C++ array of vectors of pointers initialization - c++

I want to allocate an array of vectors in a function. Every vector should be initiated with a size of 0. Afterwards I want to push pointers to objects T to my vectors. Finally I want have a grid with a list of references in every cell. I am stuck at the initialization of the vectors. It seems that they are not allocated ?
typedef std::vector<T*> GridCell;
GridCell* mGrid;
...
int gridSize = 5;
mGrid = new GridCell[gridSize];
mGrid[gridSize] = { GridCell() }; //runtime error here
This might be possibly duplicated to other posts, but I couldn't find one that solves this issue 100%.

mGrid = new GridCell[gridSize];
This line not only allocates an array, but it default constructs all of the entries too!
mGrid[gridSize]
This is an out of bounds error; as the array has length 5, the only valid indices are 0, 1, 2, 3, 4. Trying to access an element at index 5 is undefined behavior.
vector<GridCell> mGrid(5);
// vector<GridCell> mGrid(5, GridCell()); // Same thing as the line above
This is what you should have done instead. With modern C++, it's pretty rare that you should ever have to use new; there are standard objects that serve most of the purposes people once used new for (e.g. using vector instead of dynamically an array), there are smart pointers for most of the remaining cases, and for the few cases still remaining, you're usually better served by writing your own custom class whose purpose in life is to be a wrapper around whatever you're doing with new.

