Read back data stored in a texture - opengl

I have got a texture which is updated from a fragment shader that calculates points positions.
What is the good way to read it back so it could be drawn as primitives ?

If you want to draw using the data from the texture, reading back to host memory is a waste and slow (But for reference you could use glGetTexImage or glReadPixels).
Instead, you can draw primitives without providing vertex positions and read them from your texture in the vertex shader (bound as a sampler and using texelFetch for example).
The coordinates for texel fetch can come from a per-vertex attribute (just like regular texture coordinates), or you can use gl_VertexID to calculate them implicitly.
As #ColonelThirtyTwo said, you can also use transform feedback. Not using your texture and doing the computation in the fragment shader, but replacing it with computation in a vertex shader. Here the varying variables normally interpolated to the fragment shader get packed and saved in a buffer, still on the GPU.

Related

How to bind multiple textures to primitives drawn using `glDrawRangeElements()`?

I am using glDrawRangeElements() to draw textured quads (as triangles). My problem is that I can only bind one texture before that function call, and so all quads are drawn using the same texture.
How to bind a different texture for each quad?
Is this possible when using the glDrawRangeElements() function? If not, what other OpenGL function should I look at?
First,you need to give an access to multiple textures inside your fragment shader.To do this you can use :
Arrays Textures -basically 3D texture,where 3rd dimension is the number of different 2D texture layers.The restriction is that all the textures in the array must be of the same size.Also Cube Map textures can be used (GL 4.0 and later) to stack multiple textures.
Bindless textures - these you can use on relatively new hardware only.For Nvidia that's Kepler and later.Because bindless texture is essentially a pointer to a texture memory on GPU you can fill an array or Uniform buffer with thousands of those and then index into that array in the fragment shader having an access to the sampler object directly.
Now,how can you index into those arrays per primitive?There are number of ways.First,you can use instanced drawing if you render the same primitives several times.Here you have GLSL InstanceID to track what primitive is currently drawn.
In case when you don't use instancing and also try to texture different parts of geometry in a single draw call it would be more complex.You should add texture index information on per vertex basis.That's ,if your geometry has interleaved structure per vertex looking like this:
VTN,VTN,VTN... where (V-vertices,T-texture coords,N-normals),you should add another set of data ,let's call it I - (texture index),so your vertex array will
have the structure VTNI,VTNI,VTNI...
You can also set a separate Vertex buffer including only the texture indices.But for large geometry buffers it probably will be less efficient.Interleaving of usually allows faster data access.
Once you have it you can pass that texture index as varying into fragment shader(set as flat to make sure it is not interpolated ) and index into specific texture.Yeah,that means your vertex array will be larger and contain redundant data,but that's the downside of using multitexture on a single primitive level.
Hope it helps.

Calculate normals for plane inside fragment shader

I have a situation where I need to do light shading. I don't have a vertex shader so I can't interpolate normals into my fragment shader. Also I have no ability to pass in a normal map. Can I generate normals completely in the fragment shader based,for example on fragment coordinates? The geometry is always planar in my case.
And to extend on what I am trying to do:
I am using the NV_path_rendering extension which allows rendering pure vector graphics on GPU. The problem is that only the fragment stage is accessible via shader which basically means - I can't use a vertex shader with NV_Path objects.
Since your shapes are flat and NV_PATH require compat profile you can pass normal through on of built-in varyings gl_Color or gl_SecondaryColor
Extension description says that there is some kind of interpolation:
Interpolation of per-vertex data (section 3.6.1). Path primitives have neither conventional vertices nor per-vertex data. Instead fragments generate interpolated per-fragment colors, texture coordinate sets, and fog coordinates as a linear function of object-space or eye-space path coordinate's or using the current color, texture coordinate set, or fog coordinate state directly.
http://developer.download.nvidia.com/assets/gamedev/files/GL_NV_path_rendering.txt
Here's a method which "sets the normal as the face normal", without knowing anything about vertex normals (as I understand it).
https://stackoverflow.com/a/17532576/738675
I have a three.js demo working here:
http://meetar.github.io/three.js-normal-map-0/index6.html
My implementation is getting vertex position data from the vertex shader, but it sounds like you're able to get that through other means.

