Related
I'm trying to add two lists together and keep the extra elements that are unused and add those into the new list e.g.
addLists [1,2,3] [1,3,5,7,9] = [2,5,8,7,9]
I have this so far:
addLists :: Num a => [a] -> [a] -> [a]
addLists xs ys = zipWith (+) xs ys
but unsure of how to get the extra elements into the new list.
and the next step is changing this to a higher order function that takes the combining function
as an argument:
longZip :: (a -> a -> a) -> [a] -> [a] -> [a]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] is implemented as [src]:
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith f = go
where
go [] _ = []
go _ [] = []
go (x:xs) (y:ys) = f x y : go xs ys
It thus uses explicit recursion where go will check if the two lists are non-empty and in that case yield f x y, otherwise it stops and returns an empty list [].
You can implement a variant of zipWith which will continue, even if one of the lists is empty. THis will look like:
zipLongest :: (a -> a -> a) -> [a] -> [a] -> [a]
zipLongest f = go
where go [] ys = …
go xs [] = …
go (x:xs) (y:ys) = f x y : go xs ys
where you still need to fill in ….
You can do it with higher order functions as simple as
import Data.List (transpose)
addLists :: Num a => [a] -> [a] -> [a]
addLists xs ys = map sum . transpose $ [xs, ys]
because the length of transpose[xs, ys, ...] is the length of the longest list in its argument list, and sum :: (Foldable t, Num a) => t a -> a is already defined to sum the elements of a list (since lists are Foldable).
transpose is used here as a kind of a zip (but cutting on the longest instead of the shortest list), with [] being a default element for the lists addition ++, like 0 is a default element for the numbers addition +:
cutLongest [xs, ys] $
zipWith (++) (map pure xs ++ repeat []) (map pure ys ++ repeat [])
See also:
Zip with default value instead of dropping values?
You're looking for the semialign package. It gives you an operation like zipping, but that keeps going until both lists run out. It also generalizes to types other than lists, such as rose trees. In your case, you'd use it like this:
import Data.Semialign
import Data.These
addLists :: (Semialign f, Num a) => f a -> f a -> f a
addLists = alignWith (mergeThese (+))
longZip :: Semialign f => (a -> a -> a) -> f a -> f a -> f a
longZip = alignWith . mergeThese
The new type signatures are optional. If you want, you can keep using your old ones that restrict them to lists.
The task is as follows: I have a list of tuples containing country names, and the official language. I have another list with "3 item tuples" of translators in (first name, last name, language) format. I need to get a list of the countries, which official language is NOT spoken by any of the translators.
It has to be one call to a function of such form:
foo :: [(String, String)] -> [(String, String, String)] -> [String]
I have tried all sorts of map and filter combinations to no avail. The closest I came was using sets.
third :: (a, b, c) -> c
third (_, _, z) = z
translators x = Set.fromList (map third x)
languages x = Set.fromList (map snd x)
diff x y = Set.toList (Set.difference (languages x) (translators y))
This gives me all the languages that are in the first list but not spoken by the translators. However of course, the task is to give a list of the country names, not the languages. So I tried this as well, but it does not work:
foo x y = filter ((Set.notMember (translators y)).snd) x
I'm a beginner and I would much appreciate some help.
Your first function gives you the correct answer - except it gives you the list of languages. How about an assoc list so you can lookup country associated with the language?
To do that, you just have to swap the country and language in the (Country, Language) tuple
import Data.Tuple ( swap )
langMap :: [(String, String)] -> [(String, String)]
langMap = map swap
Now once you have the result of your own diff function, you just have to map a lookup function over the resulting list
diff :: [(String, String)] -> [(String, String, String)] -> [String]
diff x y = map (fromJust . (`lookup` langMap')) diffList
where
diffList = Set.toList $ Set.difference (languages x) (translators y)
langMap' = langMap x
If you are concerned about performance, you can replace the assoc list by a Data.Map
import qualified Data.Map as Map
langMap :: [(String, String)] -> Map.Map String String
langMap = Map.fromList . map swap
And also change the lookup in diff to Map.lookup.
diff :: [(String, String)] -> [(String, String, String)] -> [String]
diff x y = map (fromJust . (`Map.lookup` langMap')) diffList
where
diffList = Set.toList $ Set.difference (languages x) (translators y)
langMap' = langMap x
However, there's one caveat here - the lookup method will only work if you have only one country associated with each language.
