Unit testing for Jfreecharts - unit-testing

I am constructing a simple linechart using JFreechart API.. Can anyone let me know how to unit test it using mockito. I am still kind of new to do unit testing framework. Dont really know how it works
public LineChart(String applicationTitle, String chartTitle) {
super(applicationTitle);
// Create the dataset
CategoryDataset dataset = new DataSet().createDataLineSet();
JFreeChart chart = createChart(dataset, chartTitle);
ChartPanel chartPanel = new ChartPanel(chart);
chartPanel.setPreferredSize(new Dimension(CHART_WIDTH,
CHART_HEIGHT));
setContentPane(chartPanel);
}
/**
* Creates a sample chart
*
* #param dataset
* ,the chartTitle
*
* #return The chart.
*/
public JFreeChart createChart(CategoryDataset dataset, String chartTitle) {
// TODO Auto-generated method stub
// create the chart
JFreeChart chart = ChartFactory.createLineChart(chartTitle, // chart
// title
categoryAxisLabel, // category axis label
valueAxisLabel, // value axis label
dataset, // data
PlotOrientation.VERTICAL, // chart orientation
true, // include legend?
true, // include tooltips?
false // URLs?
);
return chart;
}

The way you've structured it, this is a particularly hard class to unit test, and I'm not sure how much value unit testing would provide. Is this code for a school or work project with a "unit test all your code" directive?
First, a clarification based on your tags: Mockito is not a unit testing framework.
junit is a unit testing framework that allows you to write classes with methods that exercise classes. Using exceptions, as well as calls to Assert.assertEquals, Assert.assertTrue, and Assert.fail (for instance) you can write tests with minimal boilerplate. Reading JUnit's Getting Started page may help.
mockito is a mocking framework, which allows you create mocks and stubs of objects and verify that you're system under test is interacting with its collaborators correctly. Though it's preferable to unit test just by checking the return value of a method call or the state of the system after your test, certain classes require interaction with external systems. The first few numbered items of the Mockito documentation may help.
At least three things make your class hard to test using mocks and JUnit:
Your system under test is directly calling constructors. This gives you very little opportunity to substitute in simpler implementations or mocks for test.
The collaborator you're interacting with (JFreeChart API) is designed for GUIs. It can be hard to test GUI-oriented classes in a headless, reproducible way, which are two typical aspects of unit tests.
The collaborator is third-party software, which can be dangerous to mock. Mocking relies on some implementation details (like whether methods are public or final) that can be dangerous for code that's not directly under your control.
Remember also that it is an anti-pattern to test the implementation—unit tests are designed to check that your code produces the correct results. Looking at the code that you posted, I'm not sure what I would test there.
On the other hand, if you have a separate part of the project that loads and processes numeric data to feed into your chart, it would be very straightforward and useful to produce a JUnit test that takes in data from a sample file, runs it through the loader/processor you write, and ensures that it produces the correct numbers that you've worked out and confirmed by hand. The continued passing of that test is some guarantee that your code still works as expected, even if the implementation of your loader/processor were to change.

Related

Unit Testing and Integration Testing examples

I have created following four tests in a Test class that tests a findCompany() method of a CompanyService.
#Test
public void findCompany_CompanyIdIsZero() {
exception.expect(IllegalArgumentException.class);
companyService.findCompany(0);
}
#Test
public void findCompany_CompanyIdIsNegative() {
exception.expect(IllegalArgumentException.class);
companyService.findCompany(-100);
}
#Test
public void findCompany_CompanyIdDoesntExistInDatabase() {
Company storedCompany = companyService.findCompany(100000);
assertNull(storedCompany1);
}
#Test
public void findCompany_CompanyIdExistsInDatabase() {
Company company = new Company("FAL", "Falahaar");
companyService.addCompany(company);
Company storedCompany1 = companyService.findCompany(company.getId());
assertNotNull(storedCompany1);
}
My understanding says that the first three of these are unit tests. They test the behavior of the findCompany() method, checking how the method will respond on different inputs.
The fourth test, though placed in the same class, actually seems to be an integration test to me. It requires a Company to be added to the database first, so that it can be found later on. This introduces external dependencies - addCompany() and database.
Am I going right? If yes, then how should I unit test finding an existing object? Just mock the service to "find" one? I think that kills the intent of the test.
I appreciate any guidance here.
I look at it this way: the "unit" you are testing here is the CompanyService. In this sense all of your tests look like unit tests to me. Underneath your service, though, there may be another service (you mention a database) that this test is also exercising? This could start to blur the lines with integration testing a bit, but you have to ask yourself if it matters. You could stub out any such underlying service, and you may want to if:
The underlying service is slow to set up or use, making your unit tests too slow.
You want to be sure the behaviour of this test is unaffected by the underlying service - i.e. this test should only fail if there is a bug in CompanyService.
In my experience, provided the underlying service is fast enough I don't worry too much about my unit test relying on it. I don't mind a bit of integration leaking into my unit tests, as it has benefits (more integration coverage) and rarely causes a problem. If it does cause problems you can always come back to it and add stubbing to improve the isolation.
[1,2,3,4] could be unit-based (mocked | not mocked) and integration-based tests. It depends what you want to test.
Why use mocking? As Jason Sankey said ...test only service tier not underlaying tier.
Why use mocking? Your bussiness logic can have most various forms. So you can write several test for one service method, eg. create person (no address - exception, no bank account - exception, person does not have filled not-null attributes - exception).
Can you imagine that each test requested database in order to test all possibility exception states (no adress, no bank account etc.)? There is too much work to fill database in order to test all exception states. Why not to use mocked objects which eg. act like 'crippled' objects which do not contains expected values. Each test construct own 'crippled' mock object.
Mocking various states === your test will be simply as possible because each test method will be test only one state. These test will be clear and easy to understand and maintance. This is one of goals which I want to reach if I write a test.

