How to overload the "[][] operator" in a constant array? - c++

been stuck at this for a while. I have a mathlibrary with a 3x3 matrix class. It used to be dynamic , using a pointer and allocating memory of creation. But as its always gonna be 3x3 I decided to change it, but now I cant use [][] to get values of my array. I am using a proxy class!
class mat3 {
private:
double arr[3][3];
public:
mat3();
mat3(double, double, double, double, double,
double, double, double, double);
//Proxy class
class Proxy {
private:
double arr[3];
public:
Proxy(const double _arr[3]) { arr = _arr; }
double& operator[] (const int index) {
return arr[index];
}
const double& operator[] (const int index) const{
return arr[index];
}
};
const Proxy operator[] (const int index) const{
return Proxy(arr[index]);
}
Proxy operator[] (const int index) {
return Proxy(arr[index]);
}
Now where arr = _arr i get a compiler error: Error: Expression must be a modifiable Ivalue
What am I doing wrong? How am I suposed to achieve this?

When you pass an array as a parameter, it gets converted to a pointer, so your constructor is the same as Proxy(const double *_arr) { arr = _arr; } and that's illegal.
Besides, you want to return a reference to the original values in mat3. So change Proxy to use a pointer to double instead:
class Proxy {
private:
double *arr;
...
};

Surprisingly this works (I wasn't expecting it to):
#include <iostream>
struct matrix
{
typedef double ((&reference)[3])[3]; // define a reference type to a 3x3 array
double array[3][3];
operator reference() // implicit conversion to 3x3 array reference
{
return array;
}
void dump()
{
for(unsigned x = 0; x < 3; ++x)
for(unsigned y = 0; y < 3; ++y)
std::cout << array[x][y] << '\n';
}
};
int main()
{
matrix m;
for(unsigned x = 0; x < 3; ++x)
for(unsigned y = 0; y < 3; ++y)
m[x][y] = x * y; // seems to work okay!!!
m.dump();
}

You don't need Proxy class, you may just do:
class mat3
{
using row_type = double [3];
public:
mat3();
mat3(double, double, double, double, double, double, double, double, double);
const row_type& operator[](const int index) const { return arr[index]; }
row_type& operator[](const int index) { return arr[index]; }
private:
row_type arr[3]; // or double arr[3][3];
};
Note also that using std::array<std::array<double, 3>, 3> arr; would be more intuitive to edit code that C-array.
If really you want to have your Proxy class, you may use:
class mat3
{
using row_type = double[3];
public:
mat3();
mat3(double, double, double, double, double, double, double, double, double);
class Proxy
{
private:
row_type& arr; // or double (&arr)[3];
public:
explicit Proxy(row_type& arr) : arr(arr) {}
double& operator[](const int index) { return arr[index]; }
const double& operator[](const int index) const { return arr[index]; }
};
const row_type& operator[](const int index) const { return arr[index]; }
row_type& operator[](const int index) { return arr[index]; }
private:
row_type arr[3]; // or double arr[3][3];
};

Related

Creating a Matrix class with overloaded Single and Double array index operators [duplicate]