If you want to support the situation when there are multiple countries associated with the same language. You need some extra batteries on the langMap-
langMap :: [(String, String)] -> Map.Map String [String]
langMap x = Map.fromListWith (++) [(v, [k]) | (k, v) <- x]
This is a slight modification of this answer. It creates a map of String and [String]. The key string is the language, and the value is a list of countries
Now, since the value of the map is a list of strings instead of just a string - we also need to change the diff a bit
diff :: [(String, String)] -> [(String, String)] -> [String]
diff x y = concatMap (fromJust . (`Map.lookup` langMap')) diffList
where
diffList = Set.toList $ Set.difference (languages x) (translators y)
langMap' = langMap x
Huh, that was simple. Just changing map to concatMap is enough - it'll flatten the list of list of strings, into just a list of strings.
Let's see it in action-
λ> xs = [("US", "English"), ("Mexico", "Spanish"), ("France", "French"), ("Spain", "Spanish"), ("UK", "English"), ("Italy", "Italian")]
λ> ys = [("Foo", "Spanish"), ("Bar", "French")]
λ> diff xs ys
["UK","US","Italy"]
Let's focus on correctness, on solving the problem, not on the solution being an efficient one. That we can take care of later. Correctness first, efficiency later!
Simplest and most visual way to code this is using List Comprehensions.
foo :: [(String, String)] -> [(String, String, String)] -> [String]
-- Country Language FirstN LastN Language
-- return: list of Contries with no translator
foo cls nnls = [ c | (c, ___) <- cls, -- for each country/language pair,
-- test the {list of ()s for each translator that ...}
___ [ () | (_, _, ___) <- nnls, ___ == ___] ]
Fill in the ___ blanks (you don't have to fill the _ blanks, those are Haskell's anonymous, throwaway variables).
Now you can make it efficient, treating the above as executable specification.
I'm trying to write a function with the type declaration [(Int, Bool)] -> [[Int]]. I want the function to only add Ints to the same nested sublist if the Boolean is True. However if the Boolean is False, I want the Int associated with the next True bool to be added to a new sublist. For example: An input of
[(1,True),(2,True),(3,False),(4,True),(5,False),(6,False),(7,True)]
should return
[[1,2],[4],[7]].
My code so far:
test:: [(Int, Bool)] -> [[Int]]
test xs = case xs of
[]->[]
x:xs
| snd x == True -> [(fst x)] : test xs
| snd x == False -> test xs
I'm currently having issues on adding concurrent Ints to the same list if their bools are both True.
You can break this problem into two sub-problems.
For any given list, take the head of this list and match it against the rest of list. There are two possibilities during this matching: i) You are successful i.e. you match, and if so, you collect the matched value and continue looking for more values, or ii) You fail, i.e. you don't match, and if so, you stop immediately and return the so far matched result with rest of, not-inspected, list.
collectF :: (Eq a) => (a -> Bool) -> [a] -> ([a], [a])
collectF f [] = ([], [])
collectF f (x : xs)
| f x = let (ys, zs) = collectF f xs in (x : ys, zs)
| otherwise = ([], x : xs)
Now that you have the collectF function, you can use it recursively on input list. In each call, you would get a successful list with rest of, not-inspected, list. Apply collectF again on rest of list until it is exhausted.
groupBy :: (Eq a) => (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy f (x : xs) =
let (ys, zs) = collectF (f x) xs in
(x : ys) : groupBy f zs
*Main> groupBy (\x y -> snd x == snd y) [(1,True),(2,True),(3,False),(4,True),(5,False),(6,False),(7,True)]
[[(1,True),(2,True)],[(3,False)],[(4,True)],[(5,False),(6,False)],[(7,True)]]
I am leaving it to you to remove the True and False values from List. Also, have a look at List library of Haskell [1]. Hope, I am clear enough, but let me know if you have any other question.
