2D-Visibility/Light - Efficient Polygon-Ray intersection - c++

Im trying to write a game in 2D with Sfml. For that game i need a Lightengine and some code that can give me the area of the world that is visible to the player. AS both problems fit very well together (are pratically the same) i would like to solve both problems at once.
My world will be loaded from files in which the hitboxes of objects will be represented as Polygons.
I now wrote some code that takes a list of Polygons and the Direction of a Ray that follows the mouse and finds the closest intersection with any of these polygons.
The next step now would be to cast rays from the players or lights Position towards the edges of the polygons, aswell rays offset by +-0.000001 radians to determine the visible area and give it back as a polygon.
The Problem though is that my algorithm (it calculates the inersection between two lines with vector mathematics) is too slow.
In my very good PC i get 100fps with 300 egdes and one Ray.
I now read many articles online but couldnt find one best solution. But as far as i read it should be much faster to calculate intersections with triangles.
My question now: would it be meaningly faster to triangulate the polygons once while loading the map and then use ray-triangle intersection or is there any better way that you know of to solve my problem?
I also heard of bounding Volumen hierachies but i dont know howmuch impact that would have.
Im a bit surprised of how much power my algorithm consumes, as it only has to calculate some 2 dimensional intersections...

For everyone looking for the solution I finally went with:
I discovered the Box2D Physics Engine and I am now using the b2World::RayCast(...) function to determine whether and where a ray hits an object in my scene.
For now everything works fine and smooth (did no exact benchmark yet) :)
http://www.iforce2d.net/b2dtut/world-querying
I got it to work with the help of this site
Have a nice Day! :)

Related

Bullet physics multi-sphere body getting sucked through ground

I have made several attempts to fix this and read all I could find here/forum/google. I used a CCD treshold mush lower than my objects move speed and using a CCD radius much smaller than the objects half radius. The only thing this does is make the multisphere get stuck on seams. I also tried to set ERP/ERP2 to 0.9/1.0.
[EDIT] Ok, so after some more reading; CCD will not work if the sphere is already touching the ground and ERP only affeccts objectts with joints if I understand correctly.
The ground is a trimesh made in Blender and using the obtainStaticNodeShape to get the shape. I have tried to scale the mesh to get smaller polygons but even the smallest (for the game acceptable) size does not work, about 32k indices with 11k polys, 500x500 units, the multisphere has a radius of 0.45 units.
[EDIT] the multi-sphere is two spheres on top of each other and they are restricted to angular movement around the Y-axis only, so no rolling.
The sphere gets "sucked" fast through the ground it does not sink slowly. I tried to make the fixedtimestep smaller 1/420 with 64 substeps did not give any better results. This happens most often while ascending or descending a slope. My ground is gently sloped but an incline of 20% seems to be enough for it to fall through a lot but it can happen on level ground too, just not as often.
When I did my first test I used a big stretched out cube as ground and it worked well.
So my problem now is I don't even know why this is happening so I have no idea what to try next? Can anyone please give me a solution or some pointers.
Is there any use in increasing the multi-sphere size (for the game I can not increase more than 25-30%) I have not explicitly set any collision margins but I think this would just make my sphere float over the ground? Is there any profit in changing the ground from a static object to a kinematic?
Would it work to use a raytest from the sphere straight down and push it up if it is lower than the ground? I think not, why would it fall through if it could detect the ground in the first place..?
[EDIT: additional info]
There are quite a few occurrences of similar problems floating around on forums and also here at stack overflow. Most seem to be about very small objects. Small objects (>0.2m) is clearly not a good option for bullet unless you want to increase the number of simulation steps quite a lot. My problems does not seem to fall under this category since my smallest object is 0.9m in diameter?
I have now also done a debug draw to see the normals of the trimesh that I use as ground. I can not find any errors with the normals.
I also tried to increase the collission margins of the speheres but to no avail.
I further tried to use suggested settings:
((btDefaultCollisionConfiguration)world.collisionConfiguration).setPlaneConvexMultipointIterations(3,3); ((btDefaultCollisionConfiguration)world.collisionConfiguration).setConvexConvexMultipointIterations(3, 3);
No difference.
I did however read about big trimeshes not working very well for raycasting, my mesh is big 512x512 units but I am not sure if this could cause my object to fall through the mesh?
I also read that sphere shapes has problems with trimeshes, but again I am not sure if this would be my case? The sphere I am using is locked for rotation on all axes.
I have also tried using a btCapsule but it gave same results.. Would a cylinder work better?
[EDIT]
I have tried using a cylinder instead since sphere and capsule did not work. The cylinder is working a lot better. I have still got it to fall through once though. The clyinder was jerking around a lot before it went through where the sphere/capsule would just go through really fast and easy. Maybe this could be a clue of whats the underlaying problem? A cylinder is not the best for a character shape though..
An other possible reason could be if a triangle in the mesh has too long sides or a large ratio between sides. I found a few of those on a slope where my sphere always falls through. If this is indeed the problem can I do anything about it except manually editing the mesh in Blender?
As you can see there are a lot of these questions and a lot of possible answers and I have no idea which one corresponds to my case, someone with better insight giving some pointers would mean a lot, thanks!

