C++ CRTP in array - c++

Can I somehow use Curiously Recurring Template Pattern (CRTP) with array?
What I want? I want array of classes that have some foo function. And call it for all objects in array. Like so:
template<class Derived>
struct Base{
void call(){
static_cast<Derived*>(this)->call();
}
};
struct A : Base<A>{
void call(){
cout <<"A";
}
};
struct B : Base<B>{
void call(){
cout <<"B";
}
};
...
Base array[2] = {A(), B()}; // <-- here is my array
array[0].call();
array[1].call();
P.S. I read, also, about AutoList pattern. But it seems it have nothing to do with my problem.

You can't have an array
Base array[2];
since Base is not a class.
Base<A> and Base<B> are classes but the two are completely different classes, with no relationship between them.
Update
You could use something like what #yzt suggested but then that is hardly any more elegant than:
struct Base {
virtual void call () = 0;
};
struct A : Base {
void call () {
cout << "A";
}
};
struct B : Base {
void call () {
cout << "B";
}
};
Base* a [] = {new A(), new B()};
a[0]->call ();
a[1]->call ();
The CRTP class doesn't need to be present at all.

You can use another (non-templated) base and a virtual call, like this:
struct VirtualBase {
virtual void call () = 0;
};
template <class Derived>
struct Base : VirtualBase {
virtual void call () override {
static_cast<Derived*>(this)->real_call ();
}
};
struct A : Base<A> {
void real_call () {
cout << "A";
}
};
struct B : Base<B> {
void real_call () {
cout << "B";
}
};
And use it like this:
VirtualBase * a [] = {new A(), new B()};
a[0]->call ();
a[1]->call ();
Note that to have polymorphism, you need to work with pointers or references (which is one of the problems with your code, because you are trying to put instances themselves into an array.)
Also, note the name change between call and real_call.
And don't forget to delete the instances; for example like this:
for (auto e : a) delete e;
or you can use std::unique_ptr<>, but the initialization of the array will be more verbose.
Update about virtual calls, in response to comments:
If you want to be able to dispatch to different methods determined at runtime, then you have to to use some kind of indirection. You won't be able to let the compiler bake in the call addresses at compile time (which is what happens with ordinary function calls and non-virtual method calls.)
One form of that indirection is using virtual methods; others are using function pointers, or even switch statements. There are other more exotic and less-used forms of call indirection too (e.g. runtime in-memory patching of addresses, etc.) but they are rarely worth the effort.
In short, if you want to have the flexibility of runtime dispatch, you'll have to pay the price.
Update with another sample:
In response to comments on other answers, here's a small sample of CRTP used in conjunction with polymorphism. It's just an example, and not a good one, but I see no reason why they can't be used together.

Related

Grouping two types together

I use a third party library over which I have no control. It contains 2 classes A and B, which both define a method with the same name:
class A {
public:
...
void my_method ();
};
class B {
public:
...
void my_method ();
};
I want to create a class C that contains a member which is of class A or B. Crucially, I can know only at runtime whether I will need A or B. This class C will only call the method my_method.
If I could modify the code, I would simply make A and B derive from a parent class (interface) that defined my_method. But I can't.
What is the simplest/most elegant way to create this class C? I could of course define C in this way:
class C {
public:
void call_my_method() { if (a) a->my_method() else b->my_method(); }
private:
A* a;
B* b;
But I want to avoid paying the cost of the if statement everytime. It also feels inelegant. Is there a way I can create a super type of class A or B? Or any other solution to this problem?
You may use std::function (not sure it has better performance though), something like:
class C {
public:
void call_my_method() { my_method(); }
void use_a(A* a) { my_method = [=]() { a->my_method() }; }
void use_b(B* b) { my_method = [=]() { b->my_method() }; }
private:
std::function<void()> my_method;
};
No; at some point you need branching. The best you can do is to hoist the branching up/down the call stack†, so that more of your program is encapsulated within the figurative if/else construct and the branch itself need be performed less frequently. Of course then you need to duplicate more of your program's source code, which is not ideal.