[1] http://hackage.haskell.org/package/base-4.12.0.0/docs/src/Data.OldList.html#groupBy
Repeatedly, drop the Falses, grab the Trues. With view patterns:
{-# LANGUAGE ViewPatterns #-}
test :: [(a, Bool)] -> [[a]]
test (span snd . dropWhile (not . snd) -> (a,b))
| null a = []
| otherwise = map fst a : test b
Works with infinite lists as well, inasmuch as possible.
Here's how I'd write this:
import Data.List.NonEmpty (NonEmpty(..), (<|))
import qualified Data.List.NonEmpty as NE
test :: [(Int, Bool)] -> [[Int]]
test = NE.filter (not . null) . foldr go ([]:|[])
where
go :: (Int, Bool) -> NonEmpty [Int] -> NonEmpty [Int]
go (n, True) ~(h:|t) = (n:h):|t
go (n, False) l = []<|l
Or with Will Ness's suggestion:
import Data.List.NonEmpty (NonEmpty(..))
test :: [(Int, Bool)] -> [[Int]]
test = removeHeadIfEmpty . foldr prependOrStartNewList ([]:|[])
where
prependOrStartNewList :: (Int, Bool) -> NonEmpty [Int] -> NonEmpty [Int]
prependOrStartNewList (n, True) ~(h:|t) = (n:h):|t
prependOrStartNewList (n, False) l = []:|removeHeadIfEmpty l
removeHeadIfEmpty :: NonEmpty [Int] -> [[Int]]
removeHeadIfEmpty (h:|t) = if null h then t else h:t
I'm looking for a function in haskell to zip two lists that may vary in length.
All zip functions I could find just drop all values of a lists that is longer than the other.
For example:
In my exercise I have two example lists.
If the first one is shorter than the second one I have to fill up using 0's. Otherwise I have to use 1's.
I'm not allowed to use any recursion. I just have to use higher order functions.
Is there any function I can use?
I really could not find any solution so far.
There is some structure to this problem, and here it comes. I'll be using this stuff:
import Control.Applicative
import Data.Traversable
import Data.List
First up, lists-with-padding are a useful concept, so let's have a type for them.
data Padme m = (:-) {padded :: [m], padder :: m} deriving (Show, Eq)
Next, I remember that the truncating-zip operation gives rise to an Applicative instance, in the library as newtype ZipList (a popular example of a non-Monad). The Applicative ZipList amounts to a decoration of the monoid given by infinity and minimum. Padme has a similar structure, except that its underlying monoid is positive numbers (with infinity), using one and maximum.
instance Applicative Padme where
pure = ([] :-)
(fs :- f) <*> (ss :- s) = zapp fs ss :- f s where
zapp [] ss = map f ss
zapp fs [] = map ($ s) fs
zapp (f : fs) (s : ss) = f s : zapp fs ss
I am obliged to utter the usual incantation to generate a default Functor instance.
instance Functor Padme where fmap = (<*>) . pure
Thus equipped, we can pad away! For example, the function which takes a ragged list of strings and pads them with spaces becomes a one liner.
deggar :: [String] -> [String]
deggar = transpose . padded . traverse (:- ' ')
See?
*Padme> deggar ["om", "mane", "padme", "hum"]
["om ","mane ","padme","hum "]
This can be expressed using These ("represents values with two non-exclusive possibilities") and Align ("functors supporting a zip operation that takes the union of non-uniform shapes") from the these library:
import Data.Align
import Data.These
zipWithDefault :: Align f => a -> b -> f a -> f b -> f (a, b)
zipWithDefault da db = alignWith (fromThese da db)
salign and the other specialised aligns in Data.Align are also worth having a look at.
Thanks to u/WarDaft, u/gallais and u/sjakobi over at r/haskell for pointing out this answer should exist here.