Related

Memory management when using vector

I am making a game engine and need to use the std::vector container for all of the components and entities in the game.
In a script the user might need to hold a pointer to an entity or component, perhaps to continuously check some kind of state. If something is added to the vector that the pointer points to and the capacity is exceeded, it is my understanding that the vector will allocate new memory and every pointer that points to any element in the vector will become invalid.
Considering this issue i have a couple of possible solutions. After each push_back to the vector, would it be a viable to check if a current capacity variable is exceeded by the actual capacity of the vector? And if so, fetch and overwrite the old pointers to the new ones? Would this guarantee to "catch" every case that invalidates pointers when performing a push_back?
Another solution that i've found is to instead save an index to the element and access it that way, but i suspect that is bad for performance when you need to continuously check the state of that element (every 1/60 second).
I am aware that other containers do not have this issue but i'd really like to make it work with a vector. Also it might be worth noting that i do not know in advance how many entities / components there will be.
Any input is greatly appreciated.
You shouldn't worry about performance of std::vector when you access its element only 60 times per second. By the way, in Release compilation mode std::vector::operator[] is being converted to a single lea opcode. In Debug mode it is decorated by some runtime range checks though.
If the user is going to store pointers to the objects, why even contain them in a vector?
I don't feel like it is a good idea to (poor wording)->store pointers to objects in a vector. (what I meant is to create pointers that point to vector elements, i.e. my_ptr = &my_vec[n];) The whole point of a container is to reference the contents in the normal ways that the container supports, not to create outside pointers to elements of the container.
To answer your question about whether you can detect the allocations, yes you could, but it is still probably a bad idea to reference the contents of a vector by pointers to elements.
You could also reserve space in the vector when you create it, if you have some idea of what the maximum size might grow to. Then it would never resize.
edit:
After reading other responses, and thinking about what you asked, another thought occurred. If your vector is a vector of pointers to objects, and you pass out the pointers to the objects to your clients, resizing the vector does not invalidate the pointers that the vector hold. The issue becomes keeping track of the life of the object (who owns it), which is why using shared_ptr would be useful.
For example:
vector<shared_ptr> my_vec;
my_vec.push_back(stuff);
if you pass out the pointers contained in the vector to clients...
client_ptr = my_vec[3];
There will be no problem when the vector resizes. The contents of the vector will be preserved, and whatever was at my_vec[3] will still be there. The object pointed to by my_vec[3] will still be at the same address, and my_vec[3] will still contain that address. Whomever got a copy of the pointer at my_vec[3] will still have a valid pointer.
However, if you did this:
client_ptr = &my_vec[3];
And the client is dereferencing like this:
*client_ptr->whatever();
You have a problem. Now when my_vec resized, &my_vec[3] is probably no longer valid, thus client_ptr points to nowhere.
If something is added to the vector that the pointer points to and the
capacity is exceeded, it is my understanding that the vector will
allocate new memory and every pointer that points to any element in
the vector will become invalid.
I once wrote some code to analyze what happens when a vector's capacity is exceeded. (Have you done this, yet?) What that code demonstrated on my Ubuntu with g++v5 system was that std::vector code simply a) doubles the capacity, b) moves all the elements from old to the new storage, then c) cleans up the old. Perhaps your implementation is similar. I think the details of capacity expansion is implementation dependent.
And yes, any pointer into the vector would be invalidated when push_back() causes capacity to be exceeded.
1) I simply don't use pointers-into-the-vector (and neither should you). In this way the issue is completely eliminated, as it simply can not occur. (see also, dangling pointers) The proper way to access a std::vector (or a std::array) element is to use an index (via the operator[]() method).
After any capacity-expansion, the index of all elements at indexes less than the previous capacity limit are still valid, as the push_back() installed the new element at the 'end' (I think highest memory addressed.) The elements memory location may have changed, but the element index is still the same.
2) It is my practice that I simply don't exceed the capacity. Yes, by that I mean that I have been able to formulate all my problems such that I know the required maximum-capacity. I have never found this approach to be a problem.
3) If the vector contents can not be contained in system memory (my system's best upper limit capacity is roughly 3.5 GBytes), then perhaps a vector container (or any ram based container) is inappropriate. You will have to accomplish your goal using disk storage, perhaps with vector containers acting as a cache.
update 2017-July-31
Some code to consider from my latest Game of Life.
Each Cell_t (on the 2-d gameboard) has 8 neighbors.
In my implementation, each Cell_t has a neighbor 'list,' (either std::array or std::vector, I've tried both), and after the gameboard has fully constructed, each Cell_t's init() method is run, filling it's neighbor 'list'.
// see Cell_t data attributes
std::array<int, 8> m_neighbors;
// ...
void Cell_t::void init()
{
int i = 0;
m_neighbors[i] = validCellIndx(m_row-1, m_col-1); // 1 - up left
m_neighbors[++i] = validCellIndx(m_row-1, m_col); // 2 - up
m_neighbors[++i] = validCellIndx(m_row-1, m_col+1); // 3 - up right
m_neighbors[++i] = validCellIndx(m_row, m_col+1); // 4 - right
m_neighbors[++i] = validCellIndx(m_row+1, m_col+1); // 5 - down right
m_neighbors[++i] = validCellIndx(m_row+1, m_col); // 6 - down
m_neighbors[++i] = validCellIndx(m_row+1, m_col-1); // 7 - down left
m_neighbors[++i] = validCellIndx(m_row, m_col-1); // 8 - left
// ^^^^^^^^^^^^^- returns info to quickly find cell
}
The int value in m_neighbors[i] is the index into the gameboard vector. To determine the next state of the cell, the code 'counts the neighbor's states.'
Note - Some cells are at the edge of the gameboard ... in this implementation, validCellIndx() can return a value indicating 'no-neighbor', (above top row, left of left edge, etc.)
// multiplier: for 100x200 cells,20,000 * m_generation => ~20,000,000 ops
void countNeighbors(int& aliveNeighbors, int& totalNeighbors)
{
{ /* ... initialize m_count[]s to 0 */ }
for(auto neighborIndx : m_neighbors ) { // each of 8 neighbors // 123
if(no_neighbor != neighborIndx) // 8-4
m_count[ gBoard[neighborIndx].m_state ] += 1; // 765
}
aliveNeighbors = m_count[ CellALIVE ]; // CellDEAD = 1, CellALIVE
totalNeighbors = aliveNeighbors + m_count [ CellDEAD ];
} // Cell_Arr_t::countNeighbors
init() pre-computes the index to this cells neighbors. The m_neighbors array holds index integers, not pointers. It is trivial to have NO pointers-into-the-gameboard vector.

