Opening a pipe to a program and putting it into standard input - c++

so I'm trying exec a program given by a user, say ls on unix system. And save all of that into a string such that I can store it in a map.
My the program I need to call is Variables[key] (which is map), which is the user submitted command, after which I want to save over it with the string created by it. This is code that I have tried to adapt to it, originally it was a redirection to a file, but having issues trying to use it with a string stream. Thanks in advance for any help <3
string key = argv[1];
int fds[2];
int count;
int fd;
char c;
pid_t pid;
pipe(fds);
if (fork() == 0)
{
dup2(fds[0], 0);
close(fds[1]);
stringstream ss;
while ((count = read(0, &c, 1)) > 0)
{
ss << &c;
}
string temp;
ss >> temp;
cout << temp << endl;
execlp("echo", "echo", NULL);
}
else if ((pid = fork()) == 0)
{
dup2(fds[1], 1);
close(fds[0]);
cout << argv[1] << argv << endl;
execvp(argv[1], argv);
perror("execvp failed");
}
else
{
waitpid(pid, NULL, 0);
close(fds[0]);
close(fds[1]);
}

Instead of this:
ss << &c;
Use this:
ss << c;
What you do is to write a char* into your stream, which is assumed to be a null terminated string. However, it's just a char not a null terminated string, so what you are doing is undefined behaviour. Instead, you should just write the character to the stream.

Related

Segmentation fault: unable to fix the problem

I'm new to C++, and I'm trying to write a project that interacts through command line. Right now, whenever I run my main (which is the executable), I always receive a segmentation fault error when the main program finished.
Edit comment:
I'm told by tutor to use as little as C++ features such as vectors or strings ... I'm also very new to C++, so i'm trying to utilize as many basic C functions as I can.
I'm
My main function looks like this:
int main(int argc, char** argv) {
cout << "starting mvote..." << endl;
int run_flag = 1;
char* actionBuffer = (char*)malloc(100 * sizeof(char));
char* action = (char*)malloc(16 * sizeof(char));
char* readPtr;
char exit[4] = { 'e','x','i','t' };
//parse command line argumentand get the filename
char* filename = argv[2];
cout << filename;
FILE* fp;
char line[64];
//from here, I'm opening the file and read it by lines
fp = fopen(filename, "r");
if (fp == NULL) {
cout << "file not exists";
return -1;
}
while (fgets(line, 64, fp) != NULL) {
cout << line << "\n";
}
fclose(fp);
while (run_flag == 1) {
cout << "what do you want?\n " << endl;
cin.getline(actionBuffer, 1024);
if (strcmp(actionBuffer, exit) == 0) {
cout << "bye!";
run_flag = 0;
break;
}
//if not exit, Look for the space in the input
readPtr = strchr(actionBuffer, ' ');
int size = readPtr - actionBuffer;
//extract the operation
strncpy(action, actionBuffer, size);
for (int i = 0; i < size; i++) {
cout << "operation:" << action[i];
}
// depend on the operation specified before the first empty space
run_flag = 0;
}
free(actionBuffer);
free(action);
return 0;
}
Description:
I first try to open up a csv file which lies in the same folder as main, and I read the file line by line. Then, I just implement a simple command where you can type exit and quit the program.
I allocate two memory, actionBuffer and action, which are used to hold command
Problem: a segmentation fault [core dumped] always exists when I type exit and hit enter, and then the process finished.
Research: So I learned that segmentation fault is due to accessing a memory that does not belongs to me. But where in my program am I trying to access such a memory?
Any advice is appreciated! Thank you.
Just to give you an idea, this would be an example of C++ code
#include<iostream>
#include<fstream>
#include<string_view>
#include<string>
#include<sstream>
#include<exception>
int main(int argc, char** argv) {
std::cout << "starting mvote...\n";
//parse command line argumentand get the filename
std::string filename = argv[2]; // NO CHECKS!
std::cout << filename <<'\n';
//from here, I'm opening the file and read it by lines
{
std::ifstream ifs(filename);
if (!ifs) {
throw std::invalid_argument("file not exists");
}
std::string line;
while (std::getline(ifs, line)) {
std::cout << line << '\n';
}
}
bool run_flag = true;
while (run_flag) {
std::cout << "what do you want?\n";
std::string userInput;
std::getline(std::cin, userInput);
if (userInput == "exit") {
std::cout << "bye!\n";
return 0;
}
std::stringstream userInputSs(userInput);
std::string operation;
while(userInputSs >> operation){
std::cout << "operation: " << operation << '\n';
}
}
}