You can append an inifinte list of 0 or 1 to each list and then take the number you need from the result zipped list:
zipWithDefault :: a -> b -> [a] -> [b] -> [(a,b)]
zipWithDefault da db la lb = let len = max (length la) (length lb)
la' = la ++ (repeat da)
lb' = lb ++ (repeat db)
in take len $ zip la' lb'
This should do the trick:
import Data.Maybe (fromMaybe)
myZip dx dy xl yl =
map (\(x,y) -> (fromMaybe dx x, fromMaybe dy y)) $
takeWhile (/= (Nothing, Nothing)) $
zip ((map Just xl) ++ (repeat Nothing)) ((map Just yl) ++ (repeat Nothing))
main = print $ myZip 0 1 [1..10] [42,43,44]
Basically, append an infinite list of Nothing to the end of both lists, then zip them, and drop the results when both are Nothing. Then replace the Nothings with the appropriate default value, dropping the no longer needed Justs while you're at it.
No length, no counting, no hand-crafted recursions, no cooperating folds. transpose does the trick:
zipLongest :: a -> b -> [a] -> [b] -> [(a,b)]
zipLongest x y xs ys = map head . transpose $ -- longest length;
[ -- view from above:
zip xs
(ys ++ repeat y) -- with length of xs
, zip (xs ++ repeat x)
ys -- with length of ys
]
The result of transpose is as long a list as the longest one in its input list of lists. map head takes the first element in each "column", which is the pair we need, whichever the longest list was.
(update:) For an arbitrary number of lists, efficient padding to the maximal length -- aiming to avoid the potentially quadratic behaviour of other sequentially-combining approaches -- can follow the same idea:
padAll :: a -> [[a]] -> [[a]]
padAll x xss = transpose $
zipWith const
(transpose [xs ++ repeat x | xs <- xss]) -- pad all, and cut
(takeWhile id . map or . transpose $ -- to the longest list
[ (True <$ xs) ++ repeat False | xs <- xss])
> mapM_ print $ padAll '-' ["ommmmmmm", "ommmmmm", "ommmmm", "ommmm", "ommm",
"omm", "om", "o"]
"ommmmmmm"
"ommmmmm-"
"ommmmm--"
"ommmm---"
"ommm----"
"omm-----"
"om------"
"o-------"
You don't have to compare list lengths. Try to think about your zip function as a function taking only one argument xs and returning a function which will take ys and perform the required zip. Then, try to write a recursive function which recurses on xs only, as follows.
type Result = [Int] -> [(Int,Int)]
myZip :: [Int] -> Result
myZip [] = map (\y -> (0,y)) -- :: Result
myZip (x:xs) = f x (myZip xs) -- :: Result
where f x k = ??? -- :: Result
Once you have found f, notice that you can turn the recursion above into a fold!
As you said yourself, the standard zip :: [a] -> [b] -> [(a, b)] drops elements from the longer list. To amend for this fact you can modify your input before giving it to zip. First you will have to find out which list is the shorter one (most likely, using length). E.g.,
zip' x xs y ys | length xs <= length ys = ...
| otherwise = ...
where x is the default value for shorter xs and y the default value for shorter ys.
Then you extend the shorter list with the desired default elements (enough to account for the additional elements of the other list). A neat trick for doing so without having to know the length of the longer list is to use the function repeat :: a -> [a] that repeats its argument infinitely often.
zip' x xs y ys | length xs <= length ys = zip {-do something with xs-} ys
| otherwise = zip xs {-do something with ys-}
Here is another solution, that does work on infinite lists and is a straightforward upgrade of Prelude's zip functions:
zipDefault :: a -> b -> [a] -> [b] -> [(a,b)]
zipDefault _da _db [] [] = []
zipDefault da db (a:as) [] = (a,db) : zipDefault da db as []
zipDefault da db [] (b:bs) = (da,b) : zipDefault da db [] bs
zipDefault da db (a:as) (b:bs) = (a,b) : zipDefault da db as bs
and
zipDefaultWith :: a -> b -> (a->b->c) -> [a] -> [b] -> [c]
zipDefaultWith _da _db _f [] [] = []
zipDefaultWith da db f (a:as) [] = f a db : zipDefaultWith da db f as []
zipDefaultWith da db f [] (b:bs) = f da b : zipDefaultWith da db f [] bs
zipDefaultWith da db f (a:as) (b:bs) = f a b : zipDefaultWith da db f as bs
#pigworker, thank you for your enlightening solution!
