0 = 4 ! after this adaptive grid kicks in, for L <= L_0 usual sparse grid
INTEGER, PARAMETER :: L_max = 9 ! maximum level
INTEGER, PARAMETER :: bound = 0 ! 0 -> for f = 0 at boundary
! 1 -> adding grid points at boundary
! 2 -> extrapolating close to boundary
INTEGER, PARAMETER :: max_error = 1
INTEGER, PARAMETER :: L2_error = 1
INTEGER, PARAMETER :: testing_sample = 1000000
REAL(8), PARAMETER :: eps = 0.01D0 ! epsilon for adaptive grid
END MODULE MOD_PARAMETERS
PROGRAM MAIN
USE MOD_PARAMETERS
IMPLICIT NONE
INTEGER, DIMENSION(d,d) :: ident
REAL(8), DIMENSION(d) :: xd
INTEGER, DIMENSION(2*d) :: temp
INTEGER, DIMENSION(:,:), ALLOCATABLE :: grid_index, temp_grid_index, grid_index_new, J_index
REAL(8), DIMENSION(:), ALLOCATABLE :: coeff, temp_coeff, J_coeff
REAL(8) :: temp_min, temp_max, V, T, B, F, x1
INTEGER :: k, k_1, k_2, h, i, j, L, n, dd, L1, L2, dsize, count, first, repeated, add, ind
INTEGER :: time1, time2, clock_rate, clock_max
REAL(8), DIMENSION(L_max,L_max,2**(L_max),2**(L_max)) :: coeff_grid
INTEGER, DIMENSION(d) :: level, LL, ii
REAL(8), DIMENSION(testing_sample,d) :: x_rand
REAL(8), DIMENSION(testing_sample) :: interp1, interp2
! ============================================================================
! EXECUTABLE
! ============================================================================
ident = 0
DO i = 1,d
ident(i,i) = 1
ENDDO
! Initial grid point
dsize = 1
ALLOCATE(grid_index(dsize,2*d),grid_index_new(dsize,2*d))
grid_index(1,:) = 1
grid_index_new = grid_index
ALLOCATE(coeff(dsize))
xd = (/ 0.5D0, 0.5D0 /)
CALL FF(xd,coeff(1))
CALL FF(xd,coeff_grid(1,1,1,1))
L = 1
n = SIZE(grid_index_new,1)
ALLOCATE(J_index(n*2*d,2*d))
ALLOCATE(J_coeff(n*2*d))
CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)
DO WHILE (L .LT. L_max)
L = L+1
n = SIZE(grid_index_new,1)
count = 0
first = 1
DEALLOCATE(J_index,J_coeff)
ALLOCATE(J_index(n*2*d,2*d))
ALLOCATE(J_coeff(n*2*d))
J_index = 0
J_coeff = 0.0D0
DO k = 1,n
DO i = 1,d
DO j = 1,2
IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
ELSEIF (bound .EQ. 1) THEN
IF (grid_index_new(k,i) .EQ. 1) THEN
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(-(-1)**j)/)
ELSE
temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
ENDIF
ENDIF
CALL XX(d,temp(1:d),temp(d+1:2*d),xd)
temp_min = MINVAL(xd)
temp_max = MAXVAL(xd)
IF ((temp_min .GE. 0.0D0) .AND. (temp_max .LE. 1.0D0)) THEN
IF (first .EQ. 1) THEN
first = 0
count = count+1
J_index(count,:) = temp
V = 0.0D0
DO k_1 = 1,SIZE(grid_index,1)
T = 1.0D0
DO k_2 = 1,d
CALL XX(1,temp(k_2),temp(d+k_2),x1)
CALL BASE(x1,grid_index(k_1,k_2),grid_index(k_1,k_2+d),B)
T = T*B
ENDDO
V = V+coeff(k_1)*T
ENDDO
CALL FF(xd,F)
J_coeff(count) = F-V
ELSE
repeated = 0
DO h = 1,count
IF (SUM(ABS(J_index(h,:)-temp)) .EQ. 0) THEN
repeated = 1
ENDIF
ENDDO
IF (repeated .EQ. 0) THEN
count = count+1
J_index(count,:) = temp
V = 0.0D0
DO k_1 = 1,SIZE(grid_index,1)
