Link missing (by Canny) edges [duplicate] - c++

This question already has an answer here:
OpenCV's Canny Edge Detection in C++
(1 answer)
Closed 8 years ago.
I need to detect all rectangles in image.
Here is my code:
Mat PolygonsDetection(Mat src)
{
Mat gray;
cvtColor(src, gray, CV_BGR2GRAY);
Mat bw;
Canny(src, bw, 50, 200, 3, true);
imshow("canny", bw);
morphologyEx(bw, bw, MORPH_CLOSE, cv::noArray(),cv::Point(-1,-1),1);
imshow("morph", bw);
vector<vector<Point>> countours;
findContours(bw.clone(), countours, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx;
Mat dst = src.clone();
for(int i = 0; i < countours.size(); i++)
{
approxPolyDP(Mat(countours[i]), approx, arcLength(Mat(countours[i]), true) * 0.01, true);
if (approx.size() >= 4 && (approx.size() <= 6))
{
int vtc = approx.size();
vector<double> cos;
for(int j = 2; j < vtc + 1; j++)
cos.push_back(Angle(approx[j%vtc], approx[j-2], approx[j-1]));
sort(cos.begin(), cos.end());
double mincos = cos.front();
double maxcos = cos.back();
if (vtc == 4)// && mincos >= -0.5 && maxcos <= 0.5)
{
Rect r = boundingRect(countours[i]);
double ratio = abs(1 - (double)r.width / r.height);
line(dst, approx.at(0), approx.at(1), cvScalar(0,0,255),4);
line(dst, approx.at(1), approx.at(2), cvScalar(0,0,255),4);
line(dst, approx.at(2), approx.at(3), cvScalar(0,0,255),4);
line(dst, approx.at(3), approx.at(0), cvScalar(0,0,255),4);
SetLabel(dst, "RECT", countours[i]);
}
}
}
return dst;
}
Here is my output:
Instead 17 rectangles(16 little and 1 big) I got only 12 rectangles.
I'm new in opencv, maybe I pass wrong parameters to Canny function and morphologyEx...
So, my questions:
What's wrong I do?
How do I repair it?

What you can do is use the usual erode dilate trick. In Matlab, I usually do the following for creating a mask. This makes lines bigger and flow together.
%Create Structuring element
sel = strel('disk', 1);
% bw is the black and white (binary image) created using e.g. Otsu thresholding
bw2 = imcomplement(bw);
bw3 = imerode(bw2, sel);
bw4 = imdilate(bw3, sel);
tightmask = imcomplement(bw4);
I use this very often for finding independent components in an image

Related

OpenCV--how to get better hand contour from low quality gray image?

