Working on a class project in which i need to implement a Merge Sort to sort 500,000 items.
After many attempts I tried looking for source code online and found some here: http://www.sanfoundry.com/cpp-program-implement-merge-sort/
I had to alter the code to use a dynamic array (for size). When the program runs the merge function, I create a new, dynamic array using the number of elements (or high) that are being merged. Once the function is finished sorting them and merge them into the original array, i use delete[] on the new dynamic array. This is where I get my "Heap Corruption Detected" error.
Here is the code (wall of text):
//Heap Sort
#include <iostream>
#include <fstream>
#include <sstream>
#include <ctime>
#include <stdlib.h>
#include <stdio.h>
using namespace std;
//Function Prototypes
void mergesort(int *a, int low, int high);
void merge(int *a, int low, int high, int mid);
int main()
{
//Start with element 1 of the array
int line_no = 0;
int num;
int array_size = 500000;
int* num_array = new int[array_size];
//Open file for input
fstream in_file("CSCI3380_final_project_dataset.txt", ios::in);
//Test for file opening
if (!in_file)
{
cout << "Cannot open words1.txt for reading" << endl;
exit(-1);
}
//Read file
while(true)
{
//Read one line at a time
in_file >> num;
//Test for eof
if (in_file.eof())
break;
num_array[line_no] = num;
//Increment array position
line_no++;
}
//Close the file
in_file.close();
//Start Time
clock_t time_a = clock();
//Run Sorting Algorithim
mergesort(num_array, 0, array_size-1);
//End Time
clock_t time_b = clock();
//Elapsed Time
if (time_a == ((clock_t)-1) || time_b == ((clock_t)-1))
{
cout << "Unable to calculate elapsed time" << endl;
}
else
{
int total_time_ticks = time_b - time_a;
cout << "Elapsed time: " << total_time_ticks << endl;
}
delete[] num_array;
return 0;
}
void mergesort(int *a, int low, int high)
{
int mid;
if (low < high)
{
mid=(low+high)/2;
mergesort(a,low,mid);
mergesort(a,mid+1,high);
merge(a,low,high,mid);
}
return;
}
void merge(int *a, int low, int high, int mid)
{
//--------------------------Create new array-------------------------------
int* sort_array = new int[high];
//--------------------------New Array Created-----------------------------
int i, j, k;
i = low;
k = low;
j = mid + 1;
while (i <= mid && j <= high)
{
if (a[i] < a[j])
{
sort_array[k] = a[i];
k++;
i++;
}
else
{
sort_array[k] = a[j];
k++;
j++;
}
}
while (i <= mid)
{
sort_array[k] = a[i];
k++;
i++;
}
while (j <= high)
{
sort_array[k] = a[j];
k++;
j++;
}
for (i = low; i < k; i++)
{
a[i] = sort_array[i];
}
//---------------------------Delete the New Array--------------------
delete[] sort_array;
//--------------------------Oh No! Heap Corruption!------------------
}
I'll spare you the "you should be using vectors", "you should be using smart pointers", etc. You should be, and I'll leave it at that. Regarding your actual problem....
You're writing one-past the allocated space of your array. The allocated size is high:
int* sort_array = new int[high];
meaning you can only dereference from 0..(high-1). Yet this:
while (j <= high)
{
sort_array[k] = a[j];
k++;
j++;
}
is one location that is guaranteed to write to sort_array[high], and therefore invoke undefined behavior.