The only improvement I'd suggest at this time is a construct such as boost::variant. It basically does what you're already doing, but takes up less memory and doesn't have that layer of indirection (using what's called a tagged union instead). It still needs to branch on access, but until profiling has revealed that this is a big bottleneck (and you'll probably find that branch prediction alleviates much of this risk) I wouldn't go any further with your changes.&ddagger;
† I can never remember which way it goes lol
&ddagger; One such change might be to conditionally initialise a function pointer (or modern std::function), then call the function each time. However, that's a lot of indirection. You should profile, but I'd expect it to be slower and harder on the caches. An OO purist might recommend a polymorphic inheritance tree and virtual dispatch, but that's not going to be of any use to you once you care about performance this much.
How about using inheritance with a virtual function, using a 'base class' (C):
class C
{
public:
virtual void do_method() = 0;
};
class D : public C, private A
{
void do_method() { my_method(); }
};
class E : public C, private B
{
void do_method() { my_method(); }
}
Then this will work:
C * d = new D();
d->do_method();
Suggest to wrap your A and B objects into some helper template TProxy which realizes IProxy interface. Class C (or Consumer) will work with IProxy interface and won't know about type of the object inside Proxy
#include <stdio.h>
struct A {
void func () { printf("A::func\n"); }
};
struct B {
void func () { printf("B::func\n"); }
};
struct IProxy
{
virtual void doFunc() = 0;
virtual ~IProxy() {};
};
template<typename T>
struct TProxy : public IProxy
{
TProxy(T& i_obj) : m_obj(i_obj) { }
virtual void doFunc() override { m_obj.func(); }
private:
T& m_obj;
};
class Consumer
{
public:
Consumer(IProxy& i_proxy) : m_proxy(i_proxy) {}
void Func() { m_proxy.doFunc();}
private:
IProxy& m_proxy;
};
Main:
int main()
{
A a;
TProxy<A> aProxy(a);
B b;
TProxy<B> bProxy(b);
Consumer consumerA{aProxy};
consumerA.Func();
Consumer consumerB{bProxy};
consumerB.Func();
return 0;
}
Output:
A::func
B::func

C++ - Accessing multiple object's interfaces via a single pointer

I need to store a container of pointers to objects.
These objects have some common methods/attributes (interface) that I want to enforce (possibly at compile time) and use.
Example:
struct A{
void fly(){}
};
struct B{
void fly(){}
};
A a;
B b;
std::vector<some *> objects;
objects.push_back(&a);
objects.push_back(&b);
for(auto & el: objects)
el->fly();
The simpler solution would be A and B inherit a common base class like FlyingClass:
struct FlyingClass{
void fly(){}
};
struct A: public FlyingClass { ...
struct B: public FlyingClass { ...
and create a
std::vector<FlyingClass *> objects;
This will work and also enforce the fact that I can only add to objects things that can fly (implement FlyingClass).
But what if I need to implement some other common methods/attributes WITHOUT coupling them with the above base class?
Example:
struct A{
void fly(){}
void swim(){}
};
struct B{
void fly(){}
void swim(){}
};
And i would like to do:
for(auto & el: objects) {
el->fly();
...
el->swim();
...
}
More in general i would be able to call a function passing one of these pointers and access both the common methods/attributes, like:
void dostuff(Element * el){
el->fly();
el->swim();
}
I could try to inherit from another interface like:
struct SwimmingClass{
void swim(){}
};
struct A: public FlyingClass, public SwimmingClass { ...
struct B: public FlyingClass, public SwimmingClass { ...
But then what the container should contain?
std::vector<FlyingClass&&SwimmingClass *> objects;
Sure, i could implement SwimmingFlyingClass, but what if i need RunningClass etc.. This is going to be a nightmare.
