Performing "true" dynamic casts at runtime? - c++

So I am still working on a flexible scripting system for this school project and have come to a road block. The problem is this: I have a script state manager interface that any scripting state will implement (currently implementing lua, but want to be able to add python later). It has pure virtual functions for things such as DoFile, DoString, RegisterObject and RegisterFunction. So the LuaStateManager implements this interface using luaplus classes and encapsulates the LuaState object as it should.
So when an object registers itself with lua and throws all its methods into a metatable I have to do something like this:
metaTable.RegisterObjectDirect(“Move”, (Actor*)0, &Actor::Move);
This would be fine if I had access to the underlying state object in the StateManager interface as it would be getting called from the Actor class itself so the cast could be guaranteed. Unfortunately, I need to somehow pass this info to the LuaState::RegisterFunction method so the I don't have to expose the LuaState object and couple my classes to it. As far as I can see though, there is no way to pass information about which type of class to cast to.
Does any body have any suggestions? I thought about trying to use a templated function to perform the cast, but I know that you can't have function pointers to templates, so that is out the window. Thanks!

Related

Per-entity Lua scripts in games?

I'm using Lua for scripts in my C++ game. I want to be able to attach scripts to entities, and based on which functions are defined in the script, register for callbacks which will run the script functions at the appropriate time.
I believe that I can encapsulate different scripts from each other, by making the "script" into a table. Basically, ... lua source code ... would become ScriptName = { ... lua source code ... }. Then instead of calling func(), I'd call ScriptName.func(), and thus two scripts defining the same function (aka registering for the same event) wouldn't trample over each other.
My problem now is in encapsulating different entities sharing the same script. Obviously I don't want them to be sharing variables, but with what I'm doing now, any variable defined by a script would be shared by every instance of that script, which is just really bad. I could maybe try something similar to my above solution on the source level, by wrapping every script with EntityID.ScriptName = { ... } before compiling it. Something tells me there's a better way, though, I just don't know it.
Another factor is that scripts need to be able to reference entities and scripts/components relative to a specific entity. If I use the above method the best solution to this would be passing entity IDs around as strings which could reference the table specific to that entity, I think? At this point I really have no idea what I'm doing.
In order for a script to interact with a C++ object, the typical approach is to have the C++ code expose the object to Lua as a userdata (a wrapper for a pointer) and provide C++ functions that the script can call, passing the userdata as parameter. In the C++ code, that userdata gives you the object that the function should to operate on. It's equivalent to a "this" pointer.
You usually do this by putting the C++ functions into a metatable associated with the userdata, so they can be called like methods in the Lua code (i.e. objectIGotFromCpp:someMethod('foo').
ScriptName.func(), and thus two scripts defining the same function (aka registering for the same event) wouldn't trample over each other.
Rather than relying on accessing globals or naming conventions, ect. it's much cleaner to simply provide a callback that Lua scripts can use to register for events.
If I use the above method the best solution to this would be passing entity IDs around as strings
No reason. An entity in your C++ code is a pointer to an object on the heap. You can pass that pointer directly to Lua as userdata. Lua can pass that back to your C++ code and give you direct access to the object, rather than going through some object-to-ID mapping.

Late Binding COM objects with C++Builder

We're interfacing to some 3rd party COM objects from a C++Builder 2010 application.
Currently we import the type library and generate component wrappers, and then are able to make method calls and access properties in a fairly natural way.
object->myProperty = 42;
object->doSomething(666);
However, we've been bitten by changes to the COM object's interface (which is still being extended and developed) causing our own app to fail because some method GUIDs seem to get invalidated - even if the only change to the interface has been the addition of a new method).
Late Binding has been suggested as a way of addressing this. I think this requires our code to be changed rather like this:
object.OlePropertySet("myProperty", 42);
object.OlePrcedure("doSomething", 666);
Obviously this is painful to read and write, so we'd have to write wrapper classes instead.
Is there any way of getting late binding wrappers generated automatically when we import the type library? And, if so, are they smart enough to only do the textual binding once when the object is created, rather than on every single method call?
When you import a TypeLibrary for a COM object that supports late-binding (when it implements the IDispatch interface), the importer can generate separate wrapper classes (not components) for both static-binding and late-binding.
Adding a new method to an existing interface should not invalidate your code. Methods do not have GUIDs. However, for an IDispatch-based interface, its methods do have DISPID values associated with them, and those DISPID values can be changed from one release to another. Though any respectable COM developer should never do that once an interface definition has been locked in.
After deep investigation of the code and headers generated by the TLIBIMP, this turns out to be fairly easy.
If your Type Library has a class Foo, then after importing the type library, you would typically use the auto-generated smart pointer classes IFooPtr.
{
IFooPtr f;
...
f->myMethod(1,2);
}
You should note that at this point that the bindings are static - that is, they depend not just on the GUIDs of the objects and the DISPIDs of the methods, but on the exact layout of the VTable in the DLL. Any changes that affect the vtable - for instance, adding an additional method to a base class of Foo will cause the method call to fail.
To use dynamic bindings, you can use the IFooDisp classes instead of IFooPtr. Again, these are smart wrappers, handling object lifetimes automatically. Note that with these classes you should use the . operator to access methods, not the indirection -> operator. Using the indirection operator will call the method, but via a static binding.
{
IFooDisp f;
...
f.myMethod(1,2);
}
By using these IDispatch-based wrappers, methods will be dispatched by their DISPIDs, even if the objects vtable layout is changed. I think these classes also give a way to dispatch by function name rather than DISPID, but haven't confirmed the details of that.