A Different Approach
Mergesort is about div-2 partitioning. You know this. What you may not have considered is that C and C++ both perform pointer-arithmetic beautifully and as such you only need two parameters for mergesort(): a base address and a length. the rest can be taken care of for you with pointer math:
Consider this:
void mergesort(int *a, int len)
{
if (len < 2)
return;
int mid = len/2;
mergesort(a, mid);
mergesort(a + mid, len-mid);
merge(a, mid, len);
}
And a merge implementation that looks like this:
void merge(int *a, int mid, int len)
{
int *sort_array = new int[ len ];
int i=0, j=mid, k=0;
while (i < mid && j < len)
{
if (a[i] < a[j])
sort_array[k++] = a[i++];
else
sort_array[k++] = a[j++];
}
while (i < mid)
sort_array[k++] = a[i++];
while (j < len)
sort_array[k++] = a[j++];
for (i=0;i<len;++i)
a[i] = sort_array[i];
delete[] sort_array;
}
Invoked from main() like the following. Note: I've removed the file i/o in place of a random generation just to make it easier to test:
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <cstdio>
using namespace std;
//Function Prototypes
void mergesort(int *a, int len);
void merge(int *a, int mid, int len);
int main()
{
std::srand((unsigned int)std::time(nullptr));
// Start with element 1 of the array
int array_size = 500000;
int* num_array = new int[array_size];
std::generate_n(num_array, array_size, std::rand);
// Start Time
clock_t time_a = clock();
// Run Sorting Algorithim
mergesort(num_array, array_size);
// End Time
clock_t time_b = clock();
//Elapsed Time
if (time_a == ((clock_t)-1) || time_b == ((clock_t)-1))
{
cout << "Unable to calculate elapsed time" << endl;
}
else
{
int total_time_ticks = time_b - time_a;
cout << "Elapsed time: " << total_time_ticks << endl;
}
delete[] num_array;
return 0;
}
This resulted is an elapsed time of:
Elapsed time: 247287
More Efficient
By now you've seen that you will need at most N-space in addition to you sequence. The top-most merge should e evidence enough of that. What you may not consider is that in-reality that is exactly the space you need, and you can allocate it up-front and use it throughout the algorithm if you desire. You can keep the current entrapping for mergesort(), but we'll be wrapping it up with a front-loader that allocates all the space we'll ever need once:
// merges the two sequences a[0...mid-1] and a[mid...len-1]
// using tmp[] as the temporary storage space
static void merge_s(int *a, int *tmp, int mid, int len)
{
int i=0, j=mid, k=0;
while (i < mid && j < len)
{
if (a[i] < a[j])
tmp[k++] = a[i++];
else
tmp[k++] = a[j++];
}
while (i < mid)
tmp[k++] = a[i++];
while (j < len)
tmp[k++] = a[j++];
for (i=0;i<len;++i)
a[i] = tmp[i];
}
static void mergesort_s(int *a, int *tmp, int len)
{
if (len < 2)
return;
int mid = len/2;
mergesort_s(a, tmp, mid);
mergesort_s(a + mid, tmp+mid, len-mid);
merge_s(a, tmp, mid, len);
}
void mergesort(int *a, int len)
{
if (len < 2)
return;
int *tmp = new int[len];
mergesort_s(a,tmp,len);
delete [] tmp;
}
This resulted in an elapsed time of:
Elapsed time: 164704
Considerably better than we had before. Best of luck.
The copy step shown in WhozCraig's code example can be avoided using a pair of functions to control the direction of the merge (note - a bottom up merge would still be faster).
Note - I wouldn't recommend using either WhozCraig's or my code example, since these methods were probably not covered in your class, and it's supposed to be code written based on what you were taught in your class. I don't know if bottom up merge sort was covered in your class, so I didn't post an example of it.
mergesort_s(int *a, int *tmp, int len)
{
// ...
mergesort_atoa(a, tmp, 0, len);
// ...