Is it possible to overload [] operator twice? To allow, something like this: function[3][3](like in a two dimensional array).
If it is possible, I would like to see some example code.
You can overload operator[] to return an object on which you can use operator[] again to get a result.
class ArrayOfArrays {
public:
ArrayOfArrays() {
_arrayofarrays = new int*[10];
for(int i = 0; i < 10; ++i)
_arrayofarrays[i] = new int[10];
}
class Proxy {
public:
Proxy(int* _array) : _array(_array) { }
int operator[](int index) {
return _array[index];
}
private:
int* _array;
};
Proxy operator[](int index) {
return Proxy(_arrayofarrays[index]);
}
private:
int** _arrayofarrays;
};
Then you can use it like:
ArrayOfArrays aoa;
aoa[3][5];
This is just a simple example, you'd want to add a bunch of bounds checking and stuff, but you get the idea.
For a two dimensional array, specifically, you might get away with a single operator[] overload that returns a pointer to the first element of each row.
Then you can use the built-in indexing operator to access each element within the row.
An expression x[y][z] requires that x[y] evaluates to an object d that supports d[z].
This means that x[y] should be an object with an operator[] that evaluates to a "proxy object" that also supports an operator[].
This is the only way to chain them.
Alternatively, overload operator() to take multiple arguments, such that you might invoke myObject(x,y).
It is possible if you return some kind of proxy class in first [] call. However, there is other option: you can overload operator() that can accept any number of arguments (function(3,3)).
One approach is using std::pair<int,int>:
class Array2D
{
int** m_p2dArray;
public:
int operator[](const std::pair<int,int>& Index)
{
return m_p2dArray[Index.first][Index.second];
}
};
int main()
{
Array2D theArray;
pair<int, int> theIndex(2,3);
int nValue;
nValue = theArray[theIndex];
}
Of course, you may typedef the pair<int,int>
You can use a proxy object, something like this:
#include <iostream>
struct Object
{
struct Proxy
{
Object *mObj;
int mI;
Proxy(Object *obj, int i)
: mObj(obj), mI(i)
{
}
int operator[](int j)
{
return mI * j;
}
};
Proxy operator[](int i)
{
return Proxy(this, i);
}
};
int main()
{
Object o;
std::cout << o[2][3] << std::endl;
}
If, instead of saying a[x][y], you would like to say a[{x,y}], you can do like this:
struct Coordinate { int x, y; }
class Matrix {
int** data;
operator[](Coordinate c) {
return data[c.y][c.x];
}
}
It 'll be great if you can let me know what function, function[x] and function[x][y] are. But anyway let me consider it as an object declared somewhere like
SomeClass function;
(Because you said that it's operator overload, I think you won't be interested at array like SomeClass function[16][32];)
So function is an instance of type SomeClass. Then look up declaration of SomeClass for the return type of operator[] overload, just like
ReturnType operator[](ParamType);
Then function[x] will have the type ReturnType. Again look up ReturnType for the operator[] overload. If there is such a method, you could then use the expression function[x][y].
Note, unlike function(x, y), function[x][y] are 2 separate calls. So it's hard for compiler or runtime garantees the atomicity unless you use a lock in the context. A similar example is, libc says printf is atomic while successively calls to the overloaded operator<< in output stream are not. A statement like
std::cout << "hello" << std::endl;
might have problem in multi-thread application, but something like
printf("%s%s", "hello", "\n");
is fine.
template<class F>
struct indexer_t{
F f;
template<class I>
std::result_of_t<F const&(I)> operator[](I&&i)const{
return f(std::forward<I>(i))1;
}
};
template<class F>
indexer_t<std::decay_t<F>> as_indexer(F&& f){return {std::forward<F>(f)};}
This lets you take a lambda, and produce an indexer (with [] support).
Suppose you have an operator() that supports passing both coordinates at onxe as two arguments. Now writing [][] support is just:
auto operator[](size_t i){
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
auto operator[](size_t i)const{
return as_indexer(
[i,this](size_t j)->decltype(auto)
{return (*this)(i,j);}
);
}
And done. No custom class required.
#include<iostream>
using namespace std;
class Array
{
private: int *p;
public:
int length;
Array(int size = 0): length(size)
{
p=new int(length);
}
int& operator [](const int k)
{
return p[k];
}
};
class Matrix
{
private: Array *p;
public:
int r,c;
Matrix(int i=0, int j=0):r(i), c(j)
{
p= new Array[r];
}
Array& operator [](const int& i)
{
return p[i];
}
};
/*Driver program*/
int main()
{
Matrix M1(3,3); /*for checking purpose*/
M1[2][2]=5;
}
struct test
{
using array_reference = int(&)[32][32];
array_reference operator [] (std::size_t index)
{
return m_data[index];
}
private:
int m_data[32][32][32];
};
Found my own simple solution to this.
vector< vector< T > > or T** is required only when you have rows of variable length
and way too inefficient in terms of memory usage/allocations
if you require rectangular array consider doing some math instead!
see at() method:
template<typename T > class array2d {
protected:
std::vector< T > _dataStore;
size_t _sx;
public:
array2d(size_t sx, size_t sy = 1): _sx(sx), _dataStore(sx*sy) {}
T& at( size_t x, size_t y ) { return _dataStore[ x+y*sx]; }
const T& at( size_t x, size_t y ) const { return _dataStore[ x+y*sx]; }