Passing pointer-to-member-function as pointer-to-function

So here's the situation: I'm using C++, SDL and GLConsole in conjunction. I have a class, SDLGame, which has the Init(), Loop(), Render() etc - essentially, it holds the logic for my game class.
GLConsole is a nice library so far - it lets me define CVars and such, even inside my SDL class. However, when defining commands, I have to specify a ConsoleFunc, which is typedef'd as
typedef bool (*ConsoleFunc)( std::vector<std::string> *args);
Simple enough. However, like I said, my functions are all in my class, and I know I can't pass pointer-to-class-functions as pointer-to-function arguments. I can't define static functions or make functions outside my class because some of these ConsoleFuncs must access class data members to be useful. I'd like to keep it OOP, since - well, OOP is nice.
Well, I actually have this problem "solved" - but it's extremely ugly. I just have an instance of SDLGame declared as an extern variable, and use that in my ConsoleFuncs/main class.
So, the question is: Is there a way to do this that isn't stupid and dumb like the way I am doing it? (Alternatively: is there a console library like GLConsole that supports SDL and can do what I'm describing?)
If the only interface you have is that function pointer, then you're screwed.
A member function needs a this pointer to be called, and if you have no way of passing that, you're out of luck (I guess the std::vector<std::string>* args pointer is what you get passed from the library).
In other words, even though that library uses C++ containers, it's not a good C++ library, because it relies on free functions for callbacks. A good C++ library would use boost::function or something similar, or would at the very least let you pass a void* user_data pointer that gets passed through to your callback. If you had that, you could pass the this pointer of your class, cast it back inside the callback, and call the appropriate member function.

JNI non-Java class members

I want to create a Java wrapper against some third-party library with C interface. The library operates on a complex Context entity which is essentially a C++ object (C++ is used internally in that library, but API is in pure C). It would be natural to wrap this entity into a class accessible from Java. For that, a pointer to Context should be stored somewhere.
I see two options to do this:
to declare a new member on java side (as long, for example) and convert it to pointer type inside JNI methods implementation
to declare a new member in JNI header (That might be illegal if Java relies on the size of structure it gerenated for me by javah)
All the tutorials on JNI are too simple to give me a hint on how to wrap a complex entities with Java classes, any links on more verbose documentation are appreciated.
I also want to know where it is appropriate to call Context destruction function (C++ destructor inside) I don't want to use Java finalize for that as Java don't favor finalize methods and I supect there is a way to define a destruction procedure on native side.

Binding functions of derived class with luabind

I am currently developing a plugin-based system in C++ which provides a Lua scripting interface, for which I chose to use luabind. I'm using Lua 5 and luabind 0.9, both statically linked and compiled with MSVC++ 8. I am now having trouble binding functions with luabind when they are defined in a derived class, but not its parent class.
More specifically, I have an abstract base class called 'IPlugin' from which all plugin classes inherit. When the plugin manager initialises, it registers that class and its functions like this:
luabind::open(L);
luabind::module(L) [
luabind::class_<IPlugin>("IPlugin")
.def("start", &IPlugin::start)
];
As it is only known at runtime what effective plugin classes are available, I had to solve loading plugins in a kind of roundabout way. The plugin manager exposes a factory function to Lua, which takes the name of a plugin class and a desired object name. The factory then creates the object, registers the plugin's class as inheriting from the 'IPlugin' base class, and immediately calls a function on the created object that registers itself as a global with the Lua state, like this:
void PluginExample::registerLuaObject(lua_State *L, string a_name)
{
luabind::globals(L)[a_name] = (PluginExample*)this;
}
I initially did this because I had problems with Lua determining the most derived class of the object, as if I register it from the plugin manager it is only known as a subtype of 'IPlugin' and not the specific subtype. I'm not sure anymore if this is even necessary though, but it works and the created object is subsequently accessible from Lua under 'a_name'.
The problem I have, though, is that functions defined in the derived class, which were not declared at all in the parent class, cannot be used. Virtual functions defined in the base class, such as 'start' above, work fine, and calling them from Lua on the new object runs the respective redefined code from the 'PluginExample' class. But if I add a new function to 'PluginExample', here for example a function taking no arguments and returning void, and register it like this:
luabind::module(L) [
luabind::class_<PluginExample, IPlugin>("PluginExample")
.def(luabind::constructor<PluginManager&>())
.def("func", &PluginExample::func)
];
calling 'func' on the new object yields the following Lua runtime error:
No matching overload found, candidates:
void func(PluginExample&)
I am correctly using the ':' syntax so the 'self' argument is not needed and it seems suddenly Lua cannot determine the derived type of the object anymore. I am sure I am doing something wrong, probably having to do with the two-step binding required by my system architecture, but I can't figure out where. I'd much appreciate some help =)