}
mergesort_atoa(int *a, int *tmp, int low, int end)
{
if((end - low) < 2){
return;
}
int mid = (low + end) / 2;
mergesort_atot(a, tmp, low, mid);
mergesort_atot(a, tmp, mid, end);
merge_s(tmp, a, low, mid, end);
}
mergesort_atot(int *a, int *tmp, int low, int end)
{
if((end - low) < 2){
tmp[0] = a[0];
return;
}
int mid = (low + end) / 2;
mergesort_atoa(a, tmp, low, mid);
mergesort_atoa(a, tmp, mid, end);
merge_s(a, tmp, low, mid, end);
}
void merge_s(int *src, int *dst, int low, int mid, int end)
{
int i = low; // src[] left index
int j = mid; // src[] right index
int k = low; // dst[] index
while(1){ // merge data
if(src[i] <= src[j]){ // if src[i] <= src[j]
dst[k++] = src[i++]; // copy src[i]
if(i < mid) // if not end of left run
continue; // continue (back to while)
while(j < end) // else copy rest of right run
dst[k++] = src[j++];
return; // and return
} else { // else src[i] > src[j]
dst[k++] = src[j++]; // copy src[j]
if(j < end) // if not end of right run
continue; // continue (back to while)
while(i < mid) // else copy rest of left run
dst[k++] = src[i++];
return; // and return
}
}
}
Related
I tried to implement merge sort using C++, however, something went wrong. I have no idea what is wrong.
The following code is what I wrote based on CLRS. I think it is quite easy to understand the meaning.
#include <iostream>
#include <vector>
using namespace std;
void merge(vector<int>& nums, int p, int q, int r);
void mergeSort(vector<int>& nums, int p, int r){
if (p < r) {
int q = (p + r) / 2;
mergeSort(nums, p, q);
mergeSort(nums, q + 1, r);
merge(nums, p, q, r);
}
}
void merge(vector<int>& nums, int p, int q, int r) {
int s1 = p, s2 = q + 1;
vector<int> l1, l2;
for (int i = s1; i <= q; i++) {
l1.push_back(nums[i]);
}
for (int i = s2; i <= r; i++) {
l2.push_back(nums[i]);
}
int left = 0, right = 0;
int idx = 0;
while (left < l1.size() && right < l2.size()) {
if (l1[left] < l2[right]) {
nums[idx] = l1[left++];
}
else {
nums[idx] = l2[right++];
}
idx++;
}
while (left < l1.size()) {
nums[idx++] = l1[left++];
}
while (right < l2.size()) {
nums[idx++] = l2[right++];
}
}
int main() {
vector<int> vect;
vect.push_back(1);
vect.push_back(3);
vect.push_back(12);
vect.push_back(23);
vect.push_back(4);
vect.push_back(11);
vect.push_back(44);
vect.push_back(322);
mergeSort(vect, 0, vect.size() - 1);
for (int i = 0; i < vect.size(); i++) {
cout << vect[i] << endl;
}
return 0;
}
I want to use the program to sort some integers, however, it only shows many duplicate numbers. What's going on? I don't think there is a problem of the merge function.
The code needs a one line fix:
int idx = p; // not idx = 0
Optimized top down using arrays from Wiki article (note bottom up is slightly faster):
void TopDownMerge(int A[], int bgn, int mid, int end, int B[])
{
int i, j, k;
i = bgn, j = mid, k = bgn;
while(1){
if(A[i] <= A[j]){ // if left smaller
B[k++] = A[i++]; // copy left element
if(i < mid) // if not end of left run
continue; // continue
do // else copy rest of right run
B[k++] = A[j++];
while(j < end);
break; // and break
} else { // else right smaller
B[k++] = A[j++]; // copy right element
if(j < end) // if not end of right run
continue; // continue
do // else copy rest of left run
B[k++] = A[i++];
while(i < mid);
break; // and break
}
}
}
void TopDownSplitMerge(int B[], int bgn, int end, int A[])
{
if (end - bgn <= 1) // if run size == 1
return; // consider it sorted