In other words, how can I implement a pointer to multiple interfaces without coupling them?
Or there is some template way of rethinking the problem?
Even run time type information could be acceptable in my application, if there is an elegant and maintainable way of doing this.
It is possible to do this, in a pretty TMP-heavy way that's a little expensive at runtime. A redesign is favourable so that this is not required. The long and short is that what you want to do isn't possible cleanly without language support, which C++ does not offer.
As for the ugly, shield your eyes from this:
struct AnyBase { virtual ~AnyBase() {} }; // All derived classes inherit from.
template<typename... T> class Limited {
AnyBase* object;
template<typename U> Limited(U* p) {
static_assert(all<is_base_of<T, U>...>::value, "Must derive from all of the interfaces.");
object = p;
}
template<typename U> U* get() {
static_assert(any<is_same<U, T>...>::value, "U must be one of the interfaces.");
return dynamic_cast<U*>(object);
}
}
Some of this stuff isn't defined as Standard so I'll just run through it. The static_assert on the constructor enforces that U inherits from all of T. I may have U and T the wrong way round, and the definition of all is left to the reader.
The getter simply requires that U is one of the template arguments T.... Then we know in advance that the dynamic_cast will succeed, because we checked the constraint statically.
It's ugly, but it should work. So consider
std::vector<Limited<Flying, Swimming>> objects;
for(auto&& obj : objects) {
obj.get<Flying>()->fly();
obj.get<Swimming>()->swim();
}
You are asking for something which doesn't make sense in general, that's why there is no easy way to do it.
You are asking to be able to store heterogeneus objects in a collection, with interfaces that are even different.
How are you going to iterate over the collections without knowing the type? You are restricted to the least specific or forced to do dynamic_cast pointers and cross fingers.
class Entity { }
class SwimmingEntity : public Entity {
virtual void swim() = 0;
}
class FlyingEntity : public Entity {
virtual void fly() = 0;
}
class Fish : public SwimmingEntity {
void swim() override { }
}
class Bird : public FlyingEntity {
void fly() override { }
}
std:vector<Entity*> entities;
This is legal but doesn't give you any information to the capabilities of the runtime Entity instance. It won't lead anywhere unless you work them out with dynamic_cast and rtti (or manual rtti) so where's the advantage?
This is pretty much a textbook example calling for type erasure.
The idea is to define an internal abstract (pure virtual) interface class that captures the common behavior(s) you want, then to use a templated constructor to create a proxy object derived from that interface:
#include <iostream>
#include <vector>
#include <memory>
using std::cout;
struct Bird {
void fly() { cout << "Bird flies\n"; }
void swim(){ cout << "Bird swims\n"; }
};
struct Pig {
void fly() { cout << "Pig flies!\n"; }
void swim() { cout << "Pig swims\n"; }
};
struct FlyingSwimmingThing {
// Pure virtual interface that knows how to fly() and how to swim(),
// but does not depend on type of underlying object.
struct InternalInterface {
virtual void fly() = 0;
virtual void swim() = 0;
virtual ~InternalInterface() { }
};
// Proxy inherits from interface; forwards to underlying object.
// Template class allows proxy type to depend on object type.
template<typename T>
struct InternalImplementation : public InternalInterface {
InternalImplementation(T &obj) : obj_(obj) { }
void fly() { obj_.fly(); }
void swim() { obj_.swim(); }
virtual ~InternalImplementation() { }
private:
T &obj_;
};
// Templated constructor
template<typename T>
FlyingSwimmingThing(T &obj) : proxy_(new InternalImplementation<T>(obj))
{ }
// Forward calls to underlying object via virtual interface.
void fly() { proxy_->fly(); }
void swim() { proxy_->swim(); }
private:
std::unique_ptr<InternalInterface> proxy_;
};
int main(int argc, char *argv[])
{
Bird a;
Pig b;
std::vector<FlyingSwimmingThing> objects;
objects.push_back(FlyingSwimmingThing(a));
objects.push_back(FlyingSwimmingThing(b));
objects[0].fly();
objects[1].fly();
objects[0].swim();
objects[1].swim();
}
The same trick is used for the deleter in a shared_ptr and for std::function. The latter is arguably the poster child for the technique.
