Vertex shader vs Fragment Shader [duplicate] - opengl

This question already has answers here:
What are Vertex and Pixel shaders?
(6 answers)
Closed 5 years ago.
I've read some tutorials regarding Cg, yet one thing is not quite clear to me.
What exactly is the difference between vertex and fragment shaders?
And for what situations is one better suited than the other?

A fragment shader is the same as pixel shader.
One main difference is that a vertex shader can manipulate the attributes of vertices. which are the corner points of your polygons.
The fragment shader on the other hand takes care of how the pixels between the vertices look. They are interpolated between the defined vertices following specific rules.
For example: if you want your polygon to be completely red, you would define all vertices red. If you want for specific effects like a gradient between the vertices, you have to do that in the fragment shader.
Put another way:
The vertex shader is part of the early steps in the graphic pipeline, somewhere between model coordinate transformation and polygon clipping I think. At that point, nothing is really done yet.
However, the fragment/pixel shader is part of the rasterization step, where the image is calculated and the pixels between the vertices are filled in or "coloured".
Just read about the graphics pipeline here and everything will reveal itself:
http://en.wikipedia.org/wiki/Graphics_pipeline

Vertex shader is done on every vertex, while fragment shader is done on every pixel. The fragment shader is applied after vertex shader. More about the shaders GPU pipeline link text

Nvidia Cg Tutorial:
Vertex transformation is the first processing stage in the graphics hardware pipeline. Vertex transformation performs a sequence of math operations on each vertex. These operations include transforming the vertex position into a screen position for use by the rasterizer, generating texture coordinates for texturing, and lighting the vertex to determine its color.
The results of rasterization are a set of pixel locations as well as a set of fragments. There is no relationship between the number of vertices a primitive has and the number of fragments that are generated when it is rasterized. For example, a triangle made up of just three vertices could take up the entire screen, and therefore generate millions of fragments!
Earlier, we told you to think of a fragment as a pixel if you did not know precisely what a fragment was. At this point, however, the distinction between a fragment and a pixel becomes important. The term pixel is short for "picture element." A pixel represents the contents of the frame buffer at a specific location, such as the color, depth, and any other values associated with that location. A fragment is the state required potentially to update a particular pixel.
The term "fragment" is used because rasterization breaks up each geometric primitive, such as a triangle, into pixel-sized fragments for each pixel that the primitive covers. A fragment has an associated pixel location, a depth value, and a set of interpolated parameters such as a color, a secondary (specular) color, and one or more texture coordinate sets. These various interpolated parameters are derived from the transformed vertices that make up the particular geometric primitive used to generate the fragments. You can think of a fragment as a "potential pixel." If a fragment passes the various rasterization tests (in the raster operations stage, which is described shortly), the fragment updates a pixel in the frame buffer.

Vertex Shaders and Fragment Shaders are both feature of 3-D implementation that does not uses fixed-pipeline rendering. In any 3-D rendering vertex shaders are applied before fragment/pixel shaders.
Vertex shader operates on each vertex. If you have a fixed polygon mesh and you want to deform it in a shader, you have to implement it in vertex shader. I.e. any physical change in vertex appearances can be done in vertex shaders.
Fragment shader takes the output from the vertex shader and associates colors, depth value of a pixel, etc. After these operations the fragment is send to Framebuffer for display on the screen.
Some operation, as for example lighting calculation, you can perform in vertex shader as well as fragment shader. But fragment shader provides better result than the vertex shader.

In rendering images via 3D hardware you typically have a mesh (point, polygons, lines) these are defined by vertices. To manipulate vertices individually typically for motions in a model or waves in an ocean you can use vertex shaders. These vertices can have static colour or colour assigned by textures, to manipulate vertex colours you use fragment shaders. At the end of the pipeline when the view goes to screen you can also use fragment shaders.