How to choose TDD starting point in a real world project?

I've read tons of articles, seen tons of screencasts about TDD, but I'm still struggling with using it in real world project. My main issue is I don't know where to start, what test should be the first one.
Suppose I have to write client library calling external system's methods (e.g. notification).
I want this client to work as follows
NotificationClient client = new NotificationClient("abcd1234"); // client ID
Response code = client.notifyOnEvent(Event.LIMIT_REACHED, 100); // some params of call
There is some translation and message format preparation behind the scenes, so I'd like to hide it from my client apps.
I don't know where and how to start.
Should I make up some rough classes set for this library?
Should I start with testing NotificationClient as below
public void testClientSendInvalidEventCommand() {
NotificationClient client = new NotificationClient(...);
Response code = client.notifyOnEvent(Event.WRONG_EVENT);
assertEquals(1223, code.codeValue());
}
If so, with such test I'm forced to write complete working implementation at once, with no baby steps as TDD states. I can mock out sosmething in Client but then I have to know this thing to be mocked upfront, so I need some upfront desing to be made.
Maybe I should start from the bottom, test this message formatting component first and then use it in right client test?
What way is the right one to go?
Should we always start from top (how to deal with this huge step required)?
Can we start with any class realizing tiny part of desired feature (as Formatter in this example)?
If I'd know where to hit with my tests it'd be a lot easier for me to proceed.
I'd start with this line:
NotificationClient client = new NotificationClient("abcd1234"); // client ID
Sounds like we need a NotificationClient, which needs a client ID. That's an easy thing to test for. My first test might look something like:
public void testNewClientAbcd1234HasClientId() {
NotificationClient client = new NotificationClient("abcd1234");
assertEquals("abcd1234", client.clientId());
}
Of course, it won't compile at first - not until I'd written a NotificationClient class with a constructor that takes a string parameter and a clientId() method that returns a string - but that's part of the TDD cycle.
public class NotificationClient {
public NotificationClient(string clientId) {
}
public string clientId() {
return "";
}
}
At this point, I can run my test and watch it fail (because I've hard-coded clientId()'s return to be an empty string). Once I've got my failing unit test, I write just enough production code (in NotificationClient) to get the test to pass:
public string clientId() {
return "abcd1234";
}
Now all my tests pass, so I can consider what to do next. The obvious (well, obvious to me) next step is to make sure that I can create clients whose ID isn't "abcd1234":
public void testNewClientBcde2345HasClientId() {
NotificationClient client = new NotificationClient("bcde2345");
assertEquals("bcde2345", client.clientId());
}
I run my test suite and observe that testNewClientBcde2345HasClientId() fails while testNewClientAbcd1234HasClientId() passes, and now I've got a good reason to add a member variable to NotificationClient:
public class NotificationClient {
private string _clientId;
public NotificationClient(string clientId) {
_clientId = clientId;
}
public string clientId() {
return _clientId;
}
}
Assuming no typographical errors have snuck in, that'll get all my tests to pass, and I can move on to whatever the next step is. (In your example, it would probably be testing that notifyOnEvent(Event.WRONG_EVENT) returns a Response whose codeValue() equals 1223.)
Does that help any?
Don't confuse acceptance tests that hook into each end of your application, and form an executable specifications with unit tests.
If you are doing 'pure' TDD you write an acceptance test which drives the unit tests that drive the implementation. testClientSendInvalidEventCommand is your acceptance test, but depending on how complicated things are you will delegate the implementation to multiple classes you can unit test separately.
How complicated things get before you have to split them up to test and understand them properly is why it is called Test Driven Design.
You can choose to let tests drive your design from the bottom up or from the top down. Both work well for different developers in different situations. Either approach will force to make some of those "upfront" design decisions but that's a good thing. Making those decisions in order to write your tests is test-driven design!
In your case you have an idea what the high level external interface to the system you are developing should be so let's start there. Write a test for how you think users of your notification client should interact with it and let it fail. This test is the basis for your acceptance or integration tests and they are going to continue failing until the features they describe are finished. That's ok.
Now step down one level. What are the steps which need to occur to provide that high level interface? Can we write an integration or unit test for those steps? Do they have dependencies you had not considered which might cause you to change the notification center interface you have started to define? Keep drilling down depth-first defining behavior with failing tests until you find that you have actually reached a unit test. Now implement enough to pass that unit test and continue. Get unit tests passing until you have built enough to pass an integration test and so on. You'll eventually have completed a depth-first construction of a tree of tests and should have a well tested feature whose design was driven by your tests.
One goal of TDD is that the testing informs the design. So the fact that you need to think about how to implement your NotificationClient is a good thing; it forces you to think of (hopefully) simple abstractions up front.
Also, TDD sort of assumes constant refactoring. Your first solution probably won't be the last; so as you refine your code the tests are there to tell you what breaks, from compile errors to actual runtime issues.
So I would just jump right in and start with the test you suggested. As you create mocks, you will need to create tests for the actual implementations of what you are mocking. You will find things make sense and need to be refactored, so you will need to modify your tests as you go. That's the way it's supposed to work...