You will always find a call to "new" in there somewhere. Also, if you want your wrapper class to hold a copy of the underlying object rather than a pointer, you will find you need a clone() function in the abstract interface class (whose implementation will also call new). So these things can get very non-performant very easily, depending on what you are doing...
[Update]
Just to make my assumptions clear, since some people appear not to have read the question...
You have multiple classes implementing fly() and swim() functions, but that is all that the classes have in common; they do not inherit from any common interface classes.
The goal is to have a wrapper object that can store a pointer to any one of those classes, and through which you can invoke the fly() and swim() functions without knowing the wrapped type at the call site. (Take the time to read the question to see examples; e.g. search for dostuff.) This property is called "encapsulation"; that is, the wrapper exposes the fly() and swim() interfaces directly and it can hide any properties of the wrapped object that are not relevant.
Finally, it should be possible to create a new otherwise-unrelated class with its own fly() and swim() functions and have the wrapper hold a pointer to that class (a) without modifying the wrapper class and (b) without touching any call to fly() or swim() via the wrapper.
These are, as I said, textbook features of type erasure. I did not invent the idiom, but I do recognize when it is called for.

what is "capability query" in dynamic_cast context and why is this useful?

I am reading some C++ material on dynamic_cast and there the following practice is considered bad:
class base{};
class derived1 d1 :public base{};
class derived2 d2 :public base
{
public:
void foo(){}
};
void baz(base *b)
{
if (derived2 *d2= dynamic_cast<derived2 *> (b) )
{
d2-> foo();
}
}
The remedy to this is to use the "capability query" using an empty pure virtual base class like following:
class capability_query
{
public:
virtual void foo()= 0;
};
class base{};
class derived1 d1 :public base{};
class derived2 d2 :public base, public capability_query
{
public:
virtual void foo(){}
};
void baz(base *b)
{
if (capability_query *cq= dynamic_cast<capability_query *> (b) )
{
cq-> foo();
}
}
My 1st question is why is the first code block considered bad?
The way I see it foo is only executed if d2 can be successfully downcasted from b in the baz function. So what is the issue here?!
My 2nd question is why is the second code block considered good? and how does this fix the issue, which I don't understand in the first place.
FYI, my google search for capability query returned http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Capability_Query
which seems to be basically code block1 and not code block2. I still don't get why an additional empty base class is considered a better practice?
EDIT:
here is the best possible answer I can think of.Since inside baz I am downcasting to a pointer type and not reference, in case the downcast is not successful , I will get a Null pointer and not std::bad_cast. So, assuming the cast goes wrong and I do get NULL pointer , but what if I am not supposed to execute Null->foo and if I may forget to test for NULL, so code block 1 could be a problem.
The way code block 2 fixes this, is by adding an empty class. Even if
dynamic_cast<capability_query *> (b)
fails and I get a null pointer , you cannot execute
null->foo since inside capability_query class this foo method is pure virtual. This is just a conjecture , but may be I am on the right path??!!
The academic answer would be that in object oriented design you should not depend on the implementation i.e. concrete classes. Instead you should depend on high-level components like interfaces and abstract base classes. You can read more about this design principle on Wikipedia.
The reason for this is to decouple the design which makes the code more manageable and maintainable.
