I need guidence on implementing WHILE loop with Kettle/PDI. The scenario is
(1) I have some (may be thousand or thousands of thousand) data in a table, to be validated with a remote server.
(2) Read them and loopup to the remote server; I use Modified Java Script for this as remote server lookup validation is defined in external Java JAR file (I can use "Change number of copies to start... option on Modified java script and set to 5 or 10)
(3) Update the result on database table. There will be 50 to 60% connection failure cases each session.
(4) Repeat Step 1 to step 3 till all gets updated to success
(5) Stop looping on Nth cycle; this is to avoid very long or infinite looping, N value may be 5 or 10.
How to design such a WhILE loop in Pentaho Kettle?
Have you seen this link? It gives a pretty well detailed explanation of how to implement a while loop.
You need a parent job with a sub-transformation for doing a check on the condition which will return a variable to the job on whether to abort or to continue.
Related
We have an application which user can run to generate some data at user specified path. This unique output data is generated with respect to one unique input data-set - this input data is provided by the user.
When we initially developed the application, we never anticipated that number of unique input data-set will be large (due to nature of application). Our expectation was number of unique input data-set could be of order of 10 where as one user has this as 1000. So, that particular user started 1000 jobs of our application on grid and all writing data to same path. Note - these 1000 jobs are not fired from our application and rather he spawned 1000 processes of our application on different machines.
Now this lead to some collision and data loss.
To guard against it, I am planning to synchronization using boost::interprocess. This is what I am planning:
// usual processing of input data ...
boost::filesystem::path reportLockFilePath(boost::filesystem::system_complete(userDir));
rerportLockFilePath.append("report.lock");
// if lock file does not exist, create one
if (!boost::filesystem::exists(reportLockFilePath) {
boost::interprocess::named_mutex reportLockMutex(boost::interprocess::open_or_create, "report_mutex");
boost::interprocess::scoped_lock< boost::interprocess::named_mutex > lock(reportLockMutex);
std::ofstream lockStrm(reportLockFilePath.string().c_str());
lockStrm << "## report lock file ##" << std::endl;
lockStrm.flush();
}
boost::interprocess::file_lock reportFileLock(reportLockFilePath.string().c_str());
boost::interprocess::scoped_lock< boost::interprocess::file_lock > lock(reportFileLock);
// usual reporting code that we already have ...
Now, questions are -
If this is correct synchronization for the problem at hand
If this synchronization scheme will work, when jobs are on different machines and path is on NFS
If on NFS etc., this is not going to work, what are the C++ alternatives? I prefer to avoid lower level C functions to avoid race condition due to lock being held when one instance of execution crashes etc.
I just removed the named mutex part (as that was causing problem on few machines due to permission issue - probably related to umask issue discussed in this context in some other post) and replaced with
std::ofstream lockStrm(reportLockFilePath.string().c_str(), std::ios_base::app);
And it worked at least in our internal testing.
I'm trying to play with Kafka Stream to aggregate some attribute of People.
I have a kafka stream test like this :
new ConsumerRecordFactory[Array[Byte], Character]("input", new ByteArraySerializer(), new CharacterSerializer())
var i = 0
while (i != 5) {
testDriver.pipeInput(
factory.create("input",
Character(123,12), 15*10000L))
i+=1;
}
val output = testDriver.readOutput....
I'm trying to group the value by key like this :
streamBuilder.stream[Array[Byte], Character](inputKafkaTopic)
.filter((key, _) => key == null )
.mapValues(character=> PersonInfos(character.id, character.id2, character.age) // case class
.groupBy((_, value) => CharacterInfos(value.id, value.id2) // case class)
.count().toStream.print(Printed.toSysOut[CharacterInfos, Long])
When i'm running the code, I got this :
[KTABLE-TOSTREAM-0000000012]: CharacterInfos(123,12), 1
[KTABLE-TOSTREAM-0000000012]: CharacterInfos(123,12), 2
[KTABLE-TOSTREAM-0000000012]: CharacterInfos(123,12), 3
[KTABLE-TOSTREAM-0000000012]: CharacterInfos(123,12), 4
[KTABLE-TOSTREAM-0000000012]: CharacterInfos(123,12), 5
Why i'm getting 5 rows instead of just one line with CharacterInfos and the count ?
Doesn't groupBy just change the key ?
If you use the TopologyTestDriver caching is effectively disabled and thus, every input record will always produce an output record. This is by design, because caching implies non-deterministic behavior what makes itsvery hard to write an actual unit test.