const T& get( size_t x, size_t y ) const { return at(x,y); }
void set( size_t x, size_t y, const T& newValue ) { at(x,y) = newValue; }
};
The shortest and easiest solution:
class Matrix
{
public:
float m_matrix[4][4];
// for statements like matrix[0][0] = 1;
float* operator [] (int index)
{
return m_matrix[index];
}
// for statements like matrix[0][0] = otherMatrix[0][0];
const float* operator [] (int index) const
{
return m_matrix[index];
}
};
It is possible to overload multiple [] using a specialized template handler. Just to show how it works :
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
// the number '3' is the number of [] to overload (fixed at compile time)
struct TestClass : public SubscriptHandler<TestClass,int,int,3> {
// the arguments will be packed in reverse order into a std::array of size 3
// and the last [] will forward them to callSubscript()
int callSubscript(array<int,3>& v) {
return accumulate(v.begin(),v.end(),0);
}
};
int main() {
TestClass a;
cout<<a[3][2][9]; // prints 14 (3+2+9)
return 0;
}
And now the definition of SubscriptHandler<ClassType,ArgType,RetType,N> to make the previous code work. It only shows how it can be done. This solution is optimal nor bug-free (not threadsafe for instance).
#include <iostream>
#include <algorithm>
#include <numeric>
#include <tuple>
#include <array>
using namespace std;
template <typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler;
template<typename ClassType,typename ArgType,typename RetType, int N,int Recursion> class SubscriptHandler_ {
ClassType*obj;
array<ArgType,N+1> *arr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion-1> Subtype;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,Recursion+1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.obj = obj;
s.arr = arr;
arr->at(Recursion)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType,int N> class SubscriptHandler_<ClassType,ArgType,RetType,N,0> {
ClassType*obj;
array<ArgType,N+1> *arr;
friend class SubscriptHandler_<ClassType,ArgType,RetType,N,1>;
friend class SubscriptHandler<ClassType,ArgType,RetType,N+1>;
public:
RetType operator[](const ArgType& arg){
arr->at(0) = arg;
return obj->callSubscript(*arr);
}
};
template<typename ClassType,typename ArgType,typename RetType, int N> class SubscriptHandler{
array<ArgType,N> arr;
ClassType*ptr;
typedef SubscriptHandler_<ClassType,ArgType,RetType,N-1,N-2> Subtype;
protected:
SubscriptHandler() {
ptr=(ClassType*)this;
}
public:
Subtype operator[](const ArgType& arg){
Subtype s;
s.arr=&arr;
s.obj=ptr;
s.arr->at(N-1)=arg;
return s;
}
};
template<typename ClassType,typename ArgType,typename RetType> struct SubscriptHandler<ClassType,ArgType,RetType,1>{
RetType operator[](const ArgType&arg) {
array<ArgType,1> arr;
arr.at(0)=arg;
return ((ClassType*)this)->callSubscript(arr);
}
};
With a std::vector<std::vector<type*>>, you can build the inside vector using custom input operator that iterate over your data and return a pointer to each data.
For example:
size_t w, h;
int* myData = retrieveData(&w, &h);
std::vector<std::vector<int*> > data;
data.reserve(w);
template<typename T>
struct myIterator : public std::iterator<std::input_iterator_tag, T*>
{
myIterator(T* data) :
_data(data)
{}
T* _data;
bool operator==(const myIterator& rhs){return rhs.data == data;}
bool operator!=(const myIterator& rhs){return rhs.data != data;}
T* operator*(){return data;}
T* operator->(){return data;}
myIterator& operator++(){data = &data[1]; return *this; }
};
for (size_t i = 0; i < w; ++i)
{
data.push_back(std::vector<int*>(myIterator<int>(&myData[i * h]),
myIterator<int>(&myData[(i + 1) * h])));
}
Live example
This solution has the advantage of providing you with a real STL container, so you can use special for loops, STL algorithms, and so on.
for (size_t i = 0; i < w; ++i)
for (size_t j = 0; j < h; ++j)
std::cout << *data[i][j] << std::endl;
However, it does create vectors of pointers, so if you're using small datastructures such as this one you can directly copy the content inside the array.
Sample code:
template<class T>
class Array2D
{
public:
Array2D(int a, int b)
{
num1 = (T**)new int [a*sizeof(int*)];
for(int i = 0; i < a; i++)
num1[i] = new int [b*sizeof(int)];
for (int i = 0; i < a; i++) {
for (int j = 0; j < b; j++) {
num1[i][j] = i*j;
}
}
}
class Array1D
{
public:
Array1D(int* a):temp(a) {}
T& operator[](int a)
{
return temp[a];
}
T* temp;
};
T** num1;
Array1D operator[] (int a)
{
return Array1D(num1[a]);
}
};
int _tmain(int argc, _TCHAR* argv[])
{
Array2D<int> arr(20, 30);
std::cout << arr[2][3];
getchar();
return 0;
}
Using C++11 and the Standard Library you can make a very nice two-dimensional array in a single line of code:
std::array<std::array<int, columnCount>, rowCount> myMatrix {0};
std::array<std::array<std::string, columnCount>, rowCount> myStringMatrix;
std::array<std::array<Widget, columnCount>, rowCount> myWidgetMatrix;
By deciding the inner matrix represents rows, you access the matrix with an myMatrix[y][x] syntax:
myMatrix[0][0] = 1;
myMatrix[0][3] = 2;
myMatrix[3][4] = 3;
std::cout << myMatrix[3][4]; // outputs 3
myStringMatrix[2][4] = "foo";
myWidgetMatrix[1][5].doTheStuff();
And you can use ranged-for for output:
for (const auto &row : myMatrix) {
for (const auto &elem : row) {
std::cout << elem << " ";
}
std::cout << std::endl;
}
(Deciding the inner array represents columns would allow for an foo[x][y] syntax but you'd need to use clumsier for(;;) loops to display output.)