Let's look at an example. You have a base class and a derived class:
struct Duck {
virtual ~Duck() {}
};
struct MallardDuck : public Duck {
void quack() const {
std::cout << "Quack!" << std::endl;
}
};
Let's say you have another class with a function taking a parameter Duck.
struct SoundMaker {
void makeSound(const Duck* d) {
if (const MallardDuck* md = dynamic_cast<const MallardDuck*>(d)) {
md->quack();
}
}
};
You can use the classes like this:
MallardDuck md;
SoundMaker sm;
sm.makeSound(&md);
Which outputs Quack!.
Now lets add another derived class RubberDuck:
struct RubberDuck : public Duck {
void squeak() const {
std::cout << "Squeak!" << std::endl;
}
};
If you want SoundMaker to use the class RubberDuck you must make changes in makeSound:
void makeSound(const Duck* d) {
if (const MallardDuck* md = dynamic_cast<const MallardDuck*>(d)) {
md->quack();
} else if (const RubberDuck* rd = dynamic_cast<const RubberDuck*>(d)) {
rd->squeak();
}
}
What if you need to add another type of duck and produce its sound? For every new type of duck you add, you will have to make changes in both the code of the new duck class and in SoundMaker. This is because you depend on concrete implementation. Wouldn't it be better if you could just add new ducks without having to change SoundMaker? Look at the following code:
struct Duck {
virtual ~Duck() {}
virtual void makeSound() const = 0;
};
struct MallardDuck : public Duck {
void makeSound() const override {
quack();
}
void quack() const {
std::cout << "Quack!" << std::endl;
}
};
struct RubberDuck : public Duck {
void makeSound() const override {
squeak();
}
void squeak() const {
std::cout << "Squeak!" << std::endl;
}
};
struct SoundMaker {
void makeSound(const Duck* d) {
d->makeSound(); // No dynamic_cast, no dependencies on implementation.
}
};
Now you can use both duck types in the same way as before:
MallardDuck md;
RubberDuck rd;
SoundMaker sm;
sm.makeSound(&md);
sm.makeSound(&rd);
And you can add as many duck types as you wish without having to change anything in SoundMaker. This is a decoupled design and is much easier to maintain. This is the reason for why it is bad practise to down-cast and depend on concrete classes, instead only use high-level interfaces (in the general case).
In your second example you're using a separate class to evaluate if the requested behaviour of the derived class is available. This might be somewhat better as you separate (and encapsulate) the behaviour-control code. It still creates dependencies to your implementation though and every time the implementation changes you may need to change the behaviour-control code.
The first example, where foo is called on d2->foo(), violates the Open-Closed Principle, which in this case means that you should be able to add or remove functionality in d2 without changing code in baz (or anywhere else). The code:
void baz(base *b)
{
if (capability_query *cq= dynamic_cast<capability_query *> (b) )
{
cq-> foo();
}
}
shows that baz depends on the definition of the class d2. If one day, the function d2::foo() is removed, the function baz will also have to be modified, otherwise you'll be a compiler error.
However, in the improved version, if an author decides to remove the foo capability of d2 by removing the base class capability_query, (or indeed if the foo capability were to be added to class d1) the function baz needs no modification, and the run time behavior will automatically be correct.

c++ overriding a function only for a specific instance

I was wondering whether there's a way to override a function for a specific instance only. For ex,
class A
{
public:
...
void update();
...
}
int main()
{
...
A *first_instance = new A();
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A *second_instance = new A();
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A *third_instance = new A();
// ....so on.
...
}
Is there a way to achieve this?
I think virtual function is just what you want, with virtual function, different instances of the same type can have different functions, but you need to inherit the base class. for example
class A
{
public:
...
virtual void update()
{
std::cout << "Class A\n";
}
...
};
class B: public A
{
public:
virtual void update()
{
std::cout << "Class B\n";
}
};
class C: public A
{
public:
virtual void update()
{
std::cout << "Class C\n";
}
};
int main()
{
...
A *first_instance = new A();
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A *second_instance = new B();
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A *third_instance = new C();
// ....so on.
...
}
each instance in the above code will bind different update functions.