If you deploy the code in a real application, the behavior will be different and caching will reduce the output load -- which intermediate results you will get, is not defined (ie, non-deterministic); compare Michael Noll's answer.
For your unit test, it should actually not really matter, and you can either test for all output records (ie, all intermediate results), or put all output records into a key-value Map and only test for the last emitted record per key (if you don't care about the intermediate results) in the test.
Furthermore, you could use suppress() operator to get fine grained control over what output messages you get. suppress()—in contrast to caching—is fully deterministic and thus writing a unit test works well. However, note that suppress() is event-time driven, and thus, if you stop sending new records, time does not advance and suppress() does not emit data. For unit testing, this is important to consider, because you might need to send some additional "dummy" data to trigger the output you actually want to test for. For more details on suppress() check out this blog post: https://www.confluent.io/blog/kafka-streams-take-on-watermarks-and-triggers
Update: I didn't spot the line in the example code that refers to the TopologyTestDriver in Kafka Streams. My answer below is for the 'normal' KStreams application behavior, whereas the TopologyTestDriver behaves differently. See the answer by Matthias J. Sax for the latter.
This is expected behavior. Somewhat simplified, Kafka Streams emits by default a new output record as soon as a new input record was received.
When you are aggregating (here: counting) the input data, then the aggregation result will be updated (and thus a new output record produced) as soon as new input was received for the aggregation.
input record 1 ---> new output record with count=1
input record 2 ---> new output record with count=2
...
input record 5 ---> new output record with count=5
What to do about it: You can reduce the number of 'intermediate' outputs through configuring the size of the so-called record caches as well as the setting of the commit.interval.ms parameter. See Memory Management. However, how much reduction you will be seeing depends not only on these settings but also on the characteristics of your input data, and because of that the extent of the reduction may also vary over time (think: could be 90% in the first hour of data, 76% in the second hour of data, etc.). That is, the reduction process is deterministic but from the resulting reduction amount is difficult to predict from the outside.
Note: When doing windowed aggregations (like windowed counts) you can also use the Suppress() API so that the number of intermediate updates is not only reduced, but there will only ever be a single output per window. However, in your use case/code you the aggregation is not windowed, so cannot use the Suppress API.
To help you understand why the setup is this way: You must keep in mind that a streaming system generally operates on unbounded streams of data, which means the system doesn't know 'when it has received all the input data'. So even the term 'intermediate outputs' is actually misleading: at the time the second input record was received, for example, the system believes that the result of the (non-windowed) aggregation is '2' -- its the correct result to the best of its knowledge at this point in time. It cannot predict whether (or when) another input record might arrive.
For windowed aggregations (where Suppress is supported) this is a bit easier, because the window size defines a boundary for the input data of a given window. Here, the Suppress() API allows you to make a trade-off decision between better latency but with multiple outputs per window (default behavior, Suppress disabled) and longer latency but you'll get only a single output per window (Suppress enabled). In the latter case, if you have 1h windows, you will not see any output for a given window until 1h later, so to speak. For some use cases this is acceptable, for others it is not.
I have a code that, when needed, interrupts a Sqlite query using a context with a deadline. My problem is to write a unit test for it: I need to launch a query that I know will run for a long time, ideally in an infinite loop, and check that it is interrupted. I use https://github.com/mattn/go-sqlite3 to access Sqlite 3 from Go.
For example, this:
with recursive rec as
(select 1 as n union all select n + 1 from rec)
select n from rec;
returns 1 immediately instead of looping, as it does in the SQLite console (is there something to do to enable CTE’s?). I also found no sleep function or anything similar.
Referring to the docs, you can specify the number of concurrent connection when pushing large files to Amazon Web Services s3 using the multipart uploader. While it does say the concurrency defaults to 5, it does not specify a maximum, or whether or not the size of each chunk is derived from the total filesize / concurrency.
I trolled the source code and the comment is pretty much the same as the docs:
Set the concurrency level to use when uploading parts. This affects
how many parts are uploaded in parallel. You must use a local file as
your data source when using a concurrency greater than 1
So my functional build looks like this (the vars are defined by the way, this is just condensed for example):
use Aws\Common\Exception\MultipartUploadException;
use Aws\S3\Model\MultipartUpload\UploadBuilder;
$uploader = UploadBuilder::newInstance()
->setClient($client)
->setSource($file)
->setBucket($bucket)
->setKey($file)
->setConcurrency(30)
->setOption('CacheControl', 'max-age=3600')
->build();
Works great except a 200mb file takes 9 minutes to upload... with 30 concurrent connections? Seems suspicious to me, so I upped concurrency to 100 and the upload time was 8.5 minutes. Such a small difference could just be connection and not code.