Pipe method keeps failing on the parent process

char *c = strtok(a, "|"); // array for the different tokens in the command
char *d = strtok(NULL,"|");
pid_t cpid;
pipe(pfd);
cpid = fork();
if(cpid == 0){
/* child */
cout << "you are in child";
dup2(pfd[0], 0);
close(pfd[0]);
close(pfd[1]); /* the child does not need this end of the pipe */
cout << c;
execString(c);
//perror(cmd2[0]);
cout << "error";
} else{
cpid = fork();
if(cpid == 0){
/* parent */
cout <<"you are in parent";
cout << d;
dup2(pfd[1], 1);
close(pfd[0]);
close(pfd[1]); /* the parent does not need this end of the pipe */
execString(d);
//perror(cmd1[0]);
cout << "error";
} else{
int status;
close(pfd[0]);
close(pfd[1]);
waitpid(cpid, &status, 0);
perror("fork");
exit(1);
}
}
I test this code by inputting ls -l | wc -l , the execstring method breaks up my char arrays into tokens and executes them. I know it's a mess, i haven't done any C/C++ in a long time. It's strange because the child process can successfully execute the command, i can still see the output of ls -l. The error i'm getting is from wc -l, the console prints back "wc: invalid option --''. Try wc -- help for more information. Any ideas?
void execString(char *b){
char *tokens = strtok(b, " ");
pid_t child_pid;
int child_status;
child_pid = fork();
vector<char *> commandVector;
while(tokens != NULL){
commandVector.push_back(tokens);
tokens = strtok(NULL," ");
}
cout << tokens << endl;
//cout<< "execString"<<endl;
commandVector.push_back(NULL);
char **args = &commandVector[0];
int status = execvp(args[0], args);
}
I fixed it, the pipe indexes were reversed. I changed the exec command to a constant string to test if it works. It works fine. Gotta tune my execString.

Why is my C++ array printing the same values?