int mid = (end + bgn) / 2;
TopDownSplitMerge(A, bgn, mid, B);
TopDownSplitMerge(A, mid, end, B);
TopDownMerge(B, bgn, mid, end, A);
}
void TopDownMergeSort(int A[], int n) // n = size (not size-1)
{
if(n < 2)
return;
int *B = new int [n]; // 1 time allocate and copy
for(size_t i = 0; i < n; i++)
B[i] = A[i];
TopDownSplitMerge(B, 0, n, A); // sort data from B[] into A[]
delete B;
}
Afterwards, I finally get to fix the bugs of my program. After modification, here is the code:
class Solution {
public:
vector<int> temp;
vector<int> sortArray(vector<int>& nums) {
temp.resize((int)nums.size(), 0);
mergeSort(nums, 0, nums.size() - 1);
return nums;
}
void mergeSort(vector<int>& nums, int start, int end) {
if (start >= end) return;
int middle = (start + end) / 2;
mergeSort(nums, start, middle);
mergeSort(nums, middle + 1, end);
merge(nums, start, middle, end);
}
void merge(vector<int>& nums, int leftStart, int middle, int rightEnd) {
int leftEnd = middle;
int rightStart = middle + 1;
int i = leftStart, j = rightStart;
int index = 0;
while (i <= leftEnd && j <= rightEnd) {
if (nums[i] < nums[j]) {
temp[index] = nums[i++];
}
else {
temp[index] = nums[j++];
}
index++;
}
while (i <= leftEnd) {
temp[index++] = nums[i++];
}
while (j <= rightEnd) {
temp[index++] = nums[j++];
}
for (int i = 0; i < rightEnd - leftStart + 1; i++) {
nums[i + leftStart] = temp[i];
}
}
};
Here is something should be careful next time:
In the merge part, it is difficult to merge in place. It'd be better to use another temp array to store the merged results and update to the target array (nums in this case).
Readable identifers is very recommended (Although the pseudocode of CLRS may not use that part).
Need to use debuggers to find the bug of program {However, it takes like forever to load local variables of VS Code debugers.
Here is the pseudocode straight from the book (CORMEN):
Partition(A,p,r)
x=A[p]
i=p-1
j=r+1
while(TRUE)
repeat
j=j-1
until A[j]<=x
repeat
i=i+1
until A[i]>=x
if i<j
SWAP A[i] <=> A[j]
else return j
Here is code in C++:
#include<bits/stdc++.h>
using namespace std;
int partition(int a[], int low, int high)
{
int pivot = a[low];
int i = low - 1;
int j = high + 1;
while (1)
{
do {
i++;
} while (a[i] < pivot);
do {
j--;
} while (a[j] > pivot);
if (i >= j) {
cout<<j<<endl;
return j;
}
swap(a[i], a[j]);
}
}
/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place*/
int pi = partition(arr, low, high);
// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");
}
// Driver program to test above functions
int main()
{
int arr[] = {7,3,2,6,4,1,3,5};
int n = sizeof(arr)/sizeof(arr[0]);
cout<<"partition:\n";
partition(arr,0,7);
printArray(arr, n);
quickSort(arr, 0, n-1);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
If I use this array in input:
[5,3,2,6,4,1,3,7]
everything works logically well because the array returned by the partitioning will be:
[3,3,2,1,4,6,5,7]
Termination i=5 and j=4 so my pivot is 4. And all elements to the left of 4 are minor and all to the right are major
Now if I use this array in input:
[7,3,2,6,4,1,3,5]
I will have this situation at the end of the partition
[5,3,2,6,4,1,3,7]
which will return to me as pivot j = 6 that is 3. Now the elements on the left of 3 are not all minor and on the right are major.
But how is it possible that this works? Shouldn't I have the elements to the left of the pivot minor and to the right major?