So my question is whether or not there's a concurrency maximum, what it is, and if you can specify the size of the chunks or if chunk size is automatically calculated. My goal is to try to get a 500mb file to transfer to AWS s3 within 5 minutes, however I have to optimize that if possible.
Looking through the source code, it looks like 10,000 is the maximum concurrent connections. There is no automatic calculations of chunk sizes based on concurrent connections but you could set those yourself if needed for whatever reason.
I set the chunk size to 10 megs, 20 concurrent connections and it seems to work fine. On a real server I got a 100 meg file to transfer in 23 seconds. Much better than the 3 1/2 to 4 minute it was getting in the dev environments. Interesting, but thems the stats, should anyone else come across this same issue.
This is what my builder ended up being:
$uploader = UploadBuilder::newInstance()
->setClient($client)
->setSource($file)
->setBucket($bicket)
->setKey($file)
->setConcurrency(20)
->setMinPartSize(10485760)
->setOption('CacheControl', 'max-age=3600')
->build();
I may need to up that max cache but as of yet this works acceptably. The key was moving the processor code to the server and not relying on the weakness of my dev environments, no matter how powerful the machine is or high class the internet connection is.
We can abort the process during upload and can halt all the operations and abort the upload at any instance. We can set Concurrency and minimum part size.
$uploader = UploadBuilder::newInstance()
->setClient($client)
->setSource('/path/to/large/file.mov')
->setBucket('mybucket')
->setKey('my-object-key')
->setConcurrency(3)
->setMinPartSize(10485760)
->setOption('CacheControl', 'max-age=3600')
->build();
try {
$uploader->upload();
echo "Upload complete.\n";
} catch (MultipartUploadException $e) {
$uploader->abort();
echo "Upload failed.\n";
}
(ACF9)
Unless there's an option I'm missing, the "Log Slow Pages Taking Longer Than [n] Seconds" setting isn't useful for front-controller based sites (e.g., Model-Glue, FW/1, Fusebox, Mach-II, etc.).
For instance, in a Mura/Framework-One site, I just end up with:
"Warning","jrpp-186","04/25/13","15:26:36",,"Thread: jrpp-186, processing template: /home/mysite/public_html_cms/wwwroot/index.cfm, completed in 11 seconds, exceeding the 10 second warning limit"
"Warning","jrpp-196","04/25/13","15:27:11",,"Thread: jrpp-196, processing template: /home/mysite/public_html_cms/wwwroot/index.cfm, completed in 59 seconds, exceeding the 10 second warning limit"
"Warning","jrpp-214","04/25/13","15:28:56",,"Thread: jrpp-214, processing template: /home/mysite/public_html_cms/wwwroot/index.cfm, completed in 32 seconds, exceeding the 10 second warning limit"
"Warning","jrpp-134","04/25/13","15:31:53",,"Thread: jrpp-134, processing template: /home/mysite/public_html_cms/wwwroot/index.cfm, completed in 11 seconds, exceeding the 10 second warning limit"
Is there some way to get query string or post details in there, or is there another way to get what I'm after?
You can easily add some logging to your application for any requests that take longer than 10 seconds.
In onRequestStart():
request.startTime = getTickCount();
In onRequestEnd():
request.endTime = getTickCount();
if (request.endTime - request.startTime > 10000){
writeLog(cgi.QUERY_STRING);
}
If you're writing a Mach-II, FW/1 or ColdBox application, it's trivial to write a "plugin" that runs on every request which captures the URL or FORM variables passed in the request and stores that in a simple database table or log file. (You can even capture session.userID or IP address or whatever you may need.) If you're capturing to a database table, you'll probably not want any indexes to optimize for performance and you'll need to rotate that table so you're not trying to do high-speed inserts on a table with tens of millions of rows.
In Mach-II, you'd write a plugin.
In FW/1, you'd put a call to a controller which handles this into setupRequest() in your application.cfc.
In ColdBox, you'd write an interceptor.
The idea is that the log just tells you what pages arw xonsostently slow sp ypu can do your own performance tuning.
Turn on debugging for further details for a start.