GJK collision detection implementation from 2D to 3D - c++

I apologize for the length of this question and give a pre-emptive thanks for anyone who reads through this!
So i've spent the last few days going over the GJK algorithm. I understand the general concepts behind it, and understand the most of the nitty gritties of its implementation in 2D thanks to the wonderful article by William Bittle at http://www.codezealot.org/archives/88 .
I've implemented his pseudo code (found at the end of the article) into my own c++ project, however i want to make a 3D implementation. My weakness comes into using the dot products to test the voronoi regions and the tripleProducts to get perpandicular lines. But im trying to read up more on that.
My problem comes down to the containsOrigin function. Im having trouble visualizing and accounting for the new voronoi regions that the z axis adds. I just can't seem to wrap my head around how to determine which regions contains the origin. I assume there is 4 I have to account for, each extending from the triangular planes that the comprise the 4 faces of the tetrahedron simplex. If the origin is not within any of those regions, then it is contained, and we have a collision.
How do i go about testing if it is contained in a particular voronoi region/ which triangular face is pointing in the direction of the origin?
The current 2D algorithm checks if a triangle is made, if not, then the simplex is a line and it finds the 3rd point. I assume the 3D algorithm with check if a tetrahedron is made, if not, then it will check for a triangle, if true then it will to find a 4th point to make a tetrahedron(how would i get this? using a normal in direction of origin?). If i trangle isnt made, it will find a 3rd point to make a triangle (do i still use triple product for this like in 2D?).
Any suggestions, outlines, resources, code augmentations, comments are much appretiated.

Depending on what result you expect from the GJK algorithm you might want to look at this nice tutorial from Molly Rocket: https://mollyrocket.com/849
Be aware though that his implementation only outputs intersection? yes/no. But it might be a nice start.

Related

How to mesh a 2D point cloud in C++

I have a set of 2D points of a known density I want to mesh by taking the holes in account. Basically, given the following input:
I want something link this:
I tried PCL ConcaveHull, but it doens't handle the holes and splitted mesh very well.
I looked at CGAL Alpha shapes, which seems to go in the right direction (creating a polygon from a point cloud), but I don't know how to get triangles after that.
I though of passing the resulting polygons to a constrained triangulation algorithm and mark domains, but I didn't find how to get a list of polygons.
The resulting triangulated polygon is about a two step process at the least. First you need to triangulate your 2D points (using something like a Delaunay2D algorithm). There you can set the maximum length for the triangles and get the the desired shape. Then you can decimate the point cloud and re-triangulate. Another option is to use the convex hull to get the outside polygon, then extract the inside polygon through a TriangulationCDT algorithm, the apply some PolygonBooleanOperations, obtain the desired polygon, and finaly re-triangulate.
I suggest you look into the Geometric Tools library and specifically the Geometric Samples. I think everything you need is in there, and is much less library and path heavy than CGAL (the algorithms are not free for this type of work unless is a school project) or the PCL (I really like the library for segmentation, but their triangulation breaks often and is slow).
If this solves your problem, please mark it as your answer. Thank you!

Perspective projection based on 4 points in 2D

I'm writing to ask about homography and perspective projection.
I'm trying to write a piece of code, that will "warp" my image so that its corners align with 4 reference points that are in the 3D space - however, the game engine that I'm running it in, already allows me to get the screen position of them, so I already have their screen-space coordinates of both xi,yi and ui,vi, normalized to values between 0 and 1.
I have to mention that I don't have a degree in mathematics, which seems to be a requirement in the posts I've seen on this topic so far, but I'm hoping there is actually a solution to this problem that one can comprehend. I never had a chance to take classes in Computer Vision.
The reason I came here is that in all the posts I've seen online, the simple explanation that I came across is that each point must be put into a 1x3 matrix and multiplied by a 3x3 homography, which consists of 9 components h1,h2,h3...h9, and this transformation matrix will transform each point to the correct perspective. And that's where I'm hitting a brick wall - how do I calculate the transformation matrix? It feels like it should be a relatively simple algebraic task, but apparently it's not.
At this point I spent days reading on the topic, and the solutions I've come across are either based on matlab (which have a ton of mathematical functions built into them), or include elaborations and discussions that don't really explain much; sometimes they suggest tons of different parameters and simplifications, but rarely explain why and what's their purpose, or they are referencing books and studies that have been since removed from the web, and I found myself more confused than I was in the beginning. Most of the resources I managed to find online are also made in a different context - image stitching and 3d engine development.
I also want to mention that I need to run this code each frame on the CPU, and I'm fairly concerned about the effect of having to run too many matrix transformations and solving a ton of linear algebra equations.
I apologize for not asking about any specific code, but my general question is - can anyone point me in the right direction with this issue?
Limit the problem you deal with.
For example, if you always warp the entire rectangular image, you can treat that the coordinates of the image corners are {(0,0), (1,0), (0,1), (1,1)}.
This can simplify the equation, and you'll be able to solve the equation by yourself.
So you'll be able to implement the answer.
Note : Homograpy is scale invariant. So you can decrease the freedom to 8. (e.g. you can solve the equation under h9=1).
Best advice I can give: read a good book on the subject. For example, "Multiple View Geometry" by Hartley and Zisserman