With Hoare partition the pivot and values equal to the pivot can end up anywhere. The returned index is not an index to the pivot, but just a separator. For the code above, when partition is done, then elements <= pivot will be at or to the left of j, and elements >= pivot will be to the right of j. After doing a partition step, the C++ code should be:
quickSort(arr, low, pi); // not pi - 1
quickSort(arr, pi + 1, high);
example code that includes testing of quicksort:
uint32_t Rnd32()
{
static uint32_t r = 0;
r = r*1664525 + 1013904223;
return r;
}
int Partition(int ar[], int lo, int hi)
{
int pv = ar[lo+(hi-lo)/2];
int i = lo - 1;
int j = hi + 1;
while(1){
while(ar[++i] < pv);
while(ar[--j] > pv);
if(i >= j)
return j;
std::swap(ar[i], ar[j]);
}
}
void QuickSort(int ar[], int lo, int hi)
{
while (lo < hi){
int pi = Partition(ar, lo, hi);
if((pi - lo) < (pi - hi)){
QuickSort(ar, lo, pi);
lo = pi + 1;
} else {
QuickSort(ar, pi + 1, hi);
hi = pi;
}
}
}
#define COUNT (16*1024*1024)
int main(int argc, char**argv)
{
size_t i;
int * ar = new int [COUNT];
for(i = 0; i < COUNT; i++){
ar[i] = Rnd32();
}
QuickSort(ar, 0, COUNT-1);
for(i = 1; i < COUNT; i++)
if(ar[i-1] > ar[i])
break;
if(i == COUNT)
std::cout << "passed" << std::endl;
else
std::cout << "failed" << std::endl;
delete[] ar;
return(0);
}
This is a merge- sort algorithm I wrote. Although, it works well for smaller arrays, it gives a segmentation fault for arrays containing more than 7/8 elements. It also fails in some cases where a number is repeated. For example - {5,5,1,2,1}. I have been trying to identify the error but to no avail
I know that the code is not completely efficient but I am concentrating on making it work right now. Suggestions regarding the improvements in the code will be helpful. Thank you in advance.
#include <iostream>
using namespace std;
void printarray(int a[], int size);
void splitsort(int b[], int start, int end); //Split array into half
void merge(int b[], int start, int end); // merge the sorted arrays
int main()
{
cout << "This is merge sort" << endl;
int array[] = { 9,8,7,6,5,4,3,2,1 };
int length = sizeof(array) / sizeof(array[0]);
printarray(array, length);
splitsort(array, 0, length - 1);
cout << "sorted array" << endl;
printarray(array, length);
return 0;
}
void printarray(int a[], int size) {
for(int i = 0; i<size; i++) {
cout << a[i] << ",";
}
cout << endl;
return;
}
void splitsort(int b[], int start, int end) {
//base case
if(end == start) { return; }
//
splitsort(b, start, (start + end) / 2);
splitsort(b, (start + end) / 2 + 1, end);
merge(b, start, end);
return;
}
void merge(int b[], int start, int end) {
int tempb[(end - start) + 1];
//base case
if(end == start) { return; } // if single element being merged
int i = start;
int j = (start + end) / 2 + 1;
for(int k = start; k <= end; k++) {
if(i == (start + end) / 2 + 1) { tempb[k] = b[j]; j++; }// finished first array
else if(j == end + 1) { tempb[k] = b[i]; i++; }// finished second array
else if(b[i] >= b[j]) {
tempb[k] = b[j];
j++;
}
else if(b[j] >= b[i]) {
tempb[k] = b[i];
i++;
}
}
for(int k = start; k <= end; k++) {
b[k] = tempb[k];
}
return;
}
int tempb[(end - start) + 1];
tempb can have as few as 2 elements, while the main array has 10 elements. You end up accessing tempb[9], causing segmentation fault.
To fix the problem, change the size to int tempb[max_size]; where max_size is the size of array as calculated earlier int length = sizeof(array) / sizeof(array[0]);
Changing tempb to std::vector<int> tempb(max_size) will help in debugging as well as being compliant with C++ standard.
Right now I'm learning about algorithms, and I was encouraged to go back through all the different sorting methods to find out how many comparisons each kind takes to sort through an array of numbers. I need to implement a count inside this Merge Sort program which works, but I'm getting a little lost as far as where it needs to go. If anyone could point me in the right direction, I'd really appreciate it.