2D lighting - make light not go through wall

I have a collsion map, and some places that I want to be light sources. The light source provides light that is actually a shape where I can see the ground. It now looks like this:
So the light goes through the walls. I want to make it look like this:
(I marked the collisions with walls with dark yellow)
So the light rays stop when meeting the wall. I want to get the shape of the correct light, the best would be bitmap containing it)
My first idea was to cast rays from the source and check when they collide with the wall (I know how to do this), but then I would need to cast ray each 0.001 deg for example, so its too much time to generate lights. The next thing is that The light shape isn't always circle, sometimes it can be ellipse or half-ellipse, even triangle or part of the circle. Generally, I have the bitmap with light that doesnt collide anything, and I want to subtract it a bit to make it look like on the second image.
And the last thing, Im using allegro 4.2.1, but all previously mentioned bitmaps are 2-dimmension arrays with 0's and 1's.
Thanx for any help, sorry for long question and my bad english.
The basic idea is that you calculate the shadow region of your walls and just not color that.
This article should give you a good start.
In your particular example you can easily brute-force it by checking the line-of-sight from each (empty) pixel to the center of your light source. If you have line-of-sight and the distance is within the falloff, then you have light there. If not, then it's dark.
The MadKeithV solution need O(number of pixels^2) time.
My solution is a expanded MadKeithV idea, but run in O(number of pixels) time. With some improvements, it will work in O(number of pixels in light)
First, start with the pixel containing the source of light. Then using BFS procedure 'infect' nearest pixels with light and store angle range of which direction the light can progress from each point.
In following BFS instances, repeat this procedure, considering only pixels in 'infect range'.

OpenGL- Simple 2D clipping/occlusion method?

I'm working on a relatively small 2D (top-view) game demo, using OpenGL for my graphics. It's going for a basic stealth-based angle, and as such with all my enemies I'm drawing a sight arc so the player knows where they are looking.
One of my problems so far is that when I draw this sight arc (as a filled polygon) it naturally shows through any walls on the screen since there's nothing stopping it:
http://tinyurl.com/43y4o5z
I'm curious how I might best be able to prevent something like this. I do already have code in place that will let me detect line-intersections with walls and so on (for the enemy sight detection), and I could theoretically use this to detect such a case and draw the polygon accordingly, but this would likely be quite fiddly and/or inefficient, so I figure if there's any built-in OpenGL systems that can do this for me it would probably do it much better.
I've tried looking for questions on topics like clipping/occlusion but I'm not even sure if these are exactly what I should be looking for; my OpenGL skills are limited. It seems that anything using, say, glClipPlanes or glScissor wouldn't be suited to this due to the large amount of individual walls and so on.
Lastly, this is just a demo I'm making in my spare time, so graphics aren't exactly my main worry. If there's a (reasonably) painless way to do this then I'd hope someone can point me in the right direction; if there's no simple way then I can just leave the problem for now or find other workarounds.
This is essentially a shadowing problem. Here's how I'd go about it:
For each point around the edge of your arc, trace a (2D) ray from the enemy towards the point, looking for intersections with the green boxes. If the green boxes are always going to be axis-aligned, the math will be a lot easier (look for Ray-AABB intersection). Rendering the intersection points as a triangle fan will give you your arc.
As you mention that you already have the line-wall intersection code going, then as long as that will tell you the distance from the enemy to the wall, then you'll be able to use it for the sight arc. Don't automatically assume it'll be too slow - we're not running on 486s any more. You can always reduce the number of points around the edge of your arc to speed things up.
OpenGL's built-in occlusion handling is designed for 3D tasks and I can't think of a simple way to rig it to achieve the effect you are after. If it were me, the way I would solve this is to use a fragment shader program, but be forewarned that this definitely does not fall under "a (reasonably) painless way to do this". Briefly, you first render a binary "occlusion map" which is black where there are walls and white otherwise. Then you render the "viewing arc" like you are currently doing with a fragment program that is designed to search from the viewer towards the target location, searching for an occluder (black pixel). If it finds an occluder, then it renders that pixel of the "viewing arc" as 100% transparent. Overall though, while this is a "correct" solution I would definitely say that this is a complex feature and you seem okay without implementing it.
I figure if there's any built-in OpenGL systems that can do this for me it would probably do it much better.
OpenGL is a drawing API, not a geometry processing library.
Actually your intersection test method is the right way to do it. However to speed it up you should use a spatial subdivision structure. In your case you have something that's cries for a Binary Space Partitioning tree. BSP trees have the nice property, that the complexity for finding intersections of a line with walls is in average about O(log n) and worst case is O(n log n), or in other words, BSP tress are very efficient. See the BSP FAQ for details http://www.opengl.org//resources/code/samples/bspfaq/index.html

