I need to implement a very simple filter that suppresses a range of frequencies.
Then I need to compute the inverse Fourier transform and save the new image.
I am using the CImg library ( C++ ).
So far I have done:
const CImg<unsigned char> img(source_img);
CImgList<> F = img.get_FFT();
and I am stuck here.
F is a a list of two CImg objects the real and Imaginary part , correct?
Having this F how I suppress frequencies and reconstruct the new Image?
P.S. This is a homework, so I don't want a solution but an explanation of what to do,
how to do it and why.
Since it's homework, do feel free to experiment.
The first step you need to get working is to directly transform the image back, and get the original input. If this doesn't work, you'd be quite happy to catch it early.
The second step is to just zero some part of the FFT, transform the result back, and see how it differs. Each pixel in the FFT represents a frequency in the input, so experiment to find the relation. Then explain that relation to yourself.
Finally, once you have figured out which are of pixels you want to zero and which ones to keep, create a black& white mask, turn that into a greyscale image, and then blur it. A sharp edge in the FFT domain has an infinite support in the image domain - in practice, that causes additional fake edges. It's better to have a single blurred edge.
Related
I have an application where I have to detect the presence of some items in a scene. The items can be rotated and a little scaled (bigger or smaller). I've tried using keypoint detectors but they're not fast and accurate enough. So I've decided to first detect edges in the template and the search area, using Canny ( or a faster edge detection algo ), and then match the edges to find the position, orientation, and size of the match found.
All this needs to be done in less than a second.
I've tried using matchTemplate(), and matchShape() but the former is NOT scale and rotation invariant, and the latter doesn't work well with the actual images. Rotating the template image in order to match is also time consuming.
So far I have been able to detect the edges of the template but I don't know how to match them with the scene.
I've already gone through the following but wasn't able to get them to work (they're either using old version of OpenCV, or just not working with other images apart from those in the demo):
https://www.codeproject.com/Articles/99457/Edge-Based-Template-Matching
Angle and Scale Invariant template matching using OpenCV
https://answers.opencv.org/question/69738/object-detection-kinect-depth-images/
Can someone please suggest me an approach for this? Or a code snipped for the same if possible ?
This is my sample input image ( the parts to detect are marked in red )
These are some software that are doing this and also how I want it should be:
This topic is what I am actually dealing for a year on a project. So I will try to explain what my approach is and how I am doing that. I assume that you already did the preprocess steps(filters,brightness,exposure,calibration etc). And be sure you clean the noises on image.
Note: In my approach, I am collecting data from contours on a reference image which is my desired object. Then I am comparing these data with the other contours on the big image.
Use canny edge detection and find the contours on reference
image. You need to be sure here about that it shouldn't miss some parts of
contours. If it misses, probably preprocess part should have some
problems. The other important point is that you need to find an
appropriate mode of findContours because every modes have
different properties so you need to find an appropriate one for your
case. At the end you need to eliminate the contours which are okey
for you.
After getting contours from reference, you can find the length of
every contours using outputArray of findContours(). You can compare
these values on your big image and eliminate the contours which are
so different.
minAreaRect precisely draws a fitted, enclosing rectangle for
each contour. In my case, this function is very good to use. I am
getting 2 parameters using this function:
a) Calculate the short and long edge of fitted rectangle and compare the
values with the other contours on the big image.
b) Calculate the percentage of blackness or whiteness(if your image is
grayscale, get a percentage how many pixel close to white or black) and
compare at the end.
matchShape can be applied at the end to the rest of contours or you can also apply to all contours(I suggest first approach). Each contour is just an array so you can hold the reference contours in an array and compare them with the others at the end. After doing 3 steps and then applying matchShape is very good on my side.
I think matchTemplate is not good to use directly. I am drawing every contour to a different mat zero image(blank black surface) as a template image and then I compare with the others. Using a reference template image directly doesnt give good results.
OpenCV have some good algorithms about finding circles,convexity etc. If your situations are related with them, you can also use them as a step.
At the end, you just get the all data,values, and you can make a table in your mind. The rest is kind of statistical analysis.
Note: I think the most important part is preprocess part. So be sure about that you have a clean almost noiseless image and reference.