Yet another implementation:
zipWithDefault :: a -> b -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithDefault dx _ f [] ys = zipWith f (repeat dx) ys
zipWithDefault _ dy f xs [] = zipWith f xs (repeat dy)
zipWithDefault dx dy f (x:xs) (y:ys) = f x y : zipWithDefault dx dy f xs ys
And also:
zipDefault :: a -> b -> [a] -> [b] -> [c]
zipDefault dx dy = zipWithDefault dx dy (,)
I would like to address the second part of Will Ness's solution, with its excellent use of known functions, by providing another to the original question.
zipPadWith :: a -> b -> (a -> b -> c) -> [a] -> [b] -> [c]
zipPadWith n _ f [] l = [f n x | x <- l]
zipPadWith _ m f l [] = [f x m | x <- l]
zipPadWith n m f (x:xs) (y:ys) = f x y : zipPadWith n m f xs ys
This function will pad a list with an element of choice. You can use a list of the same element repeated as many times as the number of lists in another like this:
rectangularWith :: a -> [[a]] -> [[a]]
rectangularWith _ [] = []
rectangularWith _ [ms] = [[m] | m <- ms]
rectangularWith n (ms:mss) = zipPadWith n [n | _ <- mss] (:) ms (rectangularWith n mss)
The end result will have been a transposed rectangular list of lists padded by the element that we provided so we only need to import transpose from Data.List and recover the order of the elements.
mapM_ print $ transpose $ rectangularWith 0 [[1,2,3,4],[5,6],[7,8],[9]]
[1,2,3,4]
[5,6,0,0]
[7,8,0,0]
[9,0,0,0]
I'm a bit of a beginner to Haskell so I'm struggling a little with the strict type stuff, just wondering if someone can help me with a function I'm trying to build. Basically, it takes a list of lists, for example:
[[1,2,3], [7,6,8], [0,3,4]]
and adds them together into one list translating the later lists by the number of positions along it is. So working on the example list it would actually be doing something like:
foldl (zipWith +) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
Here's my current function (which gets type errors):
addLists :: [[Integer]] -> [Integer]
addLists [[]] = []
addLists [[x]] = [x]
addLists [x:xs] = zipWith (+) [x] ([0]++ (addLists xs))
Note that ([0]++) is the same as (0:), which will make it look tidier and save us a nanosecond or two.
(I'm joking with the nanosecond thing - no human can tell when something's a nanosecond faster, but it is nicer this way anyway.)
Let's first think about making the lists you need. We want
postponeLists [[1,2,3], [7,6,8], [10,20,30,40]]
= [[1,2,3], [0,7,6,8], [0,0,10,20,30,40]]
= [1,2,3] : ones that should have zero in front of them
That's enough information for a definition:
postponeLists [] = []
postponeLists (l:ls) = l : map (0:) (postponeLists ls)
Now you said
foldl (zipWith +) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
but you mean
foldl (zipWith (+)) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
but unfortunately, that gives you [] because zipWith stops as soon as any of the lists run out of elements.
We need some way of zipping them that doesn't stop.
Solution 1: find the longest one, make them all that maxlength using take maxlength.(++ repeat 0)
Solution 2: write another zipWith function that doesn't stop.
I prefer solution 2. Let's look at the definition of zipWith
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith _ _ _ = [] -- here's the problem - it stops as soon as any list is empty
OK, let's not stop then:
zipWithMore :: (a -> a -> a) -> [a] -> [a] -> [a]
zipWithMore f (a:as) (b:bs) = f a b : zipWithMore f as bs
zipWithMore f [] bs = bs -- if there's more in bs, use that
zipWithMore f as [] = as -- if there's more in as, use that
Now you can replace zipWith (+) with zipWithMore (+). I'll leave the punchline to you.
I think this does what you want
import Data.List (transpose)
addLists :: Num a => [[a]] -> [a]
addLists xs = map sum . transpose $ zipWith (\n x -> replicate n 0 ++ x) [0..] xs