Application Service Layer: Unit Tests, Integration Tests, or Both?

I've got a bunch of methods in my application service layer that are doing things like this:
public void Execute(PlaceOrderOnHoldCommand command)
{
var order = _repository.Load(command.OrderId);
order.PlaceOnHold();
_repository.Save(order);
}
And at present, I have a bunch of unit tests like this:
[Test]
public void PlaceOrderOnHold_LoadsOrderFromRepository()
{
var repository = new Mock<IOrderRepository>();
const int orderId = 1;
var order = new Mock<IOrder>();
repository.Setup(r => r.Load(orderId)).Returns(order.Object);
var command = new PlaceOrderOnHoldCommand(orderId);
var service = new OrderService(repository.Object);
service.Execute(command);
repository.Verify(r => r.Load(It.Is<int>(x => x == orderId)), Times.Exactly(1));
}
[Test]
public void PlaceOrderOnHold_CallsPlaceOnHold()
{
/* blah blah */
}
[Test]
public void PlaceOrderOnHold_SavesOrderToRepository()
{
/* blah blah */
}
It seems to be debatable whether these unit tests add value that's worth the effort. I'm quite sure that the application service layer should be integration tested, though.
Should the application service layer be tested to this level of granularity, or are integration tests sufficient?
I'd write a unit test despite there also being an integration test. However, I'd likely make the test much simpler by eliminating the mocking framework, writing my own simple mock, and then combining all those tests to check that the the order in the mock repository was on hold.
[Test]
public void PlaceOrderOnHold_LoadsOrderFromRepository()
{
const int orderId = 1;
var repository = new MyMockRepository();
repository.save(new MyMockOrder(orderId));
var command = new PlaceOrderOnHoldCommand(orderId);
var service = new OrderService(repository);
service.Execute(command);
Assert.IsTrue(repository.getOrder(orderId).isOnHold());
}
There's really no need to check to be sure that load and/or save is called. Instead I'd just make sure that the only way that MyMockRepository will return the updated order is if load and save are called.
This kind of simplification is one of the reasons that I usually don't use mocking frameworks. It seems to me that you have much better control over your tests, and a much easier time writing them, if you write your own mocks.
Exactly: it's debatable! It's really good that you are weighing the expense/effort of writing and maintaining your test against the value it will bring you - and that's exactly the consideration you should make for every test you write. Often I see tests written for the sake of testing and thereby only adding ballast to the code base.
As a guideline I usually take that I want a full integration test of every important successful scenario/use case. Other tests I'll write are for parts of the code that are likely to break with future changes, or have broken in the past. And that is definitely not all code. That's where your judgement and insight in the system and requirements comes into play.
Assuming that you have an (integration) test for service.Execute(placeOrderOnHoldCommand), I'm not really sure if it adds value to test if the service loads an order from the repository exactly once. But it could be! For instance when your service previously had a nasty bug that would hit the repository ten times for a single order, causing performance issues (just making it up). In that case, I'd rename the test to PlaceOrderOnHold_LoadsOrderFromRepositoryExactlyOnce().
So for each and every test you have to decide for yourself ... hope that helps.
Notes:
The tests you show can be perfectly valid and look well written.
Your test sequence methods seems to be inspired on the way the Execute(...) method is currently implemented. When you structure your test this way, it could be that you are tying yourself to a specific implementation. This way, tests can actually make it harder to change - make sure you're only testing the important external behavior of your class.
I usually write a single integration test of the primary scenario. By primary scenario i mean the successful path of all the code being tested. Then I write unit tests of all the other scenarios like checking all the cases in a switch, testing exception and so forth.
I think it is important to have both and yes it is possible to test it all with integration tests only, but that makes your tests long running and harder to debug. In average I think I have 10 unit tests per integration test.
I don't bother to test methods with one-liners unless something bussines logic-like happens in that line.
Update: Just to make it clear, cause I'm doing test-driven development I always write the unit tests first and typically do the integration test at the end.