T = 1.0D0
DO k_2 = 1,d
CALL XX(1,temp(k_2),temp(d+k_2),x1)
CALL BASE(x1,grid_index(k_1,k_2),grid_index(k_1,k_2+d),B)
T = T*B
ENDDO
V = V+coeff(k_1)*T
ENDDO
CALL FF(xd,F)
J_coeff(count) = F-V
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ALLOCATE(temp_grid_index(dsize,2*d))
ALLOCATE(temp_coeff(dsize))
temp_grid_index = grid_index
temp_coeff = coeff
DEALLOCATE(grid_index,coeff)
ALLOCATE(grid_index(dsize+count,2*d))
ALLOCATE(coeff(dsize+count))
grid_index(1:dsize,:) = temp_grid_index
coeff(1:dsize) = temp_coeff
DEALLOCATE(temp_grid_index,temp_coeff)
grid_index(dsize+1:dsize+count,:) = J_index(1:count,:)
coeff(dsize+1:dsize+count) = J_coeff(1:count)
dsize = dsize + count
DO i = 1,count
coeff_grid(J_index(i,1),J_index(i,2),J_index(i,3),J_index(i,4)) = J_coeff(i)
ENDDO
IF (L .LE. L_0) THEN
DEALLOCATE(grid_index_new)
ALLOCATE(grid_index_new(count,2*d))
grid_index_new = J_index(1:count,:)
ELSE
add = 0
DO h = 1,count
IF (ABS(J_coeff(h)) .GT. eps) THEN
add = add + 1
J_index(add,:) = J_index(h,:)
ENDIF
ENDDO
DEALLOCATE(grid_index_new)
ALLOCATE(grid_index_new(add,2*d))
grid_index_new = J_index(1:add,:)
ENDIF
ENDDO
CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, 'Elapsed real time1 = ', DBLE(time2-time1)/DBLE(clock_rate)
PRINT *, 'Grid Points = ', SIZE(grid_index,1)
! ============================================================================
! Compute interpolated values:
! ============================================================================
CALL RANDOM_NUMBER(x_rand)
CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)
DO i = 1,testing_sample
V = 0.0D0
DO L1=1,L_max
DO L2=1,L_max
IF (L1+L2 .LE. L_max+1) THEN
level = (/L1,L2/)
T = 1.0D0
DO dd = 1,d
T = T*(1.0D0-ABS(x_rand(i,dd)/2.0D0**(-DBLE(level(dd)))-DBLE(2*FLOOR(x_rand(i,dd)*2.0D0**DBLE(level(dd)-1))+1)))
ENDDO
V = V + coeff_grid(L1,L2,2*FLOOR(x_rand(i,1)*2.0D0**DBLE(L1-1))+1,2*FLOOR(x_rand(i,2)*2.0D0**DBLE(L2-1))+1)*T
ENDIF
ENDDO
ENDDO
interp2(i) = V
ENDDO
CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, 'Elapsed real time2 = ', DBLE(time2-time1)/DBLE(clock_rate)
END PROGRAM
For any 5 dimensional index I need to obtain the associated
coefficient, without knowing or calculating i. For instance, given
[2,4,8,16,32] I need to obtain 3.0 without computing i.
function findloc_vector(matrix, vector) result(out)
integer, intent(in) :: matrix(:, :)
integer, intent(in) :: vector(size(matrix, dim=2))
integer :: out, i
do i = 1, size(matrix, dim=1)
if (all(matrix(i, :) == vector)) then
out = i
return
end if
end do
stop "No match for this vector"
end
And that's how you use it:
print*, coeff(findloc_vector(index, [2,4,8,16,32])) ! outputs 3.0
I must confess I was reluctant to post this code because, even though this answers your question, I honestly think this is not what you really want/need, but you dind't provide enough information for me to know what you really do want/need.