Overloading std::vector::at assignment operator

I have a class which allows me to access a vectors value:
Class Image{
public:
Image(int rows, int cols): cols_(cols), rows_(rows), data_(rows*cols,0) {};
int& at(int row, int col){
return data_.at(col*row);
};
private:
int rows_ = 0;
int cols_ = 0;
const int max_val_ = 255;
std::vector<int> data_;
Currently this lets me perform
int num = image.at(row, col);
// or
image.at(row, col) = 10;
My question is how to I limit the values of data_ to not allow an assignment more than max_value_? I.e image.at(row,col) = 256;
Like Max Langhof said, you can use a proxy object like this:
class AssignmentProxy
{
public:
AssignmentProxy(int& value, int min, int max) : value_(value), min_(min), max_(max) { }
AssignmentProxy& operator=(int value)
{
if (value >= min_ && value < max_)
value_ = value;
else
throw std::invalid_argument("no");
return *this;
}
operator int() const noexcept
{
return value_;
}
private:
int min_, max_;
int& value_;
};
The implicit conversion to int is questionable but justified I think, since this only a proxy that mimics an integer.
Here is a full example.

Class operators

I'm having a problem to make the code:
void main(){
Matrix c(rows,cols);//rows & cols are int numbers
c[0][0]=2//the line that I'm having a problem to do the operator
}
//My class defined like this:
class Matrix{
public:
Matrix(int rows,int cols): rows(rows), cols(cols){
mat= new double*[cols];
for( int i=0; i<rows;i++){
*mat=new double[i];
}
}
private:
int rows,cols;
double **mat;
};
How can I make an operator that will help me to do the line that I'm having a problem with?
There are no operator [][], but operator[]. So that one should return something for which you can use [] too (pointer or proxy class).
In your case, you might simply do:
double* operator[](int i) { return mat[i]; }
const double* operator[](int i) const { return mat[i]; }
For more complicated cases, you have to return a proxy class.
Don't dynamically allocate in two dimensions like that. It's poison for your cache, and completely pointless. I see it all the time and I wish I didn't! Make yourself a nice std::vector<double> of size rows*cols instead.
Anyway, the trick to permit [width][height] is a proxy class. Have your operator[] return an instance of a class that has its own operator[] to do the second-level lookup.
Something like this:
#include <iostream>
#include <vector>
struct Matrix
{
Matrix(const size_t columns, const size_t rows)
: columns(columns)
, rows(rows)
, data(columns*rows, 0)
{}
size_t index(const size_t x, const size_t y) const
{
return x + y*columns;
}
double& at(const size_t x, const size_t y)
{
return data[index(x, y)];
}
double at(const size_t x, const size_t y) const
{
return data[index(x, y)];
}
template <bool Const>
struct LookupHelper
{
using ParentType = std::conditional_t<Const, const Matrix, Matrix>;
using ReturnType = std::conditional_t<Const, double, double&>;
LookupHelper(ParentType& parent, const size_t x) : parent(parent), x(x) {}
ReturnType operator[](const size_t y)
{
return parent.data[parent.index(x, y)];
}
const ReturnType operator[](const size_t y) const
{
return parent.data[parent.index(x, y)];
}
private:
ParentType& parent;
const size_t x;
};
LookupHelper<false> operator[](const size_t x)
{
return {*this, x};
}
LookupHelper<true> operator[](const size_t x) const
{
return {*this, x};
}
private:
const size_t columns, rows;
std::vector<double> data;
};
int main()
{
Matrix m(42, 3);
m[15][3] = 1;
std::cout << m[15][3] << '\n';
}
(In reality, you'd want to make it moveable and it could doubtlessly be tidied up a bit.)
Certainly, switching to operator() or a .at(width, height) member function is a lot easier…

How to define a setter for bracket operator?