I am working on a code where it will do Linux command piping. Basically in my code, it will parse the user input command, then run it using the execvp function.
However, to do this, I would need to know the command, as well as its parameters. I have been trying to get the parsing to work correctly, however, it seems that when I do a test case, the output from both of the arrays that store their respective programs is the same. The commands/parameters are stored in a char array called prgname1 and prgname2.
For instance, if I were to run my program with the parameter "ps aux | grep [username]", then the output of prgname1[0] and prgname2[0] are both [username]. They are supposed to be ps and grep, respectively.
Can anyone take a look at my code and see where I might be having an error which is causing this?
Thanks!
#include <sys/wait.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <iostream>
#define MAX_PARA_NUM 5
#define MAX_COMMAND_LEN 1024
using namespace std;
int main(int argc, char *argv[]) {
char *prgname1[MAX_PARA_NUM], *prgname2[MAX_PARA_NUM];
char command[MAX_COMMAND_LEN];
int pfd[2];
pipe(pfd);
pid_t cid1, cid2;
char *full = argv[1];
char str[MAX_COMMAND_LEN];
int i = 0;
int j = 0;
int k = 0;
int ind = 0;
while (ind < strlen(full)) {
if (full[ind] == ' ') {
strncpy(command, str, i);
cout << command << endl;
prgname1[j] = command;
j++;
i = 0;
ind++;
}
else {
str[i] = full[ind];
i++;
ind++;
}
if(full[ind] == '|') {
i = 0;
j = 0;
ind+=2;
while (ind < strlen(full)) {
if (full[ind] == ' ') {
strncpy(command, str, i);
cout << command << endl;
prgname2[j] = command;
j++;
i = 0;
ind++;
}
else {
str[i] = full[ind];
i++;
ind++;
}
if (ind == strlen(full)) {
strncpy(command, str, i);
cout << command << endl;
prgname2[j] = command;
break;
}
}
}
}
// test output here not working correctly
cout << prgname1[0] << endl;
cout << prgname2[0] << endl;
// exits if no parameters passed
if (argc != 2) {
cout << "Usage:" << argv[0] << endl;
exit(EXIT_FAILURE);
}
// exits if there is a pipe error
if (pipe(pfd) == -1) {
cerr << "pipe" << endl;
exit(EXIT_FAILURE);
}
cid1 = fork(); // creates child process 1
// exits if there is a fork error
if (cid1 == -1 || cid2 == -1) {
cerr << "fork";
exit(EXIT_FAILURE);
}
// 1st child process executes and writes to the pipe
if (cid1 == 0) {
char **p = prgname1;
close(1); // closes stdout
dup(pfd[1]); // connects pipe output to stdout
close(pfd[0]); // closes pipe input as it is not needed
close(pfd[1]); // closes pipe output as pipe is connected
execvp(prgname1[0], p);
cerr << "execlp 1 failed" << endl;
cid2 = fork();
}
// 2nd child process reads from the pipe and executes
else if (cid2 == 0) {
char **p = prgname2;
close(0); // closes stdin
dup(pfd[0]); // connects pipe input to stdin
close(pfd[0]); // closes pipe input as pipe is connected
close(pfd[1]); // closes pipe output as it is not needed
execvp(prgname2[0], p);
cerr << "execlp 2 failed" << endl;
}
else {
sleep(1);
waitpid(cid1, NULL, 0);
waitpid(cid2, NULL, 0);
cout << "Program successfully completed" << endl;
exit(EXIT_SUCCESS);
}
return 0;
}
argv[1] gives you the first argument on the command line - not the entire command line. If you want the full list of command line arguments passed into the process, you will need to append argv[1], argv[2], ..., argv[argc - 1] together with a space between each.
Additionally, when you process it, you are setting the pointer for your prgname1[index] to command, so every time you set a given character pointer, they are all pointing to the same location (hence, they are all the same value). You need to allocate space for each element in prgname1 and copy command into it (using strncpy). Alternatively, using std::string and std::vector eliminates much of your current code.