trim array to elements between i and j

A classic, I'm looking for optimisation here : I have an array of things, and after some processing I know I'm only interested in elements i to j. How to trim my array in the fatset, lightest way, with complete deletions/freeing of memory of elements before i and after j ?
I'm doing mebedded C++, so I may not be able to compile all sorts of library let's say. But std or vector things welcome in a first phase !
I've tried, for array A to be trimmed between i and j, with variable numElms telling me the number of elements in A :
A = &A[i];
numElms = i-j+1;
As it is this yields an incompatibility error. Can that be fixed, and even when fixed, does that free the memory at all for now-unused elements?
A little context : This array is the central data set of my module, and it can be heavy. It will live as long as the module lives. And there's no need to carry dead weight all this time. This is the very first thing that is done - figuring which segment of the data set has to be at all analyzed, and trimming and dumping the rest forever, never to use it again (until the next cycle where we get a fresh array with possibily a compeltely different size).
When asking questions about speed your millage may very based on the size of the array you're working with, but:
Your fastest way will be to not trim the array, just use A[index + i] to find the elements you want.
The lightest way to do this would be to:
Allocate a dynamic array with malloc
Once i and j are found copy that range to the head of the dynamic array
Use realloc to resize the dynamic array to the size j - i + 1
However you have this tagged as C++ not C, so I believe that you're also interested in readability and the required programming investment, not raw speed or weight. If this is true then I would suggest use of a vector or deque.
Given vector<thing> A or a deque<thing> A you could do:
A.erase(cbegin(A), next(cbegin(A), i));
A.resize(j - i + 1);
There is no way to change aloocated memory block size in standard C++ (unless you have POD data — in this case C facilities like realloc could be used). The only way to trim an array is to allocate new array. copy/move needed elements and destroy old array.
You can do it manually, or using vectors:
int* array = new int[10]{0,1,2,3,4,5,6,7,8,9};
std::vector<int> vec {0,1,2,3,4,5,6,7,8,9};
//We want only elements 3-5
{
int* new_array = new int[3];
std::copy(array + 3, array + 6, new_array);
delete[] array;
array = new_array;
}
vec = std::vector<int>(vec.begin()+3, vec.begin()+6);
If you are using C++11, both approaches should have same perfomance.
If you only want to remove extra elements and do not really want to release memory (for example you might want to add more elements later) you can follow NathanOliver link
However, you should consider: do you really need that memory freed immideately? Do you need to move elements right now? Will you array live for such long time that this memory would be lost for your program completely? Maybe you need a range or perharps a view to the array content? In many cases you can store two pointers (or pointer and size) to denote your "new" array, while keeping old one to be released all at once.

How can I allocate memory for a data structure that contains a vector?