I need to get contour from hand image, usually I process image with 4 steps:
get raw RGB gray image from 3 channels to 1 channel:
cvtColor(sourceGrayImage, sourceGrayImage, COLOR_BGR2GRAY);
use Gaussian blur to filter gray image:
GaussianBlur(sourceGrayImage, sourceGrayImage, Size(3,3), 0);
binary gray image, I split image by height, normally I split image to 6 images by its height, then each one I do threshold process:
// we split source picture to binaryImageSectionCount(here it's 8) pieces by its height,
// then we for every piece, we do threshold,
// and at last we combine them agin to binaryImage
const binaryImageSectionCount = 8;
void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
{
// get every partial gray image's height
int partImageHeight = grayImage.rows / binaryImageSectionCount;
for (int i = 0; i < binaryImageSectionCount; i++)
{
Mat partialGrayImage;
Mat partialBinaryImage;
Rect partialRect;
if (i != binaryImageSectionCount - 1)
{
// if it's not last piece, Rect's height should be partImageHeight
partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
}
else
{
// if it's last piece, Rect's height should be (grayImage.rows - i * partImageHeight)
partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i * partImageHeight);
}
Mat partialResource = grayImage(partialRect);
partialResource.copyTo(partialGrayImage);
threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);
// combin partial binary image to one piece
partialBinaryImage.copyTo(binaryImage(partialRect));
///*stringstream resultStrm;
//resultStrm << "partial_" << (i + 1);
//string string = resultStrm.str();
//imshow(string, partialBinaryImage);
//waitKey(0);*/
}
imshow("result binary image.", binaryImage);
waitKey(0);
return;
}
use findcontour to get biggest area contour:
vector<vector<Point> > contours;
findContours(binaryImage, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
normally it works well,
But for some low quality gray image, it doesn't work,like below:
the complete code is here:
#include <opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
// we split source picture to binaryImageSectionCount(here it's 8) pieces by its height,
// then we for every piece, we do threshold,
// and at last we combine them agin to binaryImage
const binaryImageSectionCount = 8;
void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
{
// get every partial gray image's height
int partImageHeight = grayImage.rows / binaryImageSectionCount;
for (int i = 0; i < binaryImageSectionCount; i++)
{
Mat partialGrayImage;
Mat partialBinaryImage;
Rect partialRect;
if (i != binaryImageSectionCount - 1)
{
// if it's not last piece, Rect's height should be partImageHeight
partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
}
else
{
// if it's last piece, Rect's height should be (grayImage.rows - i * partImageHeight)
partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i * partImageHeight);
}
Mat partialResource = grayImage(partialRect);
partialResource.copyTo(partialGrayImage);
threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);
// combin partial binary image to one piece
partialBinaryImage.copyTo(binaryImage(partialRect));
///*stringstream resultStrm;
//resultStrm << "partial_" << (i + 1);
//string string = resultStrm.str();
//imshow(string, partialBinaryImage);
//waitKey(0);*/
}
imshow("result binary image.", binaryImage);
waitKey(0);
return;
}
int main(int argc, _TCHAR* argv[])
{
// get image path
string imgPath("C:\\Users\\Alfred\\Desktop\\gray.bmp");
// read image
Mat src = imread(imgPath);
imshow("Source", src);
//medianBlur(src, src, 7);
cvtColor(src, src, COLOR_BGR2GRAY);
imshow("gray", src);
// do filter
GaussianBlur(src, src, Size(3,3), 0);
// binary image
Mat threshold_output(src.rows, src.cols, CV_8UC1, Scalar(0, 0, 0));
GetBinaryImage(src, threshold_output);
imshow("binaryImage", threshold_output);
// get biggest contour
vector<vector<Point> > contours;
findContours(threshold_output,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
int biggestContourIndex = 0;
int maxContourArea = -1000;
for (int i = 0; i < contours.size(); i++)
{
if (contourArea(contours[i]) > maxContourArea)
{
maxContourArea = contourArea(contours[i]);
biggestContourIndex = i;
}
}
// show biggest contour
Mat biggestContour(threshold_output.rows, threshold_output.cols, CV_8UC1, Scalar(0, 0, 0));
drawContours(biggestContour, contours, biggestContourIndex, cv::Scalar(255,255,255), 2, 8, vector<Vec4i>(), 0, Point());
imshow("maxContour", biggestContour);
waitKey(0);
}
could anybody please help me to get a better hand contour result?
thanks!!!
I have the code snippet in python, you can follow the same approach in C:
img = cv2.imread(x, 1)
cv2.imshow("img",img)
imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",imgray)
#Code for histogram equalization
equ = cv2.equalizeHist(imgray)
cv2.imshow('equ', equ)
#Code for contrast limited adaptive histogram equalization
#clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
#cl2 = clahe.apply(imgray)
#cv2.imshow('clahe2', cl2)
This is the result I obtained:
If you're image is horribly bad you could try the code that I commented involving contrast limited adaptive histogram equalization.

How to detect squares in video with OpenCV?