Besides, you can also use function pointer to implement your requirement, but it is not recommended. For example
class A
{
public:
A(void(*u)())
{
this->update = u;
}
...
void (*update)();
};
void a_update()
{
std::cout << "update A\n";
}
void b_update()
{
std::cout << "update B\n";
}
void c_update()
{
std::cout << "update C\n";
}
int main()
{
...
A first_instance(a_update);
// I want this to have a specific update() function.
// ex. void update() { functionA(); functionB(); ... }
A second_instance(b_update);
// I want this to have a different update() function than the above one.
// ex. void update() { functionZ(); functionY(); ...}
A third_instance(c_update);
// ....so on.
...
}
Hope helps!
Hold a function in the class.
#include <iostream>
#include <functional>
using namespace std;
class Foo
{
public:
Foo(const function<void ()>& f) : func(f)
{
}
void callFunc()
{
func();
}
private:
function<void ()> func;
};
void printFoo() { cout<<"foo"<<endl; }
void printBar() { cout<<"bar"<<endl; }
int main()
{
Foo a(printFoo);
Foo b(printBar);
a.callFunc();
b.callFunc();
}
You may have noticed that the end brace of a class is often followed by a semicolon, whereas the end braces of functions, while loops etc don't. There's a reason for this, which relates to a feature of struct in C. Because a class is almost identical to a struct, this feature exists for C++ classes too.
Basically, a struct in C may declare a named instance instead of (or as well as) a named "type" (scare quotes because a struct type in C isn't a valid type name in itself). A C++ class can therefore do the same thing, though AFAIK there may be severe limitations on what else that class can do.
I'm not in a position to check at the moment, and it's certainly not something I remember using, but that may mean you can declare a named class instance inheriting from a base class without giving it a class name. There will still be a derived type, but it will be anonymous.
If valid at all, it should look something like...
class : public baseclass // note - no derived class name
{
public:
virtual funcname ()
{
...
}
} instancename;
Personally, even if this is valid, I'd avoid using it for a number of reasons. For example, the lack of a class name means that it's not possible to define member functions separately. That means that the whole class declaration and definition must go where you want the instance declared - a lot of clutter to drop in the middle of a function, or even in a list of global variables.
With no class name, there's presumably no way to declare a constructor or destructor. And if you have non-default constructors from the base class, AFAIK there's no way to specify constructor parameters with this.
And as I said, I haven't checked this - that syntax may well be illegal as well as ugly.
Some more practical approaches to varying behaviour per-instance include...
Using dependency injection - e.g. providing a function pointer or class instance (or lambda) for some part of the behavior as a constructor parameter.
Using a template class - effectively compile-time dependency injection, with the dependency provided as a function parameter to the template.
I think it will be the best if you'll tell us why do you need to override a function for a specific instance.
But here's another approach: Strategy pattern.
Your class need a member that represent some behaviour. So you're creating some abstract class that will be an interface for different behaviours, then you'll implement different behaviours in subclasses of that abstract class. So you can choose those behaviours for any object at any time.
class A;//forward declaration
class Updater
{
public:
virtual ~Updater() {};//don't forget about virtual destructor, though it's not needed in this case of class containing only one function
virtual void update(A&) = 0;
}
class SomeUpdater
{
public:
virtual void update(A & a);//concrete realisation of an update() method
}
class A
{
private:
Updater mUpdater;
public:
explicit A(Updater updater);//constructor takes an updater, let's pretend we want to choose a behaviour once for a lifetime of an object - at creation
void update()
{
mUpdater.update(this);
}
}
You can use local classes, yet, personally, I consider the "hold function in the class" approach mentioned in the other answer better. I'd recommend the following approach only if doFunc must access internals of your base class, which is not possible from a function held in a member variable:
class ABase {
public:
void Func () { this->doFunc (); }
private:
virtual void doFunc () = 0;
public:
virtual ~ABase () { }
};
ABase* makeFirstA () {
class MyA : public ABase {
virtual void doFunc () { std::cout << "First A"; }
};
return new MyA;
}
ABase* makeSecondA () {
class MyA : public ABase {
virtual void doFunc () { std::cout << "Second A"; }
};
return new MyA;
}
int main () {
std::shared_ptr<ABase> first (makeFirstA ());
std::shared_ptr<ABase> second (makeSecondA ());
first->Func ();
second->Func ();
}
From a design patterns point of view, the "local classes" approach implements the template method pattern, while the "hold a function(al) in a member variable" approach reflects the strategy pattern. Which one is more appropriate depends on what you need to achieve.