Related

OpenGL Lighting Shader

I can't understand concept of smaller shaders in OpenGL. How does it work? For example: do I need to create one shader for positioning object in space and then shader another shader for lighting or what? Could someone explain this to me? Thanks in advance.
This is a very complex topic, especially since your question isn't very specific. At first, there are various shader stages (vertex shader, pixel shader, and so on). A shader program consists of different shader stages, at least a pixel and a vertex shader (except for compute shader programs, which are each single compute shaders). The vertex shader calculates the possition of the points on screen, so here the objects are being moved. The pixel shader calculates the color of each pixel, that is covered by the rendered geometry your vertex shader produced. Now, in terms of lighting, there are different ways of doing it:
Forward Shading
This is the straight-forward way, where you simply calculate the lighting in pixel shader of the same shader program, that moves to objects. This is the oldest way of calculating lighting, and the easiest one. However, it's abilities are very limited.
Deffered Shading
For ages, this is the go-to variant in games. Here, you have one shader program (vertex + pixel shader) that renders the geometrie on one (or multiple) textures (so it moves the objects, but it doesn't save the lit color, but rather things like the base color and surface normals into the texture), and then an other shader program that renders a quad on screen for each light you want to render, the pixel shader of this shader program reads the informations previously rendered in the textur by the first shader program, and uses it to render the lit objects on an other textur (which is then the final image). In constrast to forward shading, this allows (in theory) any number of lights in the scene, and allows easier usage of shadow maps
Tiled/Clustered Shading
This is a rather new and very complex way of calculating lighting, that can be build on top of deffered or forward shading. It basicly uses compute shaders to calculate an accelleration-structure on the gpu, which is then used draw huge amount of lights very fast. This allows to render thousands of lights in a scene in real time, but using shadow maps for these lights is very hard, and the algorithm is way more complex then the previous ones.
Writing smaller shaders means to separate some of your shader functionalities in another files. Then if you are writing a big shader which contains lightning algorithms, antialiasing algorithms, and any other shader computation algorithm, you can separate them in smaller shader files (light.glsl, fxaa.glsl, and so on...) and you have to link these files in your main shader file (the shader file which contains the void main() function) since in OpenGL a vertex array can only have one shader program (composition of vertex shader, fragment shader, geometry shader, etc...) during the rendering pipeline.
The way of writing smaller shader depends also on your rendering algorithm (forward rendering, deffered rendering, or forward+ rendering).
It's important to notice that writing a lot of shader will increase the shader compilation time, and also, writing a big shader with a lot of uniforms will also slow things down...

Calculate normals for plane inside fragment shader

I have a situation where I need to do light shading. I don't have a vertex shader so I can't interpolate normals into my fragment shader. Also I have no ability to pass in a normal map. Can I generate normals completely in the fragment shader based,for example on fragment coordinates? The geometry is always planar in my case.
And to extend on what I am trying to do:
I am using the NV_path_rendering extension which allows rendering pure vector graphics on GPU. The problem is that only the fragment stage is accessible via shader which basically means - I can't use a vertex shader with NV_Path objects.
Since your shapes are flat and NV_PATH require compat profile you can pass normal through on of built-in varyings gl_Color or gl_SecondaryColor
Extension description says that there is some kind of interpolation:
Interpolation of per-vertex data (section 3.6.1). Path primitives have neither conventional vertices nor per-vertex data. Instead fragments generate interpolated per-fragment colors, texture coordinate sets, and fog coordinates as a linear function of object-space or eye-space path coordinate's or using the current color, texture coordinate set, or fog coordinate state directly.
http://developer.download.nvidia.com/assets/gamedev/files/GL_NV_path_rendering.txt
Here's a method which "sets the normal as the face normal", without knowing anything about vertex normals (as I understand it).
https://stackoverflow.com/a/17532576/738675
I have a three.js demo working here:
http://meetar.github.io/three.js-normal-map-0/index6.html
My implementation is getting vertex position data from the vertex shader, but it sounds like you're able to get that through other means.

How do I obtain the vertices of the current polygon inside a fragment shader?

I've got a shader to procedurally generate geometric shapes inside a quad. Essentially, you render a quad with this fragment shader active, and it calculates which fragments are on the border of the shape and discards everything else.
The problem is the dimensions of the quad. At the moment, I have to pass in the vertex data twice, once to the VBO and a second time as uniform variables to the shader, so it knows how big of a shape it's supposed to be creating.
Is there any way to only have to do this once, by having some way to get the coordinates of the top-left and bottom-right vertices of the current quad when I'm inside the fragment shader, so that I could simply give the vertex data to OpenGL once and have the shader calculate the largest shape that will fit inside the quad?
I think you probably want to use a geometry shader. Each vertex would consist of the position of a corner of the quad (a vector of 2-4 values) and the size of the quad (which could be a single value or upto 9 depending on how general you need the quad to be).
The geometry shader would generate the additional vertices for the quad and pass the size through to the fragment shader.
Depending on what exactly you're doing you may also be able to use point sprites and use the implicit coordinates that they have (gl_PointCoord). However, point sprites have a maximum size (which can be queried via GL_POINT_SIZE_RANGE and GL_POINT_SIZE_GRANULARITY).
You could pull the vertices yourself. You could create a Uniform Buffer or a Texture Buffer with the vertex data and just access this buffer in the fragment shader. In the vertex shader, in order to know what vertex to output you could just use the built-in variable gl_VertexID
I'd pass the top left and bottom right vertices of the quad as two extra input attributes for each vertex. The quads themselves get rendered as triangles.
In the vertex shader, declare two output attributes as flat (so they don't get interpolated) and copy the input attributes to these outputs.