Piping for input/output

This question follows from my attempt to implement the instructions in:
Linux Pipes as Input and Output
How to send a simple string between two programs using pipes?
http://tldp.org/LDP/lpg/node11.html
My question is along the lines of the question in: Linux Pipes as Input and Output, but more specific.
Essentially, I am trying to replace:
/directory/program < input.txt > output.txt
using pipes in C++ in order to avoid using the hard drive. Here's my code:
//LET THE PLUMBING BEGIN
int fd_p2c[2], fd_pFc[2], bytes_read;
// "p2c" = pipe_to_child, "pFc" = pipe_from_child (see above link)
pid_t childpid;
char readbuffer[80];
string program_name;// <---- includes program name + full path
string gulp_command;// <---- includes my line-by-line stdin for program execution
string receive_output = "";
pipe(fd_p2c);//create pipe-to-child
pipe(fd_pFc);//create pipe-from-child
childpid = fork();//create fork
if (childpid < 0)
{
cout << "Fork failed" << endl;
exit(-1);
}
else if (childpid == 0)
{
dup2(0,fd_p2c[0]);//close stdout & make read end of p2c into stdout
close(fd_p2c[0]);//close read end of p2c
close(fd_p2c[1]);//close write end of p2c
dup2(1,fd_pFc[1]);//close stdin & make read end of pFc into stdin
close(fd_pFc[1]);//close write end of pFc
close(fd_pFc[0]);//close read end of pFc
//Execute the required program
execl(program_name.c_str(),program_name.c_str(),(char *) 0);
exit(0);
}
else
{
close(fd_p2c[0]);//close read end of p2c
close(fd_pFc[1]);//close write end of pFc
//"Loop" - send all data to child on write end of p2c
write(fd_p2c[1], gulp_command.c_str(), (strlen(gulp_command.c_str())));
close(fd_p2c[1]);//close write end of p2c
//Loop - receive all data to child on read end of pFc
while (1)
{
bytes_read = read(fd_pFc[0], readbuffer, sizeof(readbuffer));
if (bytes_read <= 0)//if nothing read from buffer...
break;//...break loop
receive_output += readbuffer;//append data to string
}
close(fd_pFc[0]);//close read end of pFc
}
I am absolutely sure that the above strings are initialized properly. However, two things happen that don't make sense to me:
(1) The program I am executing reports that the "input file is empty." Since I am not calling the program with "<" it should not be expecting an input file. Instead, it should be expecting keyboard input. Furthermore, it should be reading the text contained in "gulp_command."
(2) The program's report (provided via standard output) appears in the terminal. This is odd because the purpose of this piping is to transfer stdout to my string "receive_output." But since it is appearing on screen, that indicates to me that the information is not being passed correctly through the pipe to the variable. If I implement the following at the end of the if statement,
cout << receive_output << endl;
I get nothing, as though the string is empty. I appreciate any help you can give me!
EDIT: Clarification
My program currently communicates with another program using text files. My program writes a text file (e.g. input.txt), which is read by the external program. That program then produces output.txt, which is read by my program. So it's something like this:
my code -> input.txt -> program -> output.txt -> my code
Therefore, my code currently uses,
system("program < input.txt > output.txt");
I want to replace this process using pipes. I want to pass my input as standard input to the program, and have my code read the standard output from that program into a string.
Your primary problem is that you have the arguments to dup2() reversed. You need to use:
dup2(fd_p2c[0], 0); // Duplicate read end of pipe to standard input
dup2(fd_pFc[1], 1); // Duplicate write end of pipe to standard output
I got suckered into misreading what you wrote as OK until I put error checking on the set-up code and got unexpected values from the dup2() calls, which told me what the trouble was. When something goes wrong, insert the error checks you skimped on before.
You also did not ensure null termination of the data read from the child; this code does.