//MergeSort.h
#include <iostream>
using namespace std;
void merge_sort(int A[], int low, int high);
void merge(int A[], int low, int mid, int high);
void merge_sort(int A[], int low, int high)
{
int mid;
if(low<high)
{
mid=(low+high)/2;
merge_sort(A,low,mid);
merge_sort(A,mid+1,high);
merge(A,low,mid,high);
}
}
void merge(int A[], int low, int mid, int high)
{
int h, i, j, B[100], k;
h = low;
i = low;
j = mid + 1;
while ((h <= mid) && (j <= high))
{
if (A[h] <= A[j])
{
B[i] = A[h];
h++;
}
else
{
B[i] = A[j];
j++;
}
i++;
}
if (h > mid)
{
for (k = j;k <= high;k++)
{
B[i] = A[k];
i++;
}
}
else
{
for (k = h;k <= mid;k++)
{
B[i] = A[k];
i++;
}
}
for (k = low;k <= high;k++)
{
A[k] = B[k];
}
}
and
//MergeSort.cpp
#include <iostream>
using namespace std;
#include "MergeSort.h"
#include <ctime>
int main()
{
int A[1000], n = 100, i;
srand(time(NULL));
cout << "Here are " << n << " random numbers: \n";
for (i = 0; i < n; i++)
{
A[i] = rand() % 100;
cout << " " << A[i];
}
merge_sort(A, 0, n-1);
cout << "\n\nThe sorted array is: ";
for (int i=0;i<n;i++)
cout << A[i] <<" ";
cout<<endl<<endl;
system("pause");
}
One simple way to count number of comparisons is to change your merge and merge-sort functions from void to return number of comparisons within them and counting recursively.
The array of B 's length is only 100.it will be bound.
The simplest way to do this is to use a static global variable, and increment it with each compare of A[] in merge(), then have the main program display the count after a sort. This avoids having to change the interface for the existing functions.
I'm not looking to copy a qsort algorithm. I'm practicing writing qsort and this is what I've come up with and I'm interested in what part of my code is wrong. Please don't tell me that this is homework cause I could just use the code in the link below.
Reference: http://xoax.net/comp/sci/algorithms/Lesson4.php
When this runs I get this in the console:
Program loaded.
run
[Switching to process 10738]
Running…
Current language: auto; currently c++
Program received signal: “EXC_ARITHMETIC”.
void myQSort(int min, int max, int* myArray)
{
// Initially find a random pivot
int pivotIndex = rand() % max;
int pivot = myArray[pivotIndex];
int i = 0 , j = max-1;
// Pointer to begining of array and one to the end
int* begin = myArray;
int* end = &myArray[max-1];
// While begin < end
while( begin < end )
{
// Find the lowest bound number to swap
while( *begin < pivot )
{
begin++;
}
while( *end > pivot )
{
// Find the highest bound number to swap
end--;
}
// Do the swap
swap(begin,end);
}
// Partition left
myQSort(0, pivotIndex-1, myArray);
// Partiion right
myQSort(pivotIndex+1,max, myArray);
}
EDIT--
Code for Swap:
void swap(int* num, int* num2)
{
int temp = *num;
*num = *num2;
*num2 = temp;
}
// sort interval [begin, end)
void myQSort(int* begin, int* end)
{
if(end - begin < 2)
return;
int* l = begin;
int* r = end - 1;
// Initially find a random pivot
int* pivot = l + rand() % (r - l + 1);
while(l != r)
{
// Find the lowest bound number to swap
while(*l < *pivot) ++l;
while(*r >= *pivot && l < r) --r;
// Do the swap
if(pivot == l) { pivot = r; }
std::swap(*l, *r);
}
// Here l == r and numbers in the interval [begin, r) are lower and in the interval [l, end) are greater or equal than the pivot
// Move pivot to the position
std::swap(*pivot, *l);
// Sort left
myQSort(begin, l);
// Sort right
myQSort(l + 1, end);
}
You're not using the min parameter in your code, anywhere. You need to set begin and your pivot value using that.