Setting neighbor fragment color via GLSL

I need to setup a GLSL fragment shader to change the color of a fragment other than the one currently being processed. Since that may not seem desirable, I'll provide a very brief context.
The project utilizes a render pass whereby a given model is drawn into an FBO with unique colors that correspond to UV coordinates in the texture map. These colors are then sampled and converted to image coordinates so that the texture map for the model can be updated based on what's visible to the camera. Essentially:
Render model to FBO
For each FBO pixel
1. sample secondary texture based on FBO pixel position
2. convert color at current pixel to image coordinate for the model's texture map
3. update model's texture with sampled secondary texture at calculated coordinate
End loop
The problem is that the current implementation is very CPU bound, so I'm reading the pixels out of the FBO and then manipulating them. Ideally, since I already have the color of the fragment to work with in the fragment shader, I want to just tack on the last few steps to the process and keep everything on the GPU.
The specific issue I'm having is that I don't quite know how (or if it's even possible) to have a fragment shader set the color of a fragment that it is not processing. If I can't work something up by using an extra large FBO and just offsetting the fragment that I want to set the color on, can I work something up that writes directly into a texture?
Any help/advice?
It's not possible to have a fragment shader write to anywhere other than the fragment it is processing. What you probably want to do is ping pong rendering.
In your code, you'd have three textures, matching your listed tasks:
the secondary texture
the source model texture map
the destination model texture map
At a first run, you'd use (1) and (2) as source textures, to draw to (3). Next time through the loop you'd use (1) and (3) to write to (2). Then you'd switch back to using (1) and (2) to write to (3). And so on.
So (2) and (3) are connected with framebuffer objects with the textures supplied as the colour buffer in place of a renderbuffer.
NVidia authored the GL_NV_texture_barrier extension in 2009 that allows you to compact (2) and (3) into a single texture, provided you are explicit about the dividing line between where you're reading and where you're writing. I don't have the expertise to say how widely available it is.
Attempting to read and write to the same texture (as is possible with FBOs) otherwise produces undefined results in OpenGL. Prompting issues at the hardware level are related to caching and multisampling.
As far as I understand, you need a scatter operation (uniform FBO pixel space -> random mesh UV texture destination) to be performed in OpenGL. There is a way to do this, not as simple as you may expect, and not even as fast, but I can't find a better one:
Run a draw call of type GL_POINTS and size equal to the width*height of your source FBO.
Select model texture as a destination FBO color layer, with no depth layer attached
In a vertex shader, compute the original screen coordinate by using gl_VertexID.
Sample from the source FBO texture to get color and target position (assuming your original FBO surface was a texture). Assign a proper gl_Position and pass the target color to the fragment shader.
In a fragment shader, just copy the color to the output.
This will make GPU to go through each of your original FBO pixels and scatter the computed colors over the destination texture.

Vertex shader vs Fragment Shader [duplicate]