GJK collision detection implementation from 2D to 3D

I apologize for the length of this question and give a pre-emptive thanks for anyone who reads through this!
So i've spent the last few days going over the GJK algorithm. I understand the general concepts behind it, and understand the most of the nitty gritties of its implementation in 2D thanks to the wonderful article by William Bittle at http://www.codezealot.org/archives/88 .
I've implemented his pseudo code (found at the end of the article) into my own c++ project, however i want to make a 3D implementation. My weakness comes into using the dot products to test the voronoi regions and the tripleProducts to get perpandicular lines. But im trying to read up more on that.
My problem comes down to the containsOrigin function. Im having trouble visualizing and accounting for the new voronoi regions that the z axis adds. I just can't seem to wrap my head around how to determine which regions contains the origin. I assume there is 4 I have to account for, each extending from the triangular planes that the comprise the 4 faces of the tetrahedron simplex. If the origin is not within any of those regions, then it is contained, and we have a collision.
How do i go about testing if it is contained in a particular voronoi region/ which triangular face is pointing in the direction of the origin?
The current 2D algorithm checks if a triangle is made, if not, then the simplex is a line and it finds the 3rd point. I assume the 3D algorithm with check if a tetrahedron is made, if not, then it will check for a triangle, if true then it will to find a 4th point to make a tetrahedron(how would i get this? using a normal in direction of origin?). If i trangle isnt made, it will find a 3rd point to make a triangle (do i still use triple product for this like in 2D?).
Any suggestions, outlines, resources, code augmentations, comments are much appretiated.
Depending on what result you expect from the GJK algorithm you might want to look at this nice tutorial from Molly Rocket: https://mollyrocket.com/849
Be aware though that his implementation only outputs intersection? yes/no. But it might be a nice start.

How do I render thick 2D lines as polygons?