Edit (After actual code from OP):
If I decrypted your code correctly (and considering what you said in your previous question), you are declaring:
REAL(8), DIMENSION(L_max,L_max,2**(L_max),2**(L_max)) :: coeff_grid
(where L_max = 9, so size(coeff_grid) = 21233664 =~160MB) and then populating it with:
DO i = 1,count
coeff_grid(J_index(i,1),J_index(i,2),J_index(i,3),J_index(i,4)) = J_coeff(i)
ENDDO
(where count is of the order of 1000, i.e. 0.005% of its elements), so this way you can fetch the values by its 4 indices with the array notation.
Please, don't do that. You don't need a sparse matrix in this case either. The new approach you proposed is much better: storing the indices in each row of an smaller array, and fetching on the array of coefficients by the corresponding location of those indices in its own array. This is way faster (avoiding the large allocation) and much more memory-efficient.
PS: Is it mandatory for you to stick to Fortran 90? Its a very old version of the standard and chances are that the compiler you're using implements a more recent version. You could improve the quality of your code a lot with the intrinsic move_alloc (for less array copies), the kind constants from the intrinsic module iso_fortran_env (for portability), the [], >, <, <=,... notation (for readability)...

Fortran character format string as subroutine argument

I am struggling with reading a text string in. Am using gfortran 4.9.2.
Below I have written a little subroutine in which I would like to submit the write format as argument.
Ideally I'd like to be able to call it with
call printarray(mat1, "F8.3")
to print out a matrix mat1 in that format for example. The numbers of columns should be determined automatically inside the subroutine.
subroutine printarray(x, udf_temp)
implicit none
real, dimension(:,:), intent(in) :: x ! array to be printed
integer, dimension(2) :: dims ! array for shape of x
integer :: i, j
character(len=10) :: udf_temp ! user defined format, eg "F8.3, ...
character(len = :), allocatable :: udf ! trimmed udf_temp
character(len = 10) :: udf2
character(len = 10) :: txt1, txt2
integer :: ncols ! no. of columns of array
integer :: udf_temp_length
udf_temp_length = len_trim(udf_temp)
allocate(character(len=udf_temp_length) :: udf)
dims = shape(x)
ncols = dims(2)
write (txt1, '(I5)') ncols
udf2 = trim(txt1)//adjustl(udf)
txt2 = "("//trim(udf2)//")"
do i = 1, dims(1)
write (*, txt2) (x(i, j), j = 1, dims(2)) ! this is line 38
end do
end suroutine printarray
when I set len = 10:
character(len=10) :: udf_temp
I get compile error:
call printarray(mat1, "F8.3")
1
Warning: Character length of actual argument shorter than of dummy argument 'udf_temp' (4/10) at (1)
When I set len = *
character(len=*) :: udf_temp
it compiles but at runtime:
At line 38 of file where2.f95 (unit = 6, file = 'stdout')
Fortran runtime error: Unexpected element '( 8
What am I doing wrong?
Is there a neater way to do this?
Here's a summary of your question that I will try to address: You want to have a subroutine that will print a specified two-dimensional array with a specified format, such that each row is printed on a single line. For example, assume we have the real array:
real, dimension(2,8) :: x
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
! Then the array is:
! 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
! 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000
We want to use the format "F8.3", which prints floating point values (reals) with a field width of 8 and 3 decimal places.
Now, you are making a couple of mistakes when creating the format within your subroutine. First, you try to use udf to create the udf2 string. This is a problem because although you have allocated the size of udf, nothing has been assigned to it (pointed out in a comment by #francescalus). Thus, you see the error message you reported: Fortran runtime error: Unexpected element '( 8.