Enforcing correct parameter types in derived virtual function

I'm finding it difficult to describe this problem very concisely, so I've attached the code for a demonstration program.
The general idea is that we want a set of Derived classes that are forced to implement some abstract Foo() function from a Base class. Each of the derived Foo() calls must accept a different parameter as input, but all of the parameters should also be derived from a BaseInput class.
We see two possible solutions so far, neither we're very happy with:
Remove the Foo() function from the base class and reimplement it with the correct input types in each Derived class. This, however, removes the enforcement that it be implemented in the same manner in each derived class.
Do some kind of dynamic cast inside the receiving function to verify that the type received is correct. However, this does not prevent the programmer from making an error and passing the incorrect input data type. We would like the type to be passed to the Foo() function to be compile-time correct.
Is there some sort of pattern that could enforce this kind of behaviour? Is this whole idea breaking some sort of fundamental idea underlying OOP? We'd really like to hear your input on possible solutions outside of what we've come up with.
Thanks so much!
#include <iostream>
// these inputs will be sent to our Foo function below
class BaseInput {};
class Derived1Input : public BaseInput { public: int d1Custom; };
class Derived2Input : public BaseInput { public: float d2Custom; };
class Base
{
public:
virtual void Foo(BaseInput& i) = 0;
};
class Derived1 : public Base
{
public:
// we don't know what type the input is -- do we have to try to cast to what we want
// and see if it works?
virtual void Foo(BaseInput& i) { std::cout << "I don't want to cast this..." << std::endl; }
// prefer something like this, but then it's not overriding the Base implementation
//virtual void Foo(Derived1Input& i) { std::cout << "Derived1 did something with Derived1Input..." << std::endl; }
};
class Derived2 : public Base
{
public:
// we don't know what type the input is -- do we have to try to cast to what we want
// and see if it works?
virtual void Foo(BaseInput& i) { std::cout << "I don't want to cast this..." << std::endl; }
// prefer something like this, but then it's not overriding the Base implementation
//virtual void Foo(Derived2Input& i) { std::cout << "Derived2 did something with Derived2Input..." << std::endl; }
};
int main()
{
Derived1 d1; Derived1Input d1i;
Derived2 d2; Derived2Input d2i;
// set up some dummy data
d1i.d1Custom = 1;
d2i.d2Custom = 1.f;
d1.Foo(d2i); // this compiles, but is a mistake! how can we avoid this?
// Derived1::Foo() should only accept Derived1Input, but then
// we can't declare Foo() in the Base class.
return 0;
}
Since your Derived class is-a Base class, it should never tighten the base contract preconditions: if it has to behave like a Base, it should accept BaseInput allright. This is known as the Liskov Substitution Principle.
Although you can do runtime checking of your argument, you can never achieve a fully type-safe way of doing this: your compiler may be able to match the DerivedInput when it sees a Derived object (static type), but it can not know what subtype is going to be behind a Base object...
The requirements
DerivedX should take a DerivedXInput
DerivedX::Foo should be interface-equal to DerivedY::Foo
contradict: either the Foo methods are implemented in terms of the BaseInput, and thus have identical interfaces in all derived classes, or the DerivedXInput types differ, and they cannot have the same interface.
That's, in my opinion, the problem.
