I know how to read values of the z buffer in a shader, by making giving a frame buffer a depth texture and then rendering to that and using the texture normally later.
However, for my purposes, I need to be able to read the bounding volumes that the higher levels of a hierarchical depth buffer would represent. My understanding is that modern depth buffers will use hierarchical z buffering, so is there any way I can utilize this with OpenGL?
If I can't, what are my options? Would I have to create the hierarchy by analyzing the depth texture on the CPU, and passing results to my shader?
Related
I would like to retrieve the z height of each pixels of a rendered object in a scene.
I will need to retrieve the color rendered too.
What are the opengl technics to implement ?
glReadPixels and CPU side code
use glReadPixels to obtain both RGB and Depth buffers. Here examples for both:
depth buffer got by glReadPixels is always 1
OpenGL Scale Single Pixel Line
That will read the buffers into CPU accessible memory. This way is slow (due to sync) but should work on any platform.
FBO render to texture and GPU shader
Faster method is to use FBO and render to texture and use that output in next rendering pass as input texture for computing your stuff inside shaders. This however will not run properly on Intel and might need additional tweaking of code between nVidia and AMD.
If you have per pixel output use single QUAD covering your screen as the second rendering pass.
If you got single output for the whole screen instead use single POINT render and compute all in the fragment shader (scann the whole texture inside) something like this:
How to implement 2D raycasting light effect in GLSL
The difference is that by usnig shaders and FBO you are not transferring data between GPU/CPU so its way faster.
The content of the targeted textures can be still readed by CPU using texture related GL functions
compute GPU shaders
There are also compute shaders out there but I did not use them yet so I am just guessing however with them it might be possible to do your stuff in single pass and also the form of the result and computation should not be as limiting.
My bet is that you are doing some post processing similar to Deferred Shading so googling such topic/tutorials might help.
Generally on modern desktop OpenGL hardware what is the best way to fill a depth buffer from a compute shader and then use that depth buffer for graphics pipeline rendering with triangles etc?
Specifically I am wondering about concerns regards HiZ. Also I wonder if it's better to do compute shader modifications to the depth buffer before or after the graphics rendering?
If the compute shader is run after the graphics rendering I assume the depth buffer will typically be decompressed behind the scenes. But I worry done the other way around the depth buffer may be in a decompressed/non-optimal state for the graphics pipeline?
As far as i know, you cannot bind textures with any of the depth formats as images, and thus cannot write to depth format textures in compute shaders. See glBindImageTexture documentation, it lists the formats that your texture format must be compatible to. Depth formats are not among them and the specification says the depth formats are not compatible to the normal formats.
Texture copying functions have the same compatibility restrictions, so you can't even e.g. write to a normal texture in the compute shader and then copy to a depth texture. glCopyImageSubData does not explicitly have that restriction but i haven't tried it and it's not part of the core profile anymore.
What might work is writing to a normal texture, then rendering a fullscreen triangle and setting gl_FragDepth to values read from the texture, but that's an additional fullscreen pass.
I don't quite understand your second question - if your compute shader stuff modifies the depth buffer, the result will most likely be different depending on whether you do it before or after regular rendering because different parts will be visible or occluded.
But maybe that question is moot since it seems you cannot manually write into depth buffers at all - which might also answer your third question - by not writing into depth buffers you cannot mess with the compression of it :)
Please note that i'm no expert in this, i had a similar problem and looked at the docs/spec myself, so this all might be wrong :) Please let me know if you manage to write to depth buffers with compute shaders!
My computer doesn't support OpenCL on the GPU or OpenGL compute shaders so I was wondering if it would be a straight forward process to get data from a vertex or fragment shader?
My goal is to pass 2 textures to the shader and have the shader computer the locations where one texture exists in the other. Where there is a pixel match. I need to retrieve the locations of possible matches from the shader.
Is this plausible? If so, how would I go about it? I have the basic OpenGL knowledge, I have set up a program that draws polygons with colors. I really just need a way to get position values back from the shader.
You can render to memory instead of to screen, and then fetch data from it.
Create and bind a Framebuffer Object
Create a Renderbuffer Object and attach it to the Framebuffer Object
Render your scene. The result will end up in the bound Framebuffer Object instead of on the screen.
Use glReadPixels to pull data from the Framebuffer Object.
