How to compile CodeBlocks MingW in Windows to Ubuntu or Centos - c++

Is there a way to compile with MingW with CodeBlocks in Windows so they can be used in Ubuntu or Centos distros?
I've tried compiling with GNU GCC option then got the output file with .o extensions under obj/Release/ folder.
When I run I get this error under my Vagrant Ubuntu machine:
-bash: ./main.o: cannot execute binary file
How can I compile it so it runs on my Linux machines?

The technical term for what you're trying to accomplish is cross-compilation. For that, you need to build a specific cross-compiler using GCC sources. If you still want to keep MinGW, there is a page explaining the steps needed to create a ARM cross-compiler : http://www.mingw.org/wiki/HostedCrossCompilerHOWTO. (you'll have to modify the target)
List of targets supported by GCC :
armv5te-android-gcc armv5te-linux-rvct armv5te-linux-gcc
armv5te-none-rvct
armv6-darwin-gcc armv6-linux-rvct armv6-linux-gcc
armv6-none-rvct
armv7-android-gcc armv7-darwin-gcc armv7-linux-rvct
armv7-linux-gcc armv7-none-rvct
mips32-linux-gcc
ppc32-darwin8-gcc ppc32-darwin9-gcc ppc32-linux-gcc
ppc64-darwin8-gcc ppc64-darwin9-gcc ppc64-linux-gcc
sparc-solaris-gcc
x86-android-gcc x86-darwin8-gcc x86-darwin8-icc
x86-darwin9-gcc x86-darwin9-icc x86-darwin10-gcc
x86-darwin11-gcc x86-darwin12-gcc x86-linux-gcc
x86-linux-icc x86-os2-gcc x86-solaris-gcc
x86-win32-gcc x86-win32-vs7 x86-win32-vs8
x86-win32-vs9
x86_64-darwin9-gcc x86_64-darwin10-gcc x86_64-darwin11-gcc
x86_64-darwin12-gcc x86_64-linux-gcc x86_64-linux-icc
x86_64-solaris-gcc x86_64-win64-gcc x86_64-win64-vs8
x86_64-win64-vs9
universal-darwin8-gcc universal-darwin9-gcc universal-darwin10-gcc
universal-darwin11-gcc universal-darwin12-gcc
generic-gnu
There is only one big caveat : since Windows is not POSIX compliant, I don't think you can use signals or pthreads.
Finally, brace yourself because it's a tedious task to build a cx-compiler (lots of obscure bugs). That's why profesionnal devs pays $$$ for "plug'n'play" solutions.
EDIT : this MXE project can be useful to you

Related

Is the scylladb build hardcoded to work only with gnu gcc?

The python configure.py contains a line
gcc_linker_output = subprocess.check_output(['gcc', '-###', '/dev/null', '-o', 't'], stderr=subprocess.STDOUT).decode('utf-8')
The comments before this line indicate scylladb uses a custom dynamic linker and references details about the ABI layout.
Is there code missing from the configure.py script which would enable building on a strict llvm environment, or is that not possible at this time?
I am building Scylladb on FreeBSD 13 which uses clang++ 13.0.0.
I am on branch master, commit 0efdc45d5981868b1b6, Setp 8, 2022.
I patched SCYLLA-VERSION-GEN to get past the date --utf and USAGE issues, and patched config.py with an entry to read ID from freebsd for the boost error message.
I run configure.py with
./configure.py --mode=release --compiler=clang++ --cflags=-I/usr/local/include
In fact ScyllaDB builds with clang. However its dependency Seastar is very dependent on Linux. If you want it to run on FreeBSD you'll have to port Seastar first (see reactor_backend.{cc,hh})