This problem occured to me, too, when writing tightly coupled classes that are handled in a type-unaware framework:
class Fruit {};
class FruitTree {
virtual Fruit* pick() = 0;
};
class FruitEater {
virtual void eat( Fruit* ) = 0;
};
class Banana : public Fruit {};
class BananaTree {
virtual Banana* pick() { return new Banana; }
};
class BananaEater : public FruitEater {
void eat( Fruit* f ){
assert( dynamic_cast<Banana*>(f)!=0 );
delete f;
}
};
And a framework:
struct FruitPipeLine {
FruitTree* tree;
FruitEater* eater;
void cycle(){
eater->eat( tree->pick() );
}
};
Now this proves a design that's too easily broken: there's no part in the design that aligns the trees with the eaters:
FruitPipeLine pipe = { new BananaTree, new LemonEater }; // compiles fine
pipe.cycle(); // crash, probably.
You may improve the cohesion of the design, and remove the need for virtual dispatching, by making it a template:
template<class F> class Tree {
F* pick(); // no implementation
};
template<class F> class Eater {
void eat( F* f ){ delete f; } // default implementation is possible
};
template<class F> PipeLine {
Tree<F> tree;
Eater<F> eater;
void cycle(){ eater.eat( tree.pick() ); }
};
The implementations are really template specializations:
template<> class Tree<Banana> {
Banana* pick(){ return new Banana; }
};
...
PipeLine<Banana> pipe; // can't be wrong
pipe.cycle(); // no typechecking needed.
You might be able to use a variation of the curiously recurring template pattern.
class Base {
public:
// Stuff that don't depend on the input type.
};
template <typename Input>
class Middle : public Base {
public:
virtual void Foo(Input &i) = 0;
};
class Derived1 : public Middle<Derived1Input> {
public:
virtual void Foo(Derived1Input &i) { ... }
};
class Derived2 : public Middle<Derived2Input> {
public:
virtual void Foo(Derived2Input &i) { ... }
};
This is untested, just a shot from the hip!
If you don't mind the dynamic cast, how about this:
Class BaseInput;
class Base
{
public:
void foo(BaseInput & x) { foo_dispatch(x); };
private:
virtual void foo_dispatch(BaseInput &) = 0;
};
template <typename TInput = BaseInput> // default value to enforce nothing
class FooDistpatch : public Base
{
virtual void foo_dispatch(BaseInput & x)
{
foo_impl(dynamic_cast<TInput &>(x));
}
virtual void foo_impl(TInput &) = 0;
};
class Derived1 : public FooDispatch<Der1Input>
{
virtual void foo_impl(Der1Input & x) { /* your implementation here */ }
};
That way, you've built the dynamic type checking into the intermediate class, and your clients only ever derive from FooDispatch<DerivedInput>.
What you are talking about are covariant argument types, and that is quite an uncommon feature in a language, as it breaks your contract: You promised to accept a base_input object because you inherit from base, but you want the compiler to reject all but a small subset of base_inputs...
It is much more common for programming languages to offer the opposite: contra-variant argument types, as the derived type will not only accept everything that it is bound to accept by the contract, but also other types.
At any rate, C++ does not offer contravariance in argument types either, only covariance in the return type.
C++ has a lot of dark areas, so it's hard to say any specific thing is undoable, but going from the dark areas I do know, without a cast, this cannot be done. The virtual function specified in the base class requires the argument type to remain the same in all the children.
I am sure a cast can be used in a non-painful way though, perhaps by giving the base class an Enum 'type' member that is uniquely set by the constructor of each possible child that might possibly inherit it. Foo() can then check that 'type' and determine which type it is before doing anything, and throwing an assertion if it is surprised by something unexpected. It isn't compile time, but it's the closest a compromise I can think of, while still having the benefits of requiring a Foo() be defined.
It's certainly restricted, but you can use/simulate coviarance in constructors parameters.