Unit test 'structure' of method?

Sorry for the long post...
While being introduced to a brown field project, I'm having doubts regarding certain sets of unit tests and what to think. Say you had a repostory class, wrapping a stored procedure and in the developer guide book, a certain set guidelines (rules), describe how this class should be constructured. The class could look like the following:
public class PersonRepository
{
public PersonCollection FindPersonsByNameAndCity(string personName, string cityName)
{
using (new SomeProfiler("someKey"))
{
var sp = Ioc.Resolve<IPersonStoredProcedure>();
sp.addNameArguement(personName);
sp.addCityArguement(cityName);
return sp.invoke();
}
} }
Now, I would of course write some integration tests, testing that the SP can be invoked, and that the behavior is as expected. However, would I write unit tests that assert that:
Constructor for SomeProfiler with the input parameter "someKey" is called
The Constructor of PersonStoredProcedure is called
The addNameArgument method on the stored procedure is called with parameter personName
The addCityArgument method on the stored procedure is called with parameter cityName
The invoke method is called on the stored procedure -
If so, I would potentially be testing the whole structure of a method, besides the behavior. My initial thought is that it is overkill. However, in regards to the coding practices enforced by the team, these test ensure a uniform and 'correct' structure and that the next layer is called correctly (from DAL to DB, BLL to DAL etc).
In my case these type of tests, are performed for each layer of the application.
Follow up question - the use of the SomeProfiler class smells a little like a convention to me - Instead creating explicit tests for this, could one create convention styled test by using static code analysis or unittest + reflection?
Thanks in advance.
I think that your initial thought was right - this is an overkill. Although you can use reflection to make sure that the class has the methods you expect I'm not sure you want to test it that way.
Perhaps instead of unit testing you should use some tool such as FxCop/StyleCop or nDepend to make sure all of the classes in a specific assembly/dll has these properties.
Having said that I'm a believer of "only code what you need" why test that a method exist, either you use it somewhere in your code and in that can you can test the specific case or you don't - and so it's irrelevant.
Unit tests should focus on behavior, not implementation. So writing a test to verify that certain arguments are set or passed in doesn't add much value to your testing strategy.
As the example provided appears to be communicating with your database, it can't truly be considered a "unit test" as it must communicate with physical dependencies that have additional setup and preconditions, such as availability of the environment, database schema, existing data, stored-procedures, etc. Any test you write is actually verifying these preconditions as well.
In it's present condition, your best bet for these types of tests is to test the behavior provided by the class -- invoke a method on your repository and then validate that the results are what you expected. However, you'll suddenly realize that there's a hidden cost here -- the database maintains state between test runs, and you'll need additional setup or tear-down logic to ensure that the database is in a well-known state.
While I realize the intent of the question was about the testing a "black box", it seems obvious that there's some hidden magic here in your API. My preference to solve the well-known state problem is to use an in-memory database that is scoped to the current test, which isolates me from environment considerations and enables me to parallelize my integration tests. I'd wager that under the current design, there is no "seam" to programmatically introduce a database configuration so you're "hemmed in". In my experience, magic hurts.
However, a slight change to the existing design solves this problem and the "magic" goes away:
public class PersonRepository : IPersonRepository
{
private ConnectionManager _mgr;
public PersonRepository(ConnectionManager mgr)
{
_mgr = mgr;
}
public PersonCollection FindPersonsByNameAndCity(string personName, string cityName)
{
using (var p = _mgr.CreateProfiler("somekey"))
{
var sp = new PersonStoredProcedure(p);
sp.addArguement("name", personName);
sp.addArguement("city", cityName);
return sp.invoke();
}
}
}

How to use "Pex and Moles" library with Entity Framework?