Automatic instrumentation with Score-P / Vampirtrace not working with gcc/g++

I have a simple helloworld.cpp to instrument with Score-P or Vampirtrace.
Installation of the performance/ tracing tools works fine. After compiling and running:
# score-p
scorep-g++ helloworld.cpp -o hello
export SCOREP_ENABLE_TRACING=true
export SCOREP_ENABLE_PROFILING=true
# vampirtrace
vtcxx -DVTRACE helloworld.cpp -o hello
# run
./hello
The created OTF files (OTF for vampirtrace/ OTF2 for Score-P) are more or less empty (no timeline data). I'm using Vampir to visualize the data.
More details:
I'm testing on Mac OS X (g++-8) and Xubuntu (g++-7; VirtualBox).
For Mac OS X I have installed brew install gcc.
For the instrumented Score-P version I also got a warning
[Score-P] src/measurement/profiling/scorep_profile_callpath.c:206: Warning: Master thread contains no regions.
but I can't find related issues/ help.
I also installed TAU and PDT for Vampirtrace, but nothing changed. By the way manual instrumentation works for Vampirtrace:
#include "vt_user.h"
...
VT_TRACER("name");
For Vampirtrace I also tested OpenMP instrumentation and this was working, but only that (no application tracing around).
For both environments I did not install Open MPI.
It would be great, if somebody has similar issues and could help.
PS: Later, I want to instrument an application with Poco::Threads. I only read about partial support for POSIX Threads.
Update
The problem is g++. I tried the same instrumentation with Intel icc and it worked.
The missing instrumentation with g++ is also possible with icc, if you add the parameter --nocompiler like
score-p --nocompiler icc helloworld.cpp -o hello
Update
I had to install missing packages. There are logging outputs for ./configure with hints. One of the following package solved it:
apt-get install llvm libwrap0-dev libclang-dev gcc-7-plugin-dev

ld: file not found: /usr/lib/crt1.o

When trying to compile Fortran using PGI on Mac OS X Sierra, I get the error
ld: file not found: /usr/lib/crt1.o
I found a workaround for older Mac OS X versions (http://www.pgroup.com/userforum/viewtopic.php?t=4578)
sudo ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk/usr/lib/crt1.o /usr/lib/crt1.o
However, with Sierra, System Integrity Protection prevents writing in /usr/bin. How can I solve this problem?
I tried linking into /usr/local/bin/ (which is permitted), but then, how can I make sure the compiler searches for library in that path?
Installing just the Command Line Tools for Mac OS X solved the problem. Do this in your terminal:
xcode-select --install
Installing Lazarus on MacOS X :
worked for me
http://wiki.lazarus.freepascal.org/Installing_Lazarus_on_MacOS_X#Xcode_5.0.2B_compatibility_.28Mac_OS_X_10.8_and_10.9.29
Solution for command line programs:
The correct answer for me was as explained in this link:
https://medium.com/#kviat/free-pascal-3-0-2-linking-on-macos-sierra-c40706e86fda
After some googling I realized that most libraries were removed from
/usr/lib in macOS Sierra. However this case is handled in FPC, so we
just need to set internal compiler variable MacOSXVersionMin to 10.8
(or later). There is no standard compiler option for it, but after
some search in source code I found the solution: set the environment
variable MACOSX_DEPLOYMENT_TARGET:
You should give the deployment target of MacOS:
MACOSX_DEPLOYMENT_TARGET= XX.XX #for instance 10.15
Solution for generally:
Linking the necessary file to /usr/bin/crt* . As already stated, this linking will be prohibited by MacOs beginning from 10.10. But there is still a way to accomplish this linking procedure and it solves the problem.
1) Reboot the Mac and hold down Command + R keys simultaneously after you hear the startup chime, this will boot Mac OS X into Recovery Mode
2) When the “MacOS Utilities” / “OS X Utilities” screen appears, pull down the ‘Utilities’ menu at the top of the screen instead, and choose “Terminal”
3) Type the following command into the terminal then hit return:
csrutil disable; reboot
4) When you come back, run the command sudo mount -uw /
5) Just run the linking code you want to:
sudo ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk/usr/lib/crt1.o /usr/lib/crt1.o
sources: http://osxdaily.com/2015/10/05/disable-rootless-system-integrity-protection-mac-os-x/
https://www.reddit.com/r/MacOS/comments/caiue5/macos_catalina_readonly_file_system_with_sip/
In my case the problem was actually an error on the PGI installation side. PGI seems to be well aware that newer versions of macOS do not have the /usr/lib/crt1.o and that you can't create files there anymore. But it is possible to setup correct environment variables for the PGI compilers and then the linker should use the correct path to the crt1.o.
This configuration should be done automatically during the installation of the PGI compiler suite by running the makelocalrc command and should generate the file /opt/pgi/osx86-64/$PGIVER/bin/localrc. But in my case this step failed silently.
Reasons for failure seem to be:
license agreement for XCode not (yet) accepted, although this error should leave you with a /opt/pgi/osx86-64/$PGIVER/bin/localrc.error, containing some details
XCode version not supported, which seems to leave you with nothing. This is what I got when I ran the makelocalrc script manually:
makelocalrc -x /opt/pgi/osx86-64/19.10
Error: Unsupported XCode version 11
In my case (PGI 19.10, macOS 10.15, XCode 11.2.1) I manually patched the /opt/pgi/osx86-64/19.10/bin/makelocalrc to not error out on XCode 11:
if test $xcodever -gt 11 ; then # <-- was "-gt 10"!
echo " Error: Unsupported XCode version " $xcodever
exit -1
fi
and then re-ran the script after which compilation with PGI compilers (both pgcc and pgfortran) worked:
sudo /opt/pgi/osx86-64/2019/bin/makelocalrc -x /opt/pgi/osx86-64/19.10
Your case may vary, but you might want to check for a /opt/pgi/osx86-64/$PGIVER/bin/localrc.error or the /opt/pgi/osx86-64/$PGIVER/bin/localrc itself and try to manually (re-) generate it if it is not there or if you upgraded XCode/macOS since the installation of the PGI compilers.