This question already has answers here:
What are Vertex and Pixel shaders?
(6 answers)
Closed 5 years ago.
I've read some tutorials regarding Cg, yet one thing is not quite clear to me.
What exactly is the difference between vertex and fragment shaders?
And for what situations is one better suited than the other?
A fragment shader is the same as pixel shader.
One main difference is that a vertex shader can manipulate the attributes of vertices. which are the corner points of your polygons.
The fragment shader on the other hand takes care of how the pixels between the vertices look. They are interpolated between the defined vertices following specific rules.
For example: if you want your polygon to be completely red, you would define all vertices red. If you want for specific effects like a gradient between the vertices, you have to do that in the fragment shader.
Put another way:
The vertex shader is part of the early steps in the graphic pipeline, somewhere between model coordinate transformation and polygon clipping I think. At that point, nothing is really done yet.
However, the fragment/pixel shader is part of the rasterization step, where the image is calculated and the pixels between the vertices are filled in or "coloured".
Just read about the graphics pipeline here and everything will reveal itself:
http://en.wikipedia.org/wiki/Graphics_pipeline
Vertex shader is done on every vertex, while fragment shader is done on every pixel. The fragment shader is applied after vertex shader. More about the shaders GPU pipeline link text
Nvidia Cg Tutorial:
Vertex transformation is the first processing stage in the graphics hardware pipeline. Vertex transformation performs a sequence of math operations on each vertex. These operations include transforming the vertex position into a screen position for use by the rasterizer, generating texture coordinates for texturing, and lighting the vertex to determine its color.
The results of rasterization are a set of pixel locations as well as a set of fragments. There is no relationship between the number of vertices a primitive has and the number of fragments that are generated when it is rasterized. For example, a triangle made up of just three vertices could take up the entire screen, and therefore generate millions of fragments!
Earlier, we told you to think of a fragment as a pixel if you did not know precisely what a fragment was. At this point, however, the distinction between a fragment and a pixel becomes important. The term pixel is short for "picture element." A pixel represents the contents of the frame buffer at a specific location, such as the color, depth, and any other values associated with that location. A fragment is the state required potentially to update a particular pixel.
The term "fragment" is used because rasterization breaks up each geometric primitive, such as a triangle, into pixel-sized fragments for each pixel that the primitive covers. A fragment has an associated pixel location, a depth value, and a set of interpolated parameters such as a color, a secondary (specular) color, and one or more texture coordinate sets. These various interpolated parameters are derived from the transformed vertices that make up the particular geometric primitive used to generate the fragments. You can think of a fragment as a "potential pixel." If a fragment passes the various rasterization tests (in the raster operations stage, which is described shortly), the fragment updates a pixel in the frame buffer.
Vertex Shaders and Fragment Shaders are both feature of 3-D implementation that does not uses fixed-pipeline rendering. In any 3-D rendering vertex shaders are applied before fragment/pixel shaders.
Vertex shader operates on each vertex. If you have a fixed polygon mesh and you want to deform it in a shader, you have to implement it in vertex shader. I.e. any physical change in vertex appearances can be done in vertex shaders.
Fragment shader takes the output from the vertex shader and associates colors, depth value of a pixel, etc. After these operations the fragment is send to Framebuffer for display on the screen.
Some operation, as for example lighting calculation, you can perform in vertex shader as well as fragment shader. But fragment shader provides better result than the vertex shader.
In rendering images via 3D hardware you typically have a mesh (point, polygons, lines) these are defined by vertices. To manipulate vertices individually typically for motions in a model or waves in an ocean you can use vertex shaders. These vertices can have static colour or colour assigned by textures, to manipulate vertex colours you use fragment shaders. At the end of the pipeline when the view goes to screen you can also use fragment shaders.

OpenGL - How do I compare pixel values from separate textures with the same location

I was wondering what is the best way to go about comparing a pixel that
is currently being rendered (and accessed using a fragment shader) to a
pixel with the same location in a previously stored unbound texture (both
textures are the same size)?
Now that the question is more clear, it's possible to give an answer.
The main issue is that the framebuffer contents and the fragment parameters (position) are not available in the fragment shader. Indeed, you can't execute the "compare" operation while rendering.
You have to render the model in a texture (search for render to texture, using frame buffer objects), and then run a fragment shader (maybe using GL_texture_rectangle) on a otho view with a viewport of the same size of the texture.
The fragment shader shall have two textures as input: the first texture (containing detected edges) and the texture-rendered wireframe model. Then, it's easy to perform complex computation in the fragment shader once you can access to each textel of both textures.
Hope this can help you.