Note: Training can be a good solution for your case if you just want to know the objects exist or not. But if you are trying to do something for an industrial application, this is totally wrong way. I tried YOLO and haarcascade training algorithms several times and also trained some objects with them. The experiences which I get is that: they can find objects almost correctly but the center coordinates, rotation results etc. will not be totally correct even if your calibration is correct. On the other hand, training time and collecting data is painful.
You have rather bad image quality very bad light conditions, so you have only two ways:
1. To use filters -> binary threshold -> find_contours -> matchShape. But this very unstable algorithm for your object type and image quality. You will get a lot of wrong contours and its hard to filter them.
2. Haarcascades -> cut bounding box -> check the shape inside
All "special points/edge matching " algorithms will not work in such bad conditions.
I want to locate a service robot via infrared landmarks. The idea is to detect two landmarks, get the distance to the landmarks and calculate the robots position from these informations (the position of the landmarks are known).
For this I have built an artificial 2x3 matrix of IR LEDs, which are visible in the robots infrared camera image (shown in the image below).
As the first step, I want to detect a single landmark in a picture and get it's x-y coordinates. I can use these coordinates in the future to get the distance from the depth-image provided.
My first approach was to convert the image to a black and white image. Then I tried to filter out different cluster of points (which i dilated and contoured in the first place). I couldn't succeed with this method.
Now I wonder if there are any pattern recognition/computer vision methods which can help me to quite "easily" detect the pattern.
I've added a picture of the infrared image with the landmark in it and a converted black/white image.
a) Which method can help me to solve this problem?
b) Should I use a 3x3 Matrix or any other geometric form instead of the 2x3 Matrix ?
IR-Image
Black-White Image
A direct answer:
1) find all small circles in the image; 2) look among these small circles for ones that are the same size and close together, and, say, form parallel lines.
The reason for this approach is that you have coded the robot with a specific pattern of small objects. Therefore, look for the objects and then look for the pattern. (If the orientation and size wouldn't change, then you could just look for a sub-image within the larger image, but because it can, you need to look for elements of the pattern that remain consistent with motion in the 3D space, that is, the parallel lines.)
This will work in the example images, but to know whether this will work more generally, we need to know more than you told us: It depends on whether the variation in the images of the matrix and the variations in the background will let this be enough to distinguish between them. If not, maybe you need a more clever algorithm or maybe a different pattern of lights. In the extreme case, it's obvious that if you had another 2x3 matric around, it's not enough. It all depends on the variation of the object to be identified and the variations within the background scene, and because you don't tell us either of these things, it's hard to say the best way, what's good enough, what's a better way, etc.
If you have the choice, and here it sound like you do, good data is better than clever analysis. For this problem, I'd call good data to be anything that clearly distinguishes the object from the background. You need to think of it this way, and look at what the background is, and all the different perspectives on the lights that are possible, and make sure these can never be confused.
For example, if you have a lot of control over this, and enough time, temporal variations are often the easiest. Turning the lights (or a subset of the lights) on and off, etc, and then looking for the expected temporal variation is often the surest way to distinguish signal from noise — but really, this again is just making an assumption about the background and foreground (ie, that the background won't vary with some particular time pattern).
I am trying to do some very basic, but ridiculously cool, image processing with Qt (I have to use Qt, no Matlab allowed). I need to load a black and white image (Already done) and then perform a Fourier transform on it which I then display. The next step I'm looking at is filtering out some high frequencies, reverse transform and see what the results look like.
I assume that the starting point to this is breaking up the image into an array of discrete values in the spatial domain.
Does anybody have any experience in doing what I am describing? Do you guys agree with the array approach? Do I need a fancy library, or is it going to boil down to a numerical approach with various loops transforming each pixel?
I am a bit of a noob in Qt so it would be awesome of you could keep it simple.
Just load your picture into a QImage object. With the pixel method you will get the pixel value in RGB at position x,y. Using qGray(int r, int g, int b) will give you the grey value (0-255). For FFT, just take a look at numerical recipes.
Refer to this link
https://codereview.stackexchange.com/questions/20529/slicing-up-an-image-into-rows-and-columns-in-java
you have to just change the image location as
GridImage image = new GridImage("img/card-grid-image-mass-effect.jpg",4, 15);
change File Name . then comile and execute code
I'm trying to remove foreground from two images, here's a sample pair of images:
As you can see, the Budweiser bottle is removed from the scene before the second shot is taken.