So I combined squares.cpp with cvBoundingRect.cpp code to detect squares in video. I therefore, had to convert from IplImage to Mat type so that findSquares and drawSquares methods could run (By using cvarrToMat function). But unfortunately, after successful compilation I get this error when running:
OpenCV Error: Assertion failed (j < nsrcs && src[j].depth() == depth) in mixChannels, file /Users/Desktop/opencv-3.0.0-rc1/modules/core/src/convert.cpp, line 1205
libc++abi.dylib: terminating with uncaught exception of type cv::Exception: /Users/Desktop/opencv-3.0.0-rc1/modules/core/src/convert.cpp:1205: error: (-215) j < nsrcs && src[j].depth() == depth in function mixChannels
Abort trap: 6
Here's the code:
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <math.h>
#include <string.h>
using namespace cv;
using namespace std;
int thresh = 50, N = 11;
const char* wndname = "Square Detection Demo";
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
{
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
int ch[] = {c, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l+1)*255/N;
}
// find contours and store them all as a list
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
}
}
}
}
}
// the function draws all the squares in the image
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
{
for( size_t i = 0; i < squares.size(); i++ )
{
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(255,0,0), 3, LINE_AA);
}
imshow(wndname, image);
}
CvRect rect;
CvSeq* contours = 0;
CvMemStorage* storage = NULL;
CvCapture *cam;
IplImage *currentFrame, *currentFrame_grey, *differenceImg, *oldFrame_grey;
bool first = true;
int main(int argc, char* argv[])
{
//Create a new movie capture object.
cam = cvCaptureFromCAM(0);
//create storage for contours
storage = cvCreateMemStorage(0);
//capture current frame from webcam
currentFrame = cvQueryFrame(cam);
//Size of the image.
CvSize imgSize;
imgSize.width = currentFrame->width;
imgSize.height = currentFrame->height;
//Images to use in the program.
currentFrame_grey = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);
namedWindow( wndname, 1 );
vector<vector<Point> > squares;
while(1)
{
currentFrame = cvQueryFrame( cam );
if( !currentFrame ) break;
//Convert the image to grayscale.
cvCvtColor(currentFrame,currentFrame_grey,CV_RGB2GRAY);
if(first) //Capturing Background for the first time
{
differenceImg = cvCloneImage(currentFrame_grey);
oldFrame_grey = cvCloneImage(currentFrame_grey);
cvConvertScale(currentFrame_grey, oldFrame_grey, 1.0, 0.0);
first = false;
continue;
}
//Minus the current frame from the moving average.
cvAbsDiff(oldFrame_grey,currentFrame_grey,differenceImg);
//bluring the differnece image
cvSmooth(differenceImg, differenceImg, CV_BLUR);
//apply threshold to discard small unwanted movements
cvThreshold(differenceImg, differenceImg, 25, 255, CV_THRESH_BINARY);
//find contours
cv::Mat diffImg = cv::cvarrToMat(differenceImg);
cv::Mat currFrame = cv::cvarrToMat(currentFrame);
findSquares(diffImg, squares);
//draw bounding box around each contour
drawSquares(currFrame, squares);
//display colour image with bounding box
cvShowImage("Output Image", currentFrame);
//display threshold image
cvShowImage("Difference image", differenceImg);
//New Background
cvConvertScale(currentFrame_grey, oldFrame_grey, 1.0, 0.0);
//clear memory and contours
cvClearMemStorage( storage );
contours = 0;
//press Esc to exit
char c = cvWaitKey(33);
if( c == 27 ) break;
}
// Destroy the image & movies objects
cvReleaseImage(&oldFrame_grey);
cvReleaseImage(&differenceImg);
cvReleaseImage(&currentFrame);
cvReleaseImage(&currentFrame_grey);
return 0;
}
As the error message says, your problem is in cv::mixChannels(). See documentation.
Or you could simply do something like
cv::Mat channels[3];
cv::split(multiChannelImage, channels);
and then access each channel using
cv::Mat currChannel = channels[channelNumber]