I have a path made up of a list of 2D points. I want to turn these into a strip of triangles in order to render a textured line with a specified thickness (and other such things). So essentially the list of 2D points need to become a list of vertices specifying the outline of a polygon that if rendered would render the line. The problem is handling the corner joins, miters, caps etc. The resulting polygon needs to be "perfect" in the sense of no overdraw, clean joins, etc. so that it could feasibly be extruded or otherwise toyed with.
Are there any simple resources around that can provide algorithm insight, code or any more information on doing this efficiently?
I absolutely DO NOT want a full fledged 2D vector library (cairo, antigrain, OpenVG, etc.) with curves, arcs, dashes and all the bells and whistles. I've been digging in multiple source trees for OpenVG implementations and other things to find some insight, but it's all terribly convoluted.
I'm definitely willing to code it myself, but there are many degenerate cases (small segments + thick widths + sharp corners) that create all kinds of join issues. Even a little help would save me hours of trying to deal with them all.
EDIT: Here's an example of one of those degenerate cases that causes ugliness if you were simply to go from vertex to vertex. Red is the original path. The orange blocks are rectangles drawn at a specified width aligned and centered on each segment.
Oh well - I've tried to solve that problem myself. I wasted two month on a solution that tried to solve the zero overdraw problem. As you've already found out you can't deal with all degenerated cases and have zero overdraw at the same time.
You can however use a hybrid approach:
Write yourself a routine that checks if the joins can be constructed from simple geometry without problems. To do so you have to check the join-angle, the width of the line and the length of the joined line-segments (line-segments that are shorter than their width are a PITA). With some heuristics you should be able to sort out all the trivial cases.
I don't know how your average line-data looks like, but in my case more than 90% of the wide lines had no degenerated cases.
For all other lines:
You've most probably already found out that if you tolerate overdraw, generating the geometry is a lot easier. Do so, and let a polygon CSG algorithm and a tesselation algorithm do the hard job.
I've evaluated most of the available tesselation packages, and I ended up with the GLU tesselator. It was fast, robust, never crashed (unlike most other algorithms). It was free and the license allowed me to include it in a commercial program. The quality and speed of the tesselation is okay. You will not get delaunay triangulation quality, but since you just need the triangles for rendering that's not a problem.
Since I disliked the tesselator API I lifted the tesselation code from the free SGI OpenGL reference implementation, rewrote the entire front-end and added memory pools to get the number of allocations down. It took two days to do this, but it was well worth it (like factor five performance improvement). The solution ended up in a commercial OpenVG implementation btw :-)
If you're rendering with OpenGL on a PC, you may want to move the tesselation/CSG-job from the CPU to the GPU and use stencil-buffer or z-buffer tricks to remove the overdraw. That's a lot easier and may be even faster than CPU tesselation.
I just found this amazing work:
http://www.codeproject.com/Articles/226569/Drawing-polylines-by-tessellation
It seems to do exactly what you want, and its licence allows to use it even in commercial applications. Plus, the author did a truly great job to detail his method. I'll probably give it a shot at some point to replace my own not-nearly-as-perfect implementation.
A simple method off the top of my head.
Bisect the angle of each 2d Vertex, this will create a nice miter line. Then move along that line, both inward and outward, the amount of your "thickness" (or thickness divided by two?), you now have your inner and outer polygon points. Move to the next point, repeat the same process, building your new polygon points along the way. Then apply a triangualtion to get your render-ready vertexes.
I ended up having to get my hands dirty and write a small ribbonizer to solve a similar problem.
For me the issue was that I wanted fat lines in OpenGL that did not have the kinds of artifacts that I was seeing with OpenGL on the iPhone. After looking at various solutions; bezier curves and the like - I decided it was probably easiest to just make my own. There are a couple of different approaches.
One approach is to find the angle of intersection between two segments and then move along that intersection line a certain distance away from the surface and treat that as a ribbon vertex. I tried that and it did not look intuitive; the ribbon width would vary.
Another approach is to actually compute a normal to the surface of the line segments and use that to compute the ideal ribbon edge for that segment and to do actual intersection tests between ribbon segments. This worked well except that for sharp corners the ribbon line segment intersections were too far away ( if the inter-segment angle approached 180' ).
I worked around the sharp angle issue with two approaches. The Paul Bourke line intersection algorithm ( which I used in an unoptimized way ) suggested detecting if the intersection was inside of the segments. Since both segments are identical I only needed to test one of the segments for intersection. I could then arbitrate how to resolve this; either by fudging a best point between the two ends or by putting on an end cap - both approaches look good - the end cap approach may throw off the polygon front/back facing ordering for opengl.
See http://paulbourke.net/geometry/lineline2d/
See my source code here : https://gist.github.com/1474156
I'm interested in this too, since I want to perfect my mapping application's (Kosmos) drawing of roads. One workaround I used is to draw the polyline twice, once with a thicker line and once with a thinner, with a different color. But this is not really a polygon, it's just a quick way of simulating one. See some samples here: http://wiki.openstreetmap.org/wiki/Kosmos_Rendering_Help#Rendering_Options
I'm not sure if this is what you need.
I think I'd reach for a tessellation algorithm. It's true that in most case where these are used the aim is to reduce the number of vertexes to optimise rendering, but in your case you could parameterise to retain all the detail - and the possibility of optimising may come in useful.
There are numerous tessellation algorithms and code around on the web - I wrapped up a pure C on in a DLL a few years back for use with a Delphi landscape renderer, and they are not an uncommon subject for advanced graphics coding tutorials and the like.
See if Delaunay triangulation can help.
In my case I could afford to overdraw. I just drow circles with radius = width/2 centered on each of the polyline's vertices.
Artifacts are masked this way, and it is very easy to implement, if you can live with "rounded" corners and some overdrawing.
From your image it looks like that you are drawing box around line segments with FILL on and using orange color. Doing so is going to create bad overdraws for sure. So first thing to do would be not render black border and fill color can be opaque.
Why can't you use GL_LINES primitive to do what you intent to do? You can specify width, filtering, smoothness, texture anything. You can render all vertices using glDrawArrays(). I know this is not something you have in mind but as you are focusing on 2D drawing, this might be easier approach. (search for Textured lines etc.)