Be aware that glReadPixels, like most methods of fetching data from GPU memory back to main memory, is slow and likely unsuitable for real-time applications. But it's the best you can do if you don't have features intended for that, like Compute Shaders, or are willing to do it asynchronously with Pixel Buffer Objects.
You can read more about Framebuffers here.
I am trying to create shadow maps of many objects in a sceneRoom with their shadows being projected on the sceneRoom. Untill now i've been able to project the shadows of the sceneRoom on itself, but i want to project the shadows of other Objects in the sceneRoom on the sceneRoom's floor.
is it possible to create multiple depth textures in one framebuffer? or should i use several Framebuffers where each has one depth texture?
There is only one GL_DEPTH_ATTACHMENT point, so you can only have at most one attached depth buffer at any time. So you have to use some other method.
No, there is only one attachment point (well, technically two if you count GL_DEPTH_STENCIL_ATTACHMENT) for depth in an FBO. You can only attach one thing to the depth, but that does not mean you are limited to a single image.
You can use an array texture to store multiple depth images and then attach this array texture to GL_DEPTH_ATTACHMENT.
However, the only way to draw into an explicit array level in this texture would be to use a Geometry Shader to do layered rendering. Since it sounds like each one of these depth images you are interested in are actually completely different sets of geometry, this does not sound like the approach you want. If you used a Geometry Shader to do this, you would process the same set of geometry for each layer.
One thing you could consider is actually using a single depth buffer, but packing your shadow maps into an atlas. If each of your shadow maps is 512x512, you could store 4 of them in a single texture with dimensions 1024x1024 and adjust texture coordinates (and viewport when you draw into the atlas) appropriately. The reason you might consider doing this is because changing the render target (FBO state) tends to be the most expensive thing you would do between draw calls in a series of depth-only draws. You might change a few uniforms or vertex pointers, but those are dirt cheap to change.
I'm using some standard GLSL (version 120) vertex and fragment shaders to simulate LIDAR. In other words, instead of just returning a color at each x,y position (each pixel, via the fragment shader), it should return color and distance.
I suppose I don't actually need all of the color bits, since I really only want the intensity; so I could store the distance in gl_FragColor.b, for example, and use .rg for the intensity. But then I'm not entirely clear on how I get the value back out again.
Is there a simple way to return values from the fragment shader? I've tried varying, but it seems like the fragment shader can't write variables other than gl_FragColor.
I understand that some people use the GLSL pipeline for general-purpose (non-graphics) GPU processing, and that might be an option — except I still do want to render my objects normally.
OpenGL already returns this "distance calculation" via the depth buffer, although it's not linear. You can simply create a frame buffer object (FBO), attach colour and depth buffers, render to it, and you have the result sitting in the depth buffer (although you'll have to undo the depth transformation). This is the easiest option to program provided you are familiar with the depth calculations.
Another method, as you suggest, is storing the value in a colour buffer. You don't have to use the main colour buffer because then you'd lose your colour or have to render twice. Instead, attach a second render target (texture) to your FBO (GL_COLOR_ATTACHMENT1) and use gl_FragData[0] for normal colour and gl_FragData[1] for your distance (for newer GL versions you should be declaring out variables in the fragment shader). It depends on the precision you need, but you'll probably want to make the distance texture 32 bit float (GL_R32F and write to gl_FragData[1].r).
- This is a decent place to start: http://www.opengl.org/wiki/Framebuffer_Object
Yes, GLSL can be used for compute purposes. Especially with ARB_image_load_store and nvidia's bindless graphics. You even have access to shared memory via compute shaders (though I've never got one faster than 5 times slower). As #Jherico says, fragment shaders generally output to a single place in a framebuffer attachment/render target, and recent features such as image units (ARB_image_load_store) allow you to write to arbitrary locations from a shader. It's probably overkill and slower but you could also write your distances to a buffer via image units .
Finally, if you want the data back on the host (CPU accessible) side, use glGetTexImage with your distance texture (or glMapBuffer if you decided to use image units).
Fragment shaders output to a rendering buffer. If you want to use the GPU for computing and fetching data back into host memory you have a few options
Create a framebuffer and attach a texture to it to hold your data. Once the image has been rendered you can read back information from the texture into host memory.
Use an CUDA, OpenCL or an OpenGL compute shader to write the memory into an arbitrary bound buffer, and read back the buffer contents