These photos were captured from a pinhole camera (iPhone), and, the tricky part is I'm hand-holding the camera, so it cannot be guaranteed that the images are perfectly aligned pixel by pixel, so a simple minus-threshold method will not work.
Then, I've decided to perform image registration using findHomography and warpPerspective from OpenCV, here's the result image:
This image is warped with the matrix I've got from findHomography, it kind of improved the alignment quality, but still not that aligned so I can use a simple way to remove the foreground.
So, finally, I decided to implement a "fuzzy-minus" algorithm: for every pixel in image1, I'll look through a 7x7 neighbour in image2 (a 7 by 7 kernel?), using the minimal difference in grayscale as the result of minus, and threshold the result into binary image, here's what I've got:
And the result is still not good. Notice the white wholes in the bottle, this is produced due to similar grayscale value of foreground and background. So I'm not sure what to do now.
I can think of two ways to solve the problem, the first is to get a better aligned pair of images, and simply minus the pairs; the second is to use a more robust way to extract the foreground.
Can anyone give me some advice on how to deal with this kind of problem? I believe there should be some state-of-art algorithms or processing pipelines, but after googling around, I get nothing.
I'm using OpenCV with C++, it would be fantastic if you can tell me how to do it with these tools in hand.
Big big thanks in advance!
The problem is not in your algorithm. You are having problem because the two scenes were not taken from exactly the same angle, as shown in the animation below. This slight difference highlight the edges in the subtraction.
You need a static camera in order to apply this approach.
I suggest using mathematical morphology on the mask that you got to get rid of the artifacts.
Try applying both opening and closing to get rid of the black and the white small regions.
Mathematical Morphology
Mathematical Morphology in opencv
The difference between the two picture is pretty huge, so you will need to use a large structure element, but I don't think you will be able to get rid of the shadow.
For the two large strips in the background, you may try to use a horizontally shaped structure element as well.
Edit
Is it possible to produce a grayscale image instead of a binary image? if yes, you may try to experiment with the hat method for the shadow, but I am not sure about this point.
This is what I got using two different structure elements for closing THEN opening
Mat mask = imread("mask.jpg",CV_LOAD_IMAGE_GRAYSCALE);
morphologyEx(mask,mask,MORPH_CLOSE,getStructuringElement(CV_SHAPE_ELLIPSE,Size(50,10)));
morphologyEx(mask,mask,MORPH_OPEN,getStructuringElement(CV_SHAPE_ELLIPSE,Size(10,50)));
imshow("open",mask);
imwrite("maskopenclose.jpg",mask);
I would suggest optical flow for alignment and OpenCV's background subtraction algorithm:
http://docs.opencv.org/trunk/doc/tutorials/video/background_subtraction/background_subtraction.html
I suggest that instead of using findHomography try using some of openCV's stereo correspondence functions: http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
there is a sample code here: https://github.com/Itseez/opencv/blob/master/samples/cpp/stereo_calib.cpp
I am writing an application in C++ using OpenCV to apply a Gaussian filter to individual pixels in an image. For example, I loop through each pixel in the image and if they match a particular RGB value, I want to apply the Gaussian algorithm to only those pixels so that blurring only occurs around those parts of an image.
However, I'm having trouble finding a way to do this. The GaussianBlur() function offered by the OpenCV library only allows me to blur an entire image and not simply apply the algorithm and kernel to one pixel at a time. Does anyone have any ideas on how I could achieve this (e.g. is there another method I don't know about)? I'm hoping I don't have to write the entire algorithm out myself to apply it to just a single pixel.
A friend of mine came up with a good solution:
clone the original matrix
apply GaussianBlur() to the clone
compare each pixel to the RGB value
if match, replace the original's pixel with the clone's pixel
Can't believe how simple that was.
You can code the gaussian blur yourself if you need to apply it only on a few pixels. It is much easier than you think and only takes a few lines. It is a simple stencil operator using a gaussian function for its kernel. All you need is the coordinates of the pixel and its neighbors.
The rest is straight forward. Here is an example of Gaussian matrix, which you can easily code, or generate using a Gaussian function:
In short, it is just a weighed average of the neighboring values.