C++ shader optimization question

Could someone explain me the pretty basics of pixel and vertex shader interaction.
The obvious things are that vertex shaders receive basic vertex properties and then repass some of them to the actual pixel shader.
But how does the actual vertex->pixel transition happens? I know that obviously all types of pipelines include the rasterizer change, which is capable of interpolating the vertex parameters and can apply textures based on the certain texture coordinates.
And as far as I understand those are also interpolated (not quite sure about this moment, heard something about complex UV derivative math, but I assume that we can say that they are being interpolated).
So, here are some "targeted" questions.
How does the pixel shader operate? I mean that pixel shader obviously does some actions "per pixel", but due to the unobvious vertex->pixel transition this yields some questions.
Can I assume that if I evaluate matrix - vector product once in my pixel shader, it would be evaluated once when the image is rasterized? Or would it be better to evaluate everything that's possible in my vertex shader and then pass it to the pixel shader?
Also, if someone could point articles / abstracts on this topic, I would really appreciate that.
Thank you.
UPDATE
I thought it actually doesn't matter, because the interaction should be pretty same everywhere. I'm developing visualization applications and games for desktops, using HLSL / GLSL / Nvidia CG for shaders and mostly C++ as the base language.
The vertex shader is executed once for every vertex. It allows you to transform the vertex from world space coordinates (or whichever other coordinate system it might be in) into screenspace coordinates.
That is, if you have a triangle, each vertex is transformed, so it ends up with a position on the screen.
And given these positions, the rasterizer determines which pixels are covered by the triangle spanned by those three vertices.
And then, for each pixel inside the triangle, the pixel shader is invoked. The output from the vertex shader is usually interpolated for each pixel, so pixels close to vertex v0 will receive values very close to those computed by the vertex shader for v0.
And this means that everything you do in the pixel shader is executed once per pixel covered by the primitive being rasterized

Can I use a vertex shader to display a models normals?

I'm currently using a VBO for the texture coordinates, normals and the vertices of a (3DS) model I'm drawing with "glDrawArrays(GL_TRIANGLES, ...);". For debugging I want to (temporarily) show the normals when drawing my model. Do I have to use immediate mode to draw each line from vert to vert+normal -OR- stuff another VBO with vert and vert+normal to draw all the normals… -OR- is there a way for the vertex shader to use the vertex and normal data already passed in when drawing the model to compute the V+N used when drawing the normals?
No, it is not possible to draw additional lines from a vertex shader.
A vertex shader is not about creating geometry, it is about doing per vertex computation. Using vertex shaders, when you say glDrawArrays(GL_TRIANGLES,0,3), this is what specifies exactly what you will draw, i.e. 1 triangle. Once processing reaches the vertex shader, you can only alter the properties of the vertices of that triangle, not modify in any way, shape or form, the topology and/or count of the geometry.
What you're looking for is what OpenGL 3.2 defines as a geometry shader, that allows to output arbitrary geometry count/topology out of a shader. Note however that this is only supported through OpenGL 3.2, that not many cards/drivers support right now (it's been out for a few months now).
However, I must point out that showing normals (in most engines that support some kind of debugging) is usually done with the traditional line rendering, with an additional vertex buffer that gets filled in with the proper positions (P, P+C*N) for each mesh position, where C is a constant that represents the length you want to use to show the normals. It is not that complex to write...
You could approximate this by drawing the geometry twice. Once draw it as you normally would. The second time, draw the geometry as GL_POINTS, and attach a vertex shader which offsets each vertex position by the vertex normal.
This would result in your model having a set of points floating over the surface. Each point would show the direction of the normal from the vertex it corresponds to.
This isn't perfect, but might be sufficient, depending on what it is you're hoping to use it for.
UPDATE: AHA! And if you pass in a constant scaling factor to the vertex shader, and have your application interpolate that factor between 0 and 1 as time goes by, your points rendered by the vertex shader will animate over time, starting at the vertex they apply to, and then floating off in the direction of its normal.
It's probably possible to get more or less the right effect with a cleverly written vertex shader, but it'd be a lot of work. Since this is for debugging purposes anyway, it seems better to just draw a few lines; the performance hit will not be severe.