I tried working out the codes above. But, they don't compile.
#Mihran: Your solution is correct algorithmically but the following line generates an error:
myQSort(min, begin - myArray, myArray);
This is because begin is of type int* and myArray is of type long, following which the compiler shows this error message:
implicit conversion loses integer precision
Here's a working solution in C++:
#include <iostream>
using namespace std;
void mySwap(int& num1, int& num2){
int temp = num1;
num1 = num2;
num2 = temp;
}
void myQsort(int myArray[], int min, int max){
int pivot = myArray[(min + max) / 2];
int left = min, right = max;
while (left < right) {
while (myArray[left] < pivot) {
left++;
}
while (myArray[right] > pivot) {
right--;
}
if (left <= right) {
mySwap(myArray[left], myArray[right]);
left++;
right--;
}
}
if (min < right) {
myQsort(myArray, min, right);
}
if (left < max) {
myQsort(myArray, left, max);
}
}
int main()
{
int myArray[] = {1, 12, -5, 260, 7, 14, 3, 7, 2};
int min = 0;
int max = sizeof(myArray) / sizeof(int);
myQsort(myArray, min, max-1);
for (int i = 0; i < max; i++) {
cout<<myArray[i]<<" ";
}
return 0;
}
Here's a clear C++ implementation, for reference:
#include <iostream>
#include <vector>
using namespace std;
int partition(std::vector<int>& arr, int low, int high) {
// set wall index
int wall_index = low;
int curr_index = low;
int pivot_elem = arr[high]; // taking last element as pivot_element
// loop through the entire received arr
for (int i = curr_index; i < high; ++i) {
// if element is less than or equal to pivot_elem
// swap the element with element on the right of the wall
// i.e swap arr[i] with arr[wall_index]
if (arr[i] <= pivot_elem) {
// swap
int temp = arr[wall_index];
arr[wall_index] = arr[i];
arr[i] = temp;
// move the wall one index to the right
wall_index++;
curr_index++;
} else {
// if the element is greater than the pivot_element
// then keep the wall at the same point and do nothing
curr_index++;
}
}
// need to swap the pivot_elem i.e arr[high] with the element right of the wall
int temp = arr[wall_index];
arr[wall_index] = arr[high];
arr[high] = temp;
return wall_index;
}
void quick_sort(std::vector<int>& arr, int low, int high) {
if (low < high) { // element with single arr always have low >= high
int split = partition(arr, low, high);
quick_sort(arr, low, split-1);
quick_sort(arr, split, high);
}
}
int main() {
std::vector<int> data = {6,13,8,4,2,7,16,3,8};
int N = data.size();
quick_sort(data, 0, N-1);
for (int i : data) {
cout << i << " ";
}
return 0;
}
I don't see a clean implementation of Quicksort on SO, so here is my easy to understand implementation
PLEASE DONT USE IN PRODUCTION CODE
This is only for your understanding
// Swap position a with b in an array of integer numbers
void swap(int *numbers, int a, int b){
int temp = numbers[a];
numbers[a] = numbers[b];
numbers[b] = temp;
}
static int partition(int *data, int low, int high) {
int left = low, right = high, pivot = data[low];
while (left < right) {
// Everthing on the left of pivot is lower than the pivot
while ((left <= right) && data[left] <= pivot) // <= is because left is the pivot initially
left++;
// Everything on the right of the pivot is greater than the pivot
while((left <= right) && data[right] > pivot)
right--;
if (left < right)
swap(data, left, right);
}
// Put the pivot in the 'rigthful' place
swap(data, low, right);
return right;
}
// Quicksort
static void quick_sort(int *numbers, int low, int high)
{
if (high > low) {
int p_index = partition(numbers, low, high);
quick_sort(numbers, low , p_index - 1);
quick_sort(numbers, p_index + 1, high);
}
}