JNI non-Java class members - java-native-interface

I want to create a Java wrapper against some third-party library with C interface. The library operates on a complex Context entity which is essentially a C++ object (C++ is used internally in that library, but API is in pure C). It would be natural to wrap this entity into a class accessible from Java. For that, a pointer to Context should be stored somewhere.
I see two options to do this:
to declare a new member on java side (as long, for example) and convert it to pointer type inside JNI methods implementation
to declare a new member in JNI header (That might be illegal if Java relies on the size of structure it gerenated for me by javah)
All the tutorials on JNI are too simple to give me a hint on how to wrap a complex entities with Java classes, any links on more verbose documentation are appreciated.
I also want to know where it is appropriate to call Context destruction function (C++ destructor inside) I don't want to use Java finalize for that as Java don't favor finalize methods and I supect there is a way to define a destruction procedure on native side.

Related

Late Binding COM objects with C++Builder

We're interfacing to some 3rd party COM objects from a C++Builder 2010 application.
Currently we import the type library and generate component wrappers, and then are able to make method calls and access properties in a fairly natural way.
object->myProperty = 42;
object->doSomething(666);
However, we've been bitten by changes to the COM object's interface (which is still being extended and developed) causing our own app to fail because some method GUIDs seem to get invalidated - even if the only change to the interface has been the addition of a new method).
Late Binding has been suggested as a way of addressing this. I think this requires our code to be changed rather like this:
object.OlePropertySet("myProperty", 42);
object.OlePrcedure("doSomething", 666);
Obviously this is painful to read and write, so we'd have to write wrapper classes instead.
Is there any way of getting late binding wrappers generated automatically when we import the type library? And, if so, are they smart enough to only do the textual binding once when the object is created, rather than on every single method call?
When you import a TypeLibrary for a COM object that supports late-binding (when it implements the IDispatch interface), the importer can generate separate wrapper classes (not components) for both static-binding and late-binding.
Adding a new method to an existing interface should not invalidate your code. Methods do not have GUIDs. However, for an IDispatch-based interface, its methods do have DISPID values associated with them, and those DISPID values can be changed from one release to another. Though any respectable COM developer should never do that once an interface definition has been locked in.
After deep investigation of the code and headers generated by the TLIBIMP, this turns out to be fairly easy.
If your Type Library has a class Foo, then after importing the type library, you would typically use the auto-generated smart pointer classes IFooPtr.
{
IFooPtr f;
...
f->myMethod(1,2);
}
You should note that at this point that the bindings are static - that is, they depend not just on the GUIDs of the objects and the DISPIDs of the methods, but on the exact layout of the VTable in the DLL. Any changes that affect the vtable - for instance, adding an additional method to a base class of Foo will cause the method call to fail.
To use dynamic bindings, you can use the IFooDisp classes instead of IFooPtr. Again, these are smart wrappers, handling object lifetimes automatically. Note that with these classes you should use the . operator to access methods, not the indirection -> operator. Using the indirection operator will call the method, but via a static binding.
{
IFooDisp f;
...
f.myMethod(1,2);
}
By using these IDispatch-based wrappers, methods will be dispatched by their DISPIDs, even if the objects vtable layout is changed. I think these classes also give a way to dispatch by function name rather than DISPID, but haven't confirmed the details of that.

Using c++ object in c

I am writing code in c++. I need to support few basic data types and something like BigInt. This types will be exposed to outside world(through header file), which might also include c program.
Should I implement BigInt like data type as struct or class?
The confusion is because
1. If I implement it as class, as OO advantages, I can do all processing in class. But I may have to implement some work around for c programs
2. If I implement it as struct I need not do anything special for c programs, but I loose modularity and ease of implementation.
basically C couldn't access C++ objects, either struct/class (they're the same in C++, only differs in default visibility specifier). You have to create procedural wrapper for the C++ object (i.e. creation, method call, destruction, etc).
For creation, create a function that returns opaque pointer (in C++, this would be the object pointer). For method call, add the returned pointer (from creation function above) as one of the (typically first) parameter. For destruction it's the same as method call, but typically receives no other parameter other than the pointer above.
If you plan on using it in C, I suggest you write it in C. C++ gets along with C a million times better than C gets along with C++. Another option would be to write it in C and then provide a thin C++ wrapper that gives it an OO interface.

How does Boost.Python work?