Installing HDF5 library on Cygwin: "make check" stuck at testswmr.sh, no error message

I am currently installing the HDF5 library, more precisely the hdf5-1.10.0-patch1, on Cygwin, as I want to use it with Fortran. Following the instructions from the hdfgroup website
(here is the link), I did the following:
./configure --enable-fortran
make > "out1_check.txt" 2> "warn1_check.txt" &
make check > "out2_check.txt" 2> "warn2_check.txt" &
The execution of the last command (make check) proceeds as it should, until it gets stuck. The process does not stop and something is happening (8-12% CPU are in use by sh.exe, already 39 hours of CPU time) but "out2_check.txt" looks like
Making check in src
...
[many successful checks]
...
============================
No need to test testlinks_env.sh again.
============================
============================
Testing testswmr.sh
Unfortunately, I do not have the output file from the first run of make check, but it did not contain more information on Testing testswmr.sh. There was never any error message.
So, what is this testswmr.sh, why does it get stuck and how can I finalize the installation process? Maybe I can skip the remaining checks and just proceed to make install?
Important note: an older version of HDF5 is already installed from the Cygwin repo. It does not seem to support Fortran however, so I decided to install the current version myself.
Available (and used) compilers are gcc and gfortran.
As far as I can tell, only Intel Fortran is supported on Windows. There is no Cygwin download here https://support.hdfgroup.org/HDF5/release/obtain518.html and I have never come across a report of experience for Cygwin/Fortran/HDF5.
Your options:
Use Intel Fortran
Use Linux or Mac
Sorry

g++ not compiling with wildcard filenames on Windows

All of a sudden I seem to be struggling with compiling c++ programs (specifically TDM64 5.1.0) from the command-line on Windows (specifically 10) when using wildcard based filenames. It works fine when the names are given in full. I've done this countless times before with no problem Edit: But not normally on windows... my memories of this working before must be false. What am I missing?
C:\Users\Duncan Coulter\Code>dir *.cpp
Volume in drive C has no label.
Volume Serial Number is 9EE6-DBBD
Directory of C:\Users\Duncan Coulter\Code
2016/04/04 01:35 PM 7 869 LittleMan.cpp
2016/04/04 01:35 PM 1 912 main.cpp
2 File(s) 9 781 bytes
0 Dir(s) 90 288 394 240 bytes free
C:\Users\Duncan Coulter\Code>g++ *.cpp
g++: error: *.cpp: Invalid argument
C:\Users\Duncan Coulter\Code>g++ main.cpp LittleMan.cpp
Your problem is where you write:
g++ *.cpp
g++ is a linux style program, and expects the shell to expand wildcards for it. The windows command shell doesn't do that - it expects individual programs to expand wildcards for themselves.
The easiest solution is to download cygwin - which does expand wildcards for you. Otherwise the answers to this question may be useful:
https://superuser.com/questions/460598/is-there-any-way-to-get-the-windows-cmd-shell-to-expand-wildcard-paths
I note that TDM is based on the MINGW port of GCC. I've found that different versions of this compiler do in fact treat the wildcard differently. For example, it works perfectly fine for me as of version 3.4.2, compiling in Windows 7:
However, when I upgraded to GCC v.4.9.2, this batch file and others I was using broke (specifically, the *.cpp was not recognized). This was a version of MINGW GCC which came with the Dev-C++ IDE. Because I needed this feature rather badly (specifically, test-compiling large submissions of student code with unspecified random filenames), I actually had to downgrade and revert back to the old version for just this purpose.