If I have a struct instanceData:
struct InstanceData
{
unsigned usedInstances;
unsigned allocatedInstances;
void* buffer;
Entity* entity;
std::vector<float> *vertices;
};
And I allocate enough memory for an Entity and std::vector:
newData.buffer = size * (sizeof(Entity) + sizeof(std::vector<float>)); // Pseudo code
newData.entity = (Entity *)(newData.buffer);
newData.vertices = (std::vector<float> *)(newData.entity + size);
And then attempt to copy a vector of any size to it:
SetVertices(unsigned i, std::vector<float> vertices)
{
instanceData.vertices[i] = vertices;
}
I get an Access Violation Reading location error.
I've chopped up my code to make it concise, but it's based on Bitsquid's ECS. so just assume it works if I'm not dealing with vectors (it does). With this in mind, I'm assuming it's having issues because it doesn't know what size the vector is going to scale to. However, I thought the vectors might increase along another dimension, like this?:
Am I wrong? Either way, how can I allocate memory for a vector in a buffer like this?
And yes, I know vectors manage their own memory. That's besides the point. I'm trying to do something different.
It looks like you want InstanceData.buffer to have the actual memory space which is allocated/deallocated/accessed by other things. The entity and vertices pointers then point into this space. But by trying to use std::vector, you are mixing up two completely incompatible approaches.
1) You can do this with the language and the standard library, which means no raw pointers, no "new", no "sizeof".
struct Point {float x; float y;} // usually this is int, not float
struct InstanceData {
Entity entity;
std::vector<Point> vertices;
}
This is the way I would recommend. If you need to output to a specific binary format for serialization, just handle that in the save method.
2) You can manage the memory internal to the class, using oldschool C, which means using N*sizeof(float) for the vertices. Since this will be extremely error prone for a new programmer (and still rough for vets), you must make all of this private to class InstanceData, and do not allow any code outside InstanceData to manage them. Use unit tests. Provide public getter functions. I've done stuff like this for data structures that go across the network, or when reading/writing files with a specified format (Tiff, pgp, z39.50). But just to store in memory using difficult data structures -- no way.
Some other questions you asked:
How do I allocate memory for std::vector?
You don't. The vector allocates its own memory, and manages it. You can tell it to resize() or reserve() space, or push_back, but it will handle it. Look at http://en.cppreference.com/w/cpp/container/vector
How do I allocate memory for a vector [sic] in a buffer like this?
You seem to be thinking of an array. You're way off with your pseudo code so far, so you really need to work your way up through a tutorial. You have to allocate with "new". I could post some starter code for this, if you really need, which I would edit into the answer here.
Also, you said something about vector increasing along another dimension. Vectors are one dimensional. You can make a vector of vectors, but let's not get into that.
edit addendum:
The basic idea with a megabuffer is that you allocate all the required space in the buffer, then you initialize the values, then you use it through the getters.
The data layout is "Header, Entity1, Entity2, ..., EntityN"
// I did not check this code in a compiler, sorry, need to get to work soon
MegaBuffer::MegaBuffer() {AllocateBuffer(0);}
MegaBuffer::~MegaBuffer() {ReleaseBuffer();}
MegaBuffer::AllocateBuffer(size_t size /*, whatever is needed for the header*/){
if (nullptr!=buffer)
ReleaseBuffer();
size_t total_bytes = sizeof(Header) + count * sizeof(Entity)
buffer = new unsigned char [total_bytes];
header = buffer;
// need to set up the header
header->count = 0;
header->allocated = size;
// set up internal pointer
entity = buffer + sizeof(Header);
}
MegaBuffer::ReleaseBuffer(){
delete [] buffer;
}
Entity* MegaBuffer::operator[](int n) {return entity[n];}
The header is always a fixed size, and appears exactly once, and tells you how many entities you have. In your case there's no header because you are using member variables "usedInstances" and "allocatednstances" instead. So you do sort of have a header but it is not part of the allocated buffer. But you don't want to allocate 0 bytes, so just set usedInstances=0; allocatedInstances=0; buffer=nullptr;
I did not code for changing the size of the buffer, because the bitsquid ECS example covers that, but he doesn't show the first time initialization. Make sure you initialize n and allocated, and assign meaningful values for each entity before you use them.
You are not doing the bitsquid ECS the same as the link you posted. In that, he has several different objects of fixed size in parallel arrays. There is an entity, its mass, its position, etc. So entity[4] is an entity which has mass equal to "mass[4]" and its acceleration is "acceleration[4]". This uses pointer arithmetic to access array elements. (built in array, NOT std::Array, NOT std::vector)
The data layout is "Entity1, Entity2, ..., EntityN, mass1, mass2, ..., massN, position1, position2, ..., positionN, velocity1 ... " you get the idea.
If you read the article, you'll notice he says basically the same thing everyone else said about the standard library. You can use an std container to store each of these arrays, OR you can allocate one megabuffer and use pointers and "built in array" math to get to the exact memory location within that buffer for each item. In the classic faux-pas, he even says "This avoids any hidden overheads that might exist in the Array class and we only have a single allocation to keep track of." But you don't know if this is faster or slower than std::Array, and you're introducing a lot of bugs and extra development time dealing with raw pointers.
I think I see what you are trying to do.
There are numerous issues. First. You are making a buffer of random data, telling C++ that a Vector sized piece of it is a Vector. But, at no time do you actually call the constructor to Vector which will initialize the pointers and constructs inside to viable values.
This has already been answered here: Call a constructor on a already allocated memory
The second issue is the line
instanceData.vertices[i] = vertices;
instanceData.vertices is a pointer to a Vector, so you actually need to write
(*(instanceData.vertices))[i]
The third issue is that the contents of *(instanceData.vertices) are floats, and not Vector, so you should not be able to do the assignment there.