This is a tough one because not too many people use Pex & Moles or so I think (even though Pex is a really great product - much better than any other unit testing tool)
I have a Data project that has a very simple model with just one entity (DBItem). I've also written a DBRepository within this project, that manipulates this EF model. Repository has a method called GetItems() that returns a list of business layer items (BLItem) and looks similar to this (simplified example):
public IList<BLItem> GetItems()
{
using (var ctx = new EFContext("name=MyWebConfigConnectionName"))
{
DateTime limit = DateTime.Today.AddDays(-10);
IList<DBItem> result = ctx.Items.Where(i => i.Changed > limit).ToList();
return result.ConvertAll(i => i.ToBusinessObject());
}
}
So now I'd like to create some unit tests for this particular method. I'm using Pex & Moles. I created my moles and stubs for my EF object context.
I would like to write parametrised unit test (I know I've first written my production code, but I had to, since I'm testing Pex & Moles) that tests that this method returns valid list of items.
This is my test class:
[PexClass]
public class RepoTest
{
[PexMethod]
public void GetItemsTest(ObjectSet<DBItem> items)
{
MEFContext.ConstructorString = (#this, name) => {
var mole = new SEFContext();
};
DBRepository repo = new DBRepository();
IList<BLItem> result = repo.GetItems();
IList<DBItem> manual = items.Where(i => i.Changed > DateTime.Today.AddDays(-10));
if (result.Count != manual.Count)
{
throw new Exception();
}
}
}
Then I run Pex Explorations for this particular parametrised unit test, but I get an error path bounds exceeded. Pex starts this test by providing null to this test method (so items = null). This is the code, that Pex is running:
[Test]
[PexGeneratedBy(typeof(RepoTest))]
[Ignore("the test state was: path bounds exceeded")]
public void DBRepository_GetTasks22301()
{
this.GetItemsTest((ObjectSet<DBItem>)null);
}
This was additional comment provided by Pex:
The test case ran too long for these inputs, and Pex stopped the analysis. Please notice: The method Oblivious.Data.Test.Repositories.TaskRepositoryTest.b__0 was called 50 times; please check that the code is not stuck in an infinite loop or recursion. Otherwise, click on 'Set MaxStack=200', and run Pex again.
Update attribute [PexMethod(MaxStack = 200)]
Question
Am I doing this the correct way or not? Should I use EFContext stub instead? Do I have to add additional attributes to test method so Moles host will be running (I'm not sure it does now). I'm running just Pex & Moles. No VS test or nUnit or anything else.
I guess I should probably set some limit to Pex how many items should it provide for this particular test method.
Moles is not designed to test the parts of your application that have external dependencies (e.g. file access, network access, database access, etc). Instead, Moles allows you to mock these parts of your app so that way you can do true unit testing on the parts that don't have external dependencies.
So I think you should just mock your EF objects and queries, e.g., by creating in-memory lists and having query methods return fake data from those lists based on whatever criteria is relevant.
I am just getting to grips with pex also ... my issues surrounded me wanting to use it with moq ;)
anyway ...
I have some methods similar to your that have the same problem. When i increased the max they went away. Presumably pex was satisfied that it had sufficiently explored the branches. I have methods where i have had to increase the timeout on the code contract validation also.
One thing that you should probably be doign though is passing in all the dependant objects as parameters ... ie dont instantiate the repo in the method but pass it in.
A general problem you have is that you are instantiating big objects in your method. I do the same in my DAL classes, but then i am not tryign to unit test them in isolation. I build up datasets and use this to test my data access code against.
I use pex on my business logic and objects.
If i were to try and test my DAL code id have to use IOC to pass the datacontext into the methods - which would then make testing possible as you can mock the data context.
You should use Entity Framework Repository Pattern: http://www.codeproject.com/KB/database/ImplRepositoryPatternEF.aspx