How is Python able to call C++ objects when the interpreter is C and has been built w/ a C compiler?
Boost.Python has special macros that declare functions with extern "C" so the Python interpreter will be able to call them. It's kind of complicated, but you can look at the Boost documentation for more info.
Python declares a C-API (see http://docs.python.org/2/c-api/ or http://docs.python.org/3/c-api/). This API defines a generic object type called PyObject which is just a normal C struct. This structure defines (nearly) everything a python object can do, e.g., what happens when do additions or comparisons on this object or simply call it like a function.
Because python types are also objects (and therefore are represented in C by a PyObject structure), defining a new type is a simple matter of defining a new PyObject struct like that one. When methods are called in Python, the interpreter forwards the call to C functions associated with this structure.
As long as a given (compiled) extension provides the correct entry points such that the Python interpreter can introspect it and find out what is available (the documentation I indicated above does explain this in details), then it can use these objects like any other object you normally have available at the prompt - which BTW, are constructed using the very same C-API. It suffices you import the compiled extension.
I hope it is somewhat clear how the Python interpreter calls stuff from compiled extensions from the above. The sole missing gap is how the C-API calls the C++ code.
Boost.Python does this by declaring C entry points in code along the lines as explained here: Elegantly call C++ from C. Every time you call, e.g., boost::python::class_, it does this for the type you declare to python, creating therefore a PyObject that represents your class, with the name you choose. As you call .def on this class you go filling in the internal slots of that structure, declaring more methods, operators and attributes of your new type. Each of these internal slots points to a C-style function that is nothing but a wrapper to the equivalent C++ call.
C++ can interoperate with C by extern "C" declarations.

Custom COM Implementation?

I'm looking to implement a custom implementation of COM in C++ on a UNIX type platform to allow me to dynamically load and link object oriented code. I'm thinking this would be based on a similar set of functionality that POSIX provides to load and call dll's ie dlopen, dlsym and dlclose.
I understand that the general idea of COM is that you link to a few functions ie QueryInterface, AddRef and Release in a common dll (Kernel32.dll) which then allows you to access interfaces which are just a table of function pointers encapsulated with a pointer to the object for which the function pointers should be called with. These functions are exposed through IUnknown which you must inherit off of.
So how does this all work? Is there a better way to dynamically link and load to object oriented code? How does inheritance from a dll work - does every call to the base class have to be to an exposed member function i.e private/protected/public is simply ignored?
I'm quite well versed in C++ and template meta-programming and already have a fully reflective C++ system i.e member properties, member functions and global/static functions that uses boost.
A couple of things to keep in mind:
The power of COM comes largely from the IDL and the midl compiler. It allows a verry succint definition of the objects and interfaces with all the C/C++ boilerplate generated for you.
COM registration. On Windows the class IDs (CLSID) are recorded in the registry where they are associated with the executable. You must provide similar functionality in the UNIX environment.
The whole IUnknown implementation is fairly trivial, except for QueryInterface which works when implemented in C (i.e. no RTTI).
A whole another aspect of COM is IDispatch - i.e. late bound method invocation and discovery (read only reflection).
Have a look at XPCOM as it is a multi-platform COM like environment. This is really one of those things you are better off leveraging other technologies. It can suck up a lot of the time better spent elsewhere.
I'm looking to implement a custom implementation of COM in C++ on a UNIX type platform to allow me to dynamically load and link object oriented code. I'm thinking this would be based on a similar set of functionality that POSIX provides to load and call dll's ie dlopen, dlsym and dlclose.
At its simplest level, COM is implemented with interfaces. In c++, if you are comfortable with the idea of pure virtual, or abstract base classes, then you already know how to define an interface in c++
struct IMyInterface {
void Method1() =0;
void Method2() =0;
};
The COM runtime provides a lot of extra services that apply to the windows environment but arn't really needed when implementing "mini" COM in a single application as a means to dynamically link to a more OO interface than traditionally allowed by dlopen, dlsym, etc.
COM objects are implemented in .dll, .so or .dylib files depending on your platform. These files need to export at least one function that is standardized: DllGetClassObject
In your own environment you can prototype it however you want but to interop with the COM runtime on windows obviously the name and parameters need to conform to the com standard.
The basic idea is, this is passed a pointer to a GUID - 16 bytes that uniquely are assigned to a particular object, and it creates (based on the GUID) and returns the IClassFactory* of a factory object.
The factory object is then used, by the COM runtime, to create instances of the object when the IClassFactory::CreateInstance method is called.
So, so far you have
a dynamic library exporting at least one symbol, named "DllGetClassObject" (or some variant thereof)
A DllGetClassObject method that checks the passed in GUID to see if and which object is being requested, and then performs a "new CSomeObjectClassFactory"
A CSomeObjectClassFactory implementation that implements (derives from) IClassFactory, and implements the CreateInstance method to "new" instances of CSupportedObject.
CSomeSupportedObject that implements a custom, or COM defined interface that derives from IUnknown. This is important because IClassFactory::CreateInstance is passed an IID (again, a 16byte unique id defining an interface this time) that it will need to QueryInterface on the object for.
I understand that the general idea of COM is that you link to a few functions ie QueryInterface, AddRef and Release in a common dll (Kernel32.dll) which then allows you to access interfaces which are just a table of function pointers encapsulated with a pointer to the object for which the function pointers should be called with. These functions are exposed through IUnknown which you must inherit off of.
Actually, COM is implemented by OLE32.dll which exposes a "c" api called CoCreateInstance. The app passed CoCreateInstance a GUID, which it looks up in the windows registry - which has a DB of GUID -> "path to dll" mappings. OLE/COM then loads (dlopen) the dll, calls its DllGetClassObject (dlsym) method, passing in the GUID again, presuming that succeeds, OLE/COM then calls the CreateInstance and returns the resulting interface to app.
So how does this all work? Is there a better way to dynamically link and load to object oriented code? How does inheritance from a dll work - does every call to the base class have to be to an exposed member function i.e private/protected/public is simply ignored?
implicit inheritance of c++ code from a dll/so/dylib works by exporting every method in the class as a "decorated" symbol. The method name is decorated with the class, and type of every parameter. This is the same way the symbols are exported from static libraries (.a or .lib files iirc). Static or dynamic libraries, "private, protected etc." are always enforced by the compiler, parsing the header files, never the linker.
I'm quite well versed in C++ and template meta-programming and already have a fully reflective C++ system i.e member properties, member functions and global/static functions that uses boost.
c++ classes can typically only be exported from dlls with static linkage - dlls that are loaded at load, not via dlopen at runtime. COM allows c++ interfaces to be dynamically loaded by ensuring that all datatypes used in COM are either pod types, or are pure virtual interfaces. If you break this rule, by defining an interface that tries to pass a boost or any other type of object you will quickly get into a situation where the compiler/linker will need more than just the header file to figure out whats going on and your carefully prepared "com" dll will have to be statically or implicitly linked in order to function.
The other rule of COM is, never pass ownership of an object accross a dynamic library boundary. i.e. never return an interface or data from a dll, and require the app to delete it. Interfaces all need to implement IUnknown, or at least a Release() method, that allows the object to perform a delete this. Any returned data types likewise must have a well known de-allocator - if you have an interface with a method called "CreateBlob", there should probably be a buddy method called "DeleteBlob".
To really understand how COM works, I suggest reading "Essential COM" by Don Box.
Look at the CORBA documentation, at System.ComponentModel in the sscli, the XPCOM parts of the Mozilla codebase. Miguel de Icaza implemented something like OLE in GNOME called Bonobo which might be useful as well.
Depending on what you're doing with C++ though, you might want to look at plugin frameworks for C++ like Yehia. I believe Boost also has something similar.
Edit: pugg seems better maintained than Yehia at the moment. I have not tried it though.
The basic design of COM is pretty simple.
All COM objects expose their functionality through one or more interfaces
All interfaces are derived from the IUnknown interface, thus all interfaces have
QueryInterface, AddRef & Release methods as the first 3 methods of their virtual
function table in a known order
All objects implement IUnknown
Any interface that an object supports can be queried from any other interface.
Interfaces are identified by Globally Unique Identifiers, these are IIDs GUIDs or CLSIDs, but they are all really the same thing. http://en.wikipedia.org/wiki/Globally_Unique_Identifier
Where COM gets complex is in how it deals with allowing interfaces to be called from outside the process where the object resides. COM marshalling is a nasty, hairy, beast. Made even more so by the fact that COM supports both single threaded and multi-threaded programming models.
The Windows implementaion of COM allows objects to be registered (the original use of the Windows registry was for COM). At a minimum the COM registry contains the mapping between the unique GUID for a COM object, and the library (dll) that contains it's code.
For this to work. DLLs that implement COM objects must have a ClassFactory - an entry point in the DLL with a standard name that can be called to create one of the COM objects the DLL implements. (In practice, Windows COM gets an IClassFactory object from this entry point, and uses that to create other COM objects).
so that's the 10 cent tour, but to really understand this, you need to read Essential COM by Don Box.
You may be interested in the (not-yet)Boost.Extension library.