In the following, I make a couple of simplifying changes and demonstrate a few (slightly) different techniques. As shown, I suggest the use of * to indicate that the format can be applied an unlimited number of times, until all elements of the output list have been visited. Of course, explicitly stating the number of times to apply the format (ie, "(8F8.3)" instead of "(*(F8.3))") is fine, but the latter is slightly less work.
program main
implicit none
real, dimension(2,8) :: x
character(len=:), allocatable :: udf_in
x = reshape([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], shape=[2,8], order=[2,1])
udf_in = "F8.3"
call printarray(x, udf_in)
contains
subroutine printarray(x, udf_in)
implicit none
real, dimension(:,:), intent(in) :: x
character(len=*), intent(in) :: udf_in
integer :: ncols ! size(x,dim=2)
character(len=10) :: ncols_str ! ncols, stringified
integer, dimension(2) :: dims ! shape of x
character(len=:), allocatable :: udf0, udf1 ! format codes
integer :: i, j ! index counters
dims = shape(x) ! or just use: ncols = size(x, dim=2)
ncols = dims(2)
write (ncols_str, '(i0)') ncols ! use 'i0' for min. size
udf0 = "(" // ncols_str // udf_in // ")" ! create string: "(8F8.3)"
udf1 = "(*(" // udf_in // "))" ! create string: "(*(F8.3))"
print *, "Version 1:"
do i = 1, dims(1)
write (*, udf0) (x(i, j), j = 1,ncols) ! implied do-loop over j.
end do
print *, "Version 2:"
do i = 1, dims(1)
! udf1: "(*(F8.3))"
write (*, udf1) (x(i, j), j = 1,ncols) ! implied do-loop over j
end do
print *, "Version 3:"
do i = 1, size(x,dim=1) ! no need to create nrows/ncols vars.
write(*, udf1) x(i,:) ! let the compiler handle the extents.
enddo
end subroutine printarray
end program main
Observe: the final do-loop ("Version 3") is very simple. It does not need an explicit count of ncols because the * takes care of it automatically. Due to its simplicity, there is really no need for a subroutine at all.
besides the actual error (not using the input argument), this whole thing can be done much more simply:
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
character*10 n
write(n,'(i0)')size(m(1,:))
write(*,'('//n//f//')')transpose(m)
end subroutine
end
note no need for the loop constructs as fortran will automatically write the whole array , line wrapping as you reach the length of data specified by your format.
alternately you can use a loop construct, then you can use a '*' repeat count in the format and obviate the need for the internal write to construct the format string.
subroutine printarray(m,f)
implicit none
character(len=*)f
real m(:,:)
integer :: i
do i=1,size(m(:,1))
write(*,'(*('//f//'))')m(i,:)
enddo
end subroutine
end

Declaring parameters through input arguments in FORTRAN

I am trying to write a fortran routine where I declare arrays whose length comes from operations made upon the input parameters.
subroutine my_program(N, A,B,m)
implicit none
integer, intent(in) :: N
integer, parameter :: minA = 1, maxA = N
integer, parameter :: minB = 0, maxB = N-1
double precision, intent(out) :: max,A(minA:maxA),B(minB:maxB)
A = 0.d0
B = 1.d0
m = maxA*maxB-minA*minB
end subroutine my_program
Right now, I have an error coming from the the 5th line Parameter 'N' at (1) has not been declared or is a variable, which does not reduce to a constant expression
N is not known at compile time, so you cannot use it to initialize a parameter. Instead, use N directly to declare A and B:
subroutine my_program(N, A, B, m)
implicit none
integer, intent(in) :: N
double precision, intent(out) :: m, A(1:N), B(0:N-1)
integer :: minA, maxA
integer :: minB, maxB
minA = 1 ; maxA = N
minB = 0 ; maxB = N-1
A = 0.d0
B = 1.d0
m = maxA*maxB - minA*minB
end subroutine my_program