C++ assign array of ints to an empty array of ints same size

I am very familiar with Java and this is allowed there. However it looks like it's not with C++. I'm getting an "invalid array assignment" when trying to assign valuesToGrab = updatingValues;.
//these are class attributes
int updatingValues[361] = {0};
int valuesToGrab[361] = {0};
//this is part of a function that is causing an error.
for (unsigned int i=0; i < 10; i++) {
//this fills values with 361 ints, and num_values gets set to 361.
sick_lms.GetSickScan(values,num_values);
//values has 361 ints, but a size of 2882, so I copy all the ints to an array
//of size 361 to "trim" the array.
for(int z = 0; z < num_values; z++){
updatingValues[z] = values[z];
}
//now I want to assign it to valuesToGrab (another program will be
//constantly grabbing this array, and it can't grab it while it's being
//populated above or there will be issues
valuesToGrab = updatingValues; // THROWING ERROR
}
I don't want to have to iterate through updatingValues and add it to valuesToGrab one by one, but if I have to I will. Is there a way I can assign it in one function with C++?
Thanks,
The standard idiom for copying in C++ is
#include <algorithm>
...
std::copy(values, values+num_values, updatingValues);
make sure updatingValues is large enough or you will get overruns and bad things will happen.
That said in C++ we generally use a std::vector for this sort of task.
#include <vector>
...
std::vector<int> updatingValues=values; //calls vectors copy constructor
I vector does everything an array does (including static initalization in C++11), but has a well define interface. with iterators, size, empty, resize, push_back and more.
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/container/vector
EDIT
It is also worth noting that you can combine vector and arrays.
std::vector<int> vect(my_array, my_array+10);
//or
std::vector<int> another_vector;
...
another_vector.assign(my_array, my_array+10);//delayed population
and visa-versa
std::copy(vect.begin(), vect.end(), my_array); //copy vector into array.
First of all, I don't think this will do what you're looking for because valuesToGrab = updatingValues; will overwrite your valuesToGrab every cycle of the outer loop.
Assuming you did want to do this though, and you didn't want to change to a vector:
std::copy(updatingValues, updatingValues+361, valuesToGrab);
will do it. You can treat a normal array just like a std:: container in any std::algorithm, the pointers count as random access iterators.
Rethink your design though, you shouldn't need to "trim" and you probably don't need to copy.
In C++, the idiomatic container to use in place of arrays is std::vector. With vector or with arrays, you can use the std::copy() function from the <algorithm> header, which is the preferred way of copying containers of any sort in C++. With vector:
std::vector<int> updatingValues, valuesToGrab;
// Ensure the vector has sufficient capacity to accept values.
updatingValues.resize(361);
// Copy values from the array into the vector.
std::copy(values, values + 361, updatingValues.begin());
// Source begin & end; Destination begin.
// Copy one vector to another.
valuesToGrab = updatingValues;
With arrays:
std::copy(valuesToGrab, valuesToGrab + 361, updatingValues);
Again with just arrays, if you are going for more of a C style, you can use the C standard library function memcpy(), from <cstdlib>:
memcpy(valuesToGrab, updatingValues, 361 * sizeof(int));
// Destination; Source; Number of bytes.
With memcpy() (and its cousin, memmove()), you must be careful about the size of the elements you’re copying; if you say 361 instead of 361 * sizeof(int), you’ll copy 361 bytes, not 361 ints’ worth of bytes—a big difference.
Keep in mind that arrays are implemented as pointers in C and C++.
In particular an array on the stack can be visualized as a pointer to a constant location in memory that has the capacity that you requested for the array. This memory is on the stack. When you try valuesToGrab = updatingValues, you could think of this as trying to copy the address of updatingValues to the variable valuesToGrab. This is NOT attempting a deep copy, which you seem to be attempting. However, valuesToGrab points to a constant location in memory and cannot be updated. The standard is a little more specific on this and explicitly forbids the assignment of arrays, which is why you're getting the specific error that you're seeing.
You will need to use a loop or something like std::copy or C's memcpy to copy the values from one array to the other.

Delete parts of a dynamic array and grow other

I need to have a dynamic array, so I need to allocate the necessary amount of memory through a pointer. What makes me wonder about which is a good solution, is that C++ has the ability to do something like:
int * p = new int[6];
which allocates the necessary array. What I need is that, afterwards, I want to grow some parts of this array. A(n flawed) example:
int *p1 = &p[0];
int *p2 = &p[2];
int *p3 = &p[4];
// delete positions p[2], p[3]
delete [] p2;
// create new array
p2 = new int[4];
I don't know how to achieve this behavior.
EDIT: std::vector does not work for me since I need the time of insertion/deletion of k elements to be proportional to the number k and not to the number of elements stored in the std::vector.
Using pointers, in the general case, I would point to the start of any non continuous region of memory and I would keep account of how many elements it stores. Conceptually, I would fragment the large array into many small ones and not necessarily in continuous space in the memory (the deletion creates "holes" while the allocation does not necessarily "fill" them).
You achieve this behavior by using std::vector:
std::vector<int> v(6); // create a vector with six elements.
v.erase(v.begin() + 2); // erase the element at v[2]
v.insert(v.begin() + 2, 4, 0); // insert four new elements starting at v[2]
Really, any time you want to use a dynamically allocated array, you should first consider using std::vector. It's not the solution to every problem, but along with the rest of the C++ standard library containers it is definitely the solution to most problems.
You should look into STL containers in C++, for example vector has pretty much the functionality you want.
I'd advise against doing this on your own. Look up std::vector for a reasonable starting point.
another option, besides std::vector is std::deque, which works in much the same way, but is a little more efficient at inserting chunks into the middle. If that's still not good enough for you, you might get some mileage using a collection of collections. You'll have to do a little bit more work getting random access to work (perhaps writing a class to wrap the whole thing.