Java JNI: global variable collision in native code

Good day, masters. Suppose I have a java class A:
class A {
public A() {}
public native void setValue(String value);
public native String getValue();
}
When implementing the native C code, a global char[] variable is used to store the value just be set by native setValue method. The getValue method just return that global char[] variable.
Here comes my question: I create several A objects, and invoke their respective set/get method, I found that they end up writting and readding the same block of memory! Actually the global char[] variable in C native code is totally shared by all A object.
Can anybody give me some in-depth explaination of this behavior? I knew I had a fundmental misunderstanding in terms of the way JNI works. Thanks!
The problem is that you have the object oriented java on the one side, and the procedural C on the other side. When a java class A is loaded, JNI does not somehow create an object in the C world (this is C - not C++), there is no object-to-object mapping. So JNI loads the corresponding CPP file in the C world once into memory (this is completely normal behavior in C). The compiler sees a bunch of functions and a global reference, there is no need to create multiple instances somehow. When loading a Java class, all the JNI compiler does is to add the C file to the list of files to be compiled.
What you would like to have is a mapping between Java objects and C objects. This can be achieved in several ways, I suggest you read about the proxy pattern in JNI.
To explain very shortly, you have two fundamental ways to achieve this. You can either do it on the C side or on the Java side. When storing the relationship in the C world, you would maintain a hashtable in C where C objects map to Java objects. The other way around, you would have an int object in a Java object that is actually a pointer to a C object in memory. In the C code you would then dereference this pointer (through GetIntField()) and cast to the C object you require.
Of course adding
private String value;
to your Java class A, would indeed work very smootly. Java has a notion of objects, so you could access those Strings from the C world with
env->GetObjectField(obj, "value", "Ljava/lang/String;")
with env being the JNI environment.