2D-Visibility/Light - Efficient Polygon-Ray intersection

Im trying to write a game in 2D with Sfml. For that game i need a Lightengine and some code that can give me the area of the world that is visible to the player. AS both problems fit very well together (are pratically the same) i would like to solve both problems at once.
My world will be loaded from files in which the hitboxes of objects will be represented as Polygons.
I now wrote some code that takes a list of Polygons and the Direction of a Ray that follows the mouse and finds the closest intersection with any of these polygons.
The next step now would be to cast rays from the players or lights Position towards the edges of the polygons, aswell rays offset by +-0.000001 radians to determine the visible area and give it back as a polygon.
The Problem though is that my algorithm (it calculates the inersection between two lines with vector mathematics) is too slow.
In my very good PC i get 100fps with 300 egdes and one Ray.
I now read many articles online but couldnt find one best solution. But as far as i read it should be much faster to calculate intersections with triangles.
My question now: would it be meaningly faster to triangulate the polygons once while loading the map and then use ray-triangle intersection or is there any better way that you know of to solve my problem?
I also heard of bounding Volumen hierachies but i dont know howmuch impact that would have.
Im a bit surprised of how much power my algorithm consumes, as it only has to calculate some 2 dimensional intersections...
For everyone looking for the solution I finally went with:
I discovered the Box2D Physics Engine and I am now using the b2World::RayCast(...) function to determine whether and where a ray hits an object in my scene.
For now everything works fine and smooth (did no exact benchmark yet) :)
http://www.iforce2d.net/b2dtut/world-querying
I got it to work with the help of this site
Have a nice Day! :)

Triangle-Cube/Voxel Intersection

What would be the best algorithm to detect whether a triangle intersects with a voxel/cube in 3D space? I have this source, written in C: http://tog.acm.org/resources/GraphicsGems/gemsiii/triangleCube.c . I was trying to refactor and convert this code to C++, but I realized that I really have no idea what is going on. Moreover, the comments state that the triangle intersection is compared with a unit cube, however I am unable to find a way to extend the algorithm to work with any arbitrary cube/voxel.
Is there a more clear implementation (preferably in C++) of detecting triangle-cube intersection? If not, what would be the best way for me to extend the C code to work with any arbitrary cube?
Thank you in advance
A simple algorithm would be to:
Calculate the plane on which the triangle lies.
Find the intersection between this plane and the cube (if any).
If there is no intersection then the problem is solved.
Otherwise, find the straight line which runs through each of the triangles edges.
For each line: If the intersection is on the "outside" then there is no intersection.
Otherwise there is an intersection.
If your criteria for the "best" algorithm is simplicity, then this would be a good one. If your looking for performance, there are probably some faster ones out there.
You could also try looking at the code hosted at:
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/

OpenGL- Simple 2D clipping/occlusion method?

I'm working on a relatively small 2D (top-view) game demo, using OpenGL for my graphics. It's going for a basic stealth-based angle, and as such with all my enemies I'm drawing a sight arc so the player knows where they are looking.
One of my problems so far is that when I draw this sight arc (as a filled polygon) it naturally shows through any walls on the screen since there's nothing stopping it:
http://tinyurl.com/43y4o5z
I'm curious how I might best be able to prevent something like this. I do already have code in place that will let me detect line-intersections with walls and so on (for the enemy sight detection), and I could theoretically use this to detect such a case and draw the polygon accordingly, but this would likely be quite fiddly and/or inefficient, so I figure if there's any built-in OpenGL systems that can do this for me it would probably do it much better.
I've tried looking for questions on topics like clipping/occlusion but I'm not even sure if these are exactly what I should be looking for; my OpenGL skills are limited. It seems that anything using, say, glClipPlanes or glScissor wouldn't be suited to this due to the large amount of individual walls and so on.
Lastly, this is just a demo I'm making in my spare time, so graphics aren't exactly my main worry. If there's a (reasonably) painless way to do this then I'd hope someone can point me in the right direction; if there's no simple way then I can just leave the problem for now or find other workarounds.
This is essentially a shadowing problem. Here's how I'd go about it:
For each point around the edge of your arc, trace a (2D) ray from the enemy towards the point, looking for intersections with the green boxes. If the green boxes are always going to be axis-aligned, the math will be a lot easier (look for Ray-AABB intersection). Rendering the intersection points as a triangle fan will give you your arc.
As you mention that you already have the line-wall intersection code going, then as long as that will tell you the distance from the enemy to the wall, then you'll be able to use it for the sight arc. Don't automatically assume it'll be too slow - we're not running on 486s any more. You can always reduce the number of points around the edge of your arc to speed things up.
OpenGL's built-in occlusion handling is designed for 3D tasks and I can't think of a simple way to rig it to achieve the effect you are after. If it were me, the way I would solve this is to use a fragment shader program, but be forewarned that this definitely does not fall under "a (reasonably) painless way to do this". Briefly, you first render a binary "occlusion map" which is black where there are walls and white otherwise. Then you render the "viewing arc" like you are currently doing with a fragment program that is designed to search from the viewer towards the target location, searching for an occluder (black pixel). If it finds an occluder, then it renders that pixel of the "viewing arc" as 100% transparent. Overall though, while this is a "correct" solution I would definitely say that this is a complex feature and you seem okay without implementing it.
I figure if there's any built-in OpenGL systems that can do this for me it would probably do it much better.
OpenGL is a drawing API, not a geometry processing library.
Actually your intersection test method is the right way to do it. However to speed it up you should use a spatial subdivision structure. In your case you have something that's cries for a Binary Space Partitioning tree. BSP trees have the nice property, that the complexity for finding intersections of a line with walls is in average about O(log n) and worst case is O(n log n), or in other words, BSP tress are very efficient. See the BSP FAQ for details http://www.opengl.org//resources/code/samples/bspfaq/index.html