Working code (with diagnostics), using cat as the simplest possible 'other command':
#include <unistd.h>
#include <string>
#include <iostream>
using namespace std;
int main()
{
int fd_p2c[2], fd_c2p[2], bytes_read;
pid_t childpid;
char readbuffer[80];
string program_name = "/bin/cat";
string gulp_command = "this is the command data sent to the child cat (kitten?)";
string receive_output = "";
if (pipe(fd_p2c) != 0 || pipe(fd_c2p) != 0)
{
cerr << "Failed to pipe\n";
exit(1);
}
childpid = fork();
if (childpid < 0)
{
cout << "Fork failed" << endl;
exit(-1);
}
else if (childpid == 0)
{
if (dup2(fd_p2c[0], 0) != 0 ||
close(fd_p2c[0]) != 0 ||
close(fd_p2c[1]) != 0)
{
cerr << "Child: failed to set up standard input\n";
exit(1);
}
if (dup2(fd_c2p[1], 1) != 1 ||
close(fd_c2p[1]) != 0 ||
close(fd_c2p[0]) != 0)
{
cerr << "Child: failed to set up standard output\n";
exit(1);
}
execl(program_name.c_str(), program_name.c_str(), (char *) 0);
cerr << "Failed to execute " << program_name << endl;
exit(1);
}
else
{
close(fd_p2c[0]);
close(fd_c2p[1]);
cout << "Writing to child: <<" << gulp_command << ">>" << endl;
int nbytes = gulp_command.length();
if (write(fd_p2c[1], gulp_command.c_str(), nbytes) != nbytes)
{
cerr << "Parent: short write to child\n";
exit(1);
}
close(fd_p2c[1]);
while (1)
{
bytes_read = read(fd_c2p[0], readbuffer, sizeof(readbuffer)-1);
if (bytes_read <= 0)
break;
readbuffer[bytes_read] = '\0';
receive_output += readbuffer;
}
close(fd_c2p[0]);
cout << "From child: <<" << receive_output << ">>" << endl;
}
return 0;
}
Sample output:
Writing to child: <<this is the command data sent to the child cat (kitten?)>>
From child: <<this is the command data sent to the child cat (kitten?)>>
Note that you will need to be careful to ensure you don't get deadlocked with your code. If you have a strictly synchronous protocol (so the parent writes a message and reads a response in lock-step), you should be fine, but if the parent is trying to write a message that's too big to fit in the pipe to the child while the child is trying to write a message that's too big to fit in the pipe back to the parent, then each will be blocked writing while waiting for the other to read.
It sounds like you're looking for coprocesses. You can program them in C/C++ but since they are already available in the (bash) shell, easier to use the shell, right?
First start the external program with the coproc builtin:
coproc external_program
The coproc starts the program in the background and stores the file descriptors to communicate with it in an array shell variable. Now you just need to start your program connecting it to those file descriptors:
your_program <&${COPROC[0]} >&${COPROC[1]}
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <string.h>
#include <iostream>
using namespace std;
int main() {
int i, status, len;
char str[10];
mknod("pipe", S_IFIFO | S_IRUSR | S_IWUSR, 0); //create named pipe
pid_t pid = fork(); // create new process
/* Process A */
if (pid == 0) {
int myPipe = open("pipe", O_WRONLY); // returns a file descriptor for the pipe
cout << "\nThis is process A having PID= " << getpid(); //Get pid of process A
cout << "\nEnter the string: ";
cin >> str;
len = strlen(str);
write(myPipe, str, len); //Process A write to the named pipe
cout << "Process A sent " << str;
close(myPipe); //closes the file descriptor fields.
}
/* Process B */
else {
int myPipe = open("pipe", O_RDONLY); //Open the pipe and returns file descriptor
char buffer[21];
int pid_child;
pid_child = wait(&status); //wait until any one child process terminates
int length = read(myPipe, buffer, 20); //reads up to size bytes from pipe with descriptor fields, store results
// in buffer;
cout<< "\n\nThis is process B having PID= " << getpid();//Get pid of process B
buffer[length] = '\0';
cout << "\nProcess B received " << buffer;
i = 0;
//Reverse the string
for (length = length - 1; length >= 0; length--)
str[i++] = buffer[length];
str[i] = '\0';
cout << "\nRevers of string is " << str;
close(myPipe);
}
unlink("pipe");
return 0;
}