Lets say I have this class:
struct testy {
std::array<int, 10> data;
float operator[] (int idx) const { return 1 / data[idx]; }
float &operator[](int idx) { return ??? }
};
What I want to happen is for example, when I write
testy Pineapple;
Pineapple[1] = 0.1;
then what would actually happen is
Pineapple.data[1]= 1 / 0.1;
I started writing the bracket overloads and then realized that the second one that returns by reference cant actually do any logic to transform the data itself so I'm kinda stumped here.
Yes, I know I could just write a setter function but that array will be heavily used by various algorithms and I'd like to make accessing it as convenient as possible from the coding side.
The usual way is to use a proxy for testy elements:
struct testy {
std::array<int, 10> data;
float operator[] (int idx) const { return 1.0 / data[idx]; }
private:
struct element {
int &el;
element(int &a) : el(a) {}
operator float() const { return 1.0 / el; }
float operator=(float val) const {
el = 1.0/val;
return val; } };
public:
element operator[](int idx) { return element(data[idx]); }
};
Here is a very basic solution with a proxy class:
#include <iostream>
#include <array>
struct testy; // forward declaration
class proxy
{
private:
testy& _t;
int _idx;
public:
proxy(testy& t, int idx): _t(t), _idx(idx) {}
proxy& operator=(double val);
operator double() const; // conversion to double
};
struct testy {
std::array<double, 10> data;
double operator[] (int idx) const { return 1 / data[idx]; }
proxy operator[](int idx) {return proxy(*this, idx);}
};
proxy& proxy::operator=(double val)
{
_t.data[_idx] = 1. / val;
return *this;
}
proxy::operator double() const
{
return _t.data[_idx];
}
int main()
{
testy Pineapple;
Pineapple[1] = 0.1;
std::cout << Pineapple[1] << std::endl;
}
Live on Coliru

overload operator[] on return type

There is something that is troubling my brain since a moment: I am trying to overload the [] operator based on the return type. Here is what I need to do:
class A {
private:
double* data_;
int N_;
public:
A (N=0):N_(N){
data_ = new double[N];
}
~A {delete[] data_;}
double operator[] (const int i) {
return data_[i];
}
double* operator[] (const int i) {
return &data[i]; // for example; in fact here i need to return some block of data_
}
};
This code won't compile; and that is my problem. Can someone help me to solve this problem?
PS: I know how to overload normal functions on the return type for example:
int foo ();
string foo ();
I used some tricks that I read in this forum. In this way:
struct func {
operator string() { return "1";}
operator int() { return 2; }
};
int main( ) {
int x = func(); // calls int version
string y = func(); // calls string version
double d = func(); // calls int version
cout << func() << endl; // calls int version
func(); // calls neither
}
Thank you.
Two method overloads must have different signatures. The return type is not part of the signature of a method.
You can use the same "trick" that you use for functions, that is use a proxy object with conversion operators:
class A
{
private:
double* data_;
int N_;
public:
A (int N = 0)
: N_(N), data_(new double[N])
{}
~A() { delete[] data_; }
struct proxy
{
int i;
double * data;
operator double() const
{
return data[i];
}
operator double*()
{
return &data[i];
}
operator double const *() const
{
return &data[i];
}
};
proxy operator[] (int const i) {
proxy p { i, data_ };
return p;
}
proxy const operator[] (int const i) const {
proxy p { i, data_ };
return p;
}
};
int main()
{
{
A a(12);
double d = a[0];
double * pd = a[0];
}
{
A const ca(12);
double d = ca[0];
//double * pd = ca[0]; // does not compile thanks to overloads on const
double const * pcd = ca[0];
}
}
However, I would argue that this is a terrible idea. Having your operator[] return either a value or a pointer to this value is guaranteed to confuse the users of your class, in addition to making it impractical to use in expressions where both types are possible. For instance, std::cout << a[0]; would not compile (ambiguous overloads).
Probably you need something like that:
class A {
private:
double* data_;
int N_;
... // other stuff
public:
double operator[] (const int i) const { // note const here
return data_[i];
}
double& operator[] (const int i) { // note reference here
return data_[i];
}
};
also operator should be public to have a sense.