Unable to send message to parent process after multiple forks

I have a program that forks off four processes and calls execlp() to run different code for the child. I pass the child a number as an id. So far, all the child does is try to pass the id back to the parent process. The pipes work, if i put a string though the stream it prints out in the parent process. However, when i try to put the id as an int thought the stream, it does not work. I dont even get to the line of code after the fprintf() and fflush() command in the child.
I made some changes for how i created the file descriptors and added more code for an example. Now, in the child, i am unable to create the FILE* out. However, if i create out on file descriptor 1, it does print to the screen. I tried creating out on file descriptor 3 and the program just sits there and waits for input from the child that never comes.
Here is my parent:
Mom::Mom():childCount(0)
{
pipeCount = fileCount = 0;
int fd[2];
srand(time(NULL));
for(int c=0; c<NUMJOBS; ++c) jobs[c] = newJob();
//createFileDescriptors(fd);
ret = pipe(fd);
if(ret < 0) fatal("Error creating pipes");
//cout << fd[0] << "\t" << fd[1] << endl;
pipes[fileCount++] = fdopen(fd[0], "r");
fcntl( 3, F_SETFD, 0 );
//close(fd[1]);
//for(int c=3; c<FILEDESCRIPTORS; c+=2) pipes[pipeCount++] = fdopen(c, "w");
createChildren();
for(int c=0; c<4; c++)
{
int tmp = -1;
//cout << "About to read from children, tmp = " << tmp << endl;
ret = fscanf(pipes[0], "%d", &tmp);
//char* buffer = (char*) malloc(80*sizeof(char));
//char buffer[80];
//read(3, buffer, 80);
cout << ret << "\t" << tmp << endl;
//cout << ret << " " << tmp << endl;
//free(buffer);
}
//sleep(5);
}
/*------------------------------------------------------------------------------
Create all the children by using fork() and execlp()
----------------------------------------------------------------------------*/
void Mom::createChildren()
{
int fd[2];
fcntl( fd[IN], F_SETFD, 0 );
for(int c=0; c<NUMCHILDREN; c++)
{
ret = pipe(fd);
if(ret < 0) fatal("Error creating pipes");
int pid = fork();
//cout << pid << endl;
if(pid == 0)
{
setupChild(c, fd);
}
else
{
//close(fd[1]);
}
}
}
/*------------------------------------------------------------------------------
set up the child and call exec to run ChildMain
----------------------------------------------------------------------------*/
void Mom::setupChild(int count, int fd[])
{
//cout << "Creating child with id: " << count << endl;
char cnt = '0' + count;
string id_str (&cnt + '\0');
fcntl( fd[0], F_SETFD, 0 );
pipes[fileCount++] = fdopen(fd[1], "w");
//execlp("ChildMain", "ChildMain", id_str.c_str(), NULL);
execlp("ChildMain", id_str.c_str(), NULL);
}
And here is the child code:
int main(int argc, char* argv[])
{
//cout << argv[argc-1] << endl;
if(argc < 1) fatal("Not enough arguments provided to ChildMain");
int id = atoi(argv[argc-1]);
//cout << *argv[1] << " " << id << endl;
//redirect STDIN and STDOUT
/*int c_in = dup(0);
close(0);
dup((2*id) + 5);
int c_out = dup(1);
close(1);
dup(4);*/
/////////////////////////////
//Child kid((int) *argv[1]);
FILE* out = fdopen(4, "w");
if(out == NULL)
cout << "Error opening stream to parent in child: " << id << endl;
//char childID = '0' + id;
//char buf[80];
//strcpy(buf, "Child ");
//strcat(buf, &childID);
string buf ("Child");
//cout << tmp << " " << childID << endl;
//write(4, buf.c_str(), buf.length()+1);
//cout << id << endl;
int ret = fprintf(out, "%d", id);
fflush(out);
//fclose(out);
//cout << id << " " << ret << endl;
//ch.push_back((char) id);
//put STDIN and STDOUT back to correct file descriptors
/*close(1);
dup(c_out);
close(0);
dup(c_in);*/
////////////////////////////////////////////////////////
return 0;
}
I am very confused why this works for the first child, with id 0, but no the others. Does anyone know what is wrong with my code?
execlp(3) is expecting null terminated strings as it's args. &cnt won't be null terminated.
Simple fix:
void Mom::setupChild(int count, int fd[])
{
char cnt[2];
cnt[0] = '0' + count;
cnt[1] = '\0';
fcntl( fd[(2*count)+3], F_SETFD, 0 );
execlp("ChildMain", "ChildMain", &cnt, NULL);
}
This doesn't scale to 10 processes though, so I'd probably use a buffer and just sprintf() into it.
Here is a small example on how to implement the suggestion in my comment:
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
{
/* Need two sets of pipes: one for child stdin, one for child stdout */
int pipefds1[2];
int pipefds2[2];
pipe(pipefds1);
pipe(pipefds2);
int rc = fork();
if (rc == -1)
perror("fork");
else if (rc == 0)
{
/* In child */
/* Close the old stdin and stdout */
close(STDIN_FILENO);
close(STDOUT_FILENO);
/* Create new stdin/stroud from the pipes */
dup2(pipefds1[0], STDIN_FILENO);
dup2(pipefds2[1], STDOUT_FILENO);
/* Close the unneeded pipe handles */
close(pipefds1[1]);
close(pipefds2[0]);
/* Now pass control to the new program */
execl("/bin/ls", "ls", "-l", "/", NULL);
}
else
{
/* In parent */
/* Close the uneeded pipe handles */
close(pipefds1[0]);
close(pipefds2[1]);
/* We want to use stdio functions */
FILE *fp = fdopen(pipefds2[0], "r");
/* Read all from the child */
char buffer[128];
while (fgets(buffer, sizeof(buffer), fp))
{
printf("Input from child: %s\n", buffer);
}
fclose(fp);
/* Wait for child to exit */
wait(NULL);
}
return 0;
}
Hopefully this will be enough for you to build on.
The error handling is non-existant, but it is tested.