Find Squares in opencv : access violation reading location

I try to run squares.cpp that is in opencv direction in C++ sample , everything fine but when program reach to this point : approxPolyDP(Mat(contours[i]),approx,arcLength(Mat(contours[i]), true)*0.02, true);
I get the exception that say :
Unhandled exception at 0x61163C77 (opencv_imgproc244d.dll) in FindRectangle.exe: 0xC0000005: Access violation reading location 0x030F9000.
I do any thing to solve this problem but I can't.
I run it in visual studio 2012 with 32 bit processing.please help!!!!!!!!!!
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
{
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
int ch[] = {c, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l+1)*255/N;
}
// find contours and store them all as a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx ;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
}
else{
approx.clear();
}
}
}
}
// the function draws all the squares in the image
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
{
for( size_t i = 0; i < squares.size(); i++ )
{
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
}
imshow(wndname, image);
}
The usage need to update like below:
//Extract the contours so that
vector<vector<Point> > contours0;
findContours( img, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
contours.resize(contours0.size());
for( size_t k = 0; k < contours0.size(); k++ )
approxPolyDP(Mat(contours0[k]), contours[k], 3, true);
Link for documentation

opencv/c++ how do i only detect key points inside a square area which had been detected before

I am working on my project and I got a problem is that I have no idea how to only detect the key points from a square area which had been detector before. Below is my demo and as so far, my code would detect key points both outside and inside square: https://www.youtube.com/watch?feature=player_embedded&v=3U8V6PhMnZ8
This is my code to find the square:
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
gray = gray0 >= (l+1) * 255 / threshold_level;
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 3000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
This is my code to draw the square and the corner points:
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
Point p1 = squares[i][0];
Point p2 = squares[i][1];
Point p3 = squares[i][2];
Point p4 = squares[i][3];
cout<<"p1 is "<<p1<<" p2 is "<<p2<<" p3 is "<<p3<<" p4 is "<<p4<<endl;
circle(image, squares[i][0], 3, Scalar(0,0,255), 5, 8, 0);
circle(image, squares[i][1], 3, Scalar(0,255,255), 5, 8, 0);
circle(image, squares[i][2], 3, Scalar(255,0,255), 5, 8, 0);
circle(image, squares[i][3], 3, Scalar(255,255,0), 5, 8, 0);
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
This is my code to detect key points:
Mat gray_image;
vector<KeyPoint> keyPoints;
cvtColor(image, gray_image, CV_BGR2GRAY);
FastFeatureDetector fast(60);
fast.detect(gray_image,keyPoints);
drawKeypoints(image, keyPoints,image, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
You can crop the image using
Rect r(left,top,width,height); // Part of the image we are interested in
Mat roi(fullImage, r); // will create a reference to the rectangle r of the original image. Note that it is not a copy.
You have two possible solutions:
Detect all the keypoints and then check if they are inside the square.
Crop the square from the image to generate a new image and then detect keypoints there.
Cheers,

OpenCV Line Detection

I am trying to find the edges of the centered box in this image:
I have tried using a HoughLines using dRho=img_width/1000, dTheta=pi/180, and threshold=250
It works great on this image, scaled to 1/3 of the size, but on the full size image it just gets lines everywhere in every direction...
What can I do to tune this to be more accurate?
The code to achieve the result below is a slight modification of the one presented in this answer: how to detect a square:
The original program can be found inside OpenCV, it's called squares.cpp. The code below was modified to search squares only in the first color plane, but as it still detects many squares, at the end of the program I discard all of them except the first, and then call draw_squares() to show what was detected. You can change this easilly to draw all of them and see everything that was detected.
You can do all sorts of thing from now own, including setting a (ROI) region of interest to extract the area that's inside the square (ignore everything else around it).
You can see that the detected rectangle is not perfectly aligned with the lines in the image. You should perform some pre-processing (erode?) operations in the image to decrease the thickness of lines and improve the detection. But from here on it's all on you:
#include <cv.h>
#include <highgui.h>
using namespace cv;
double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
void find_squares(Mat& image, vector<vector<Point> >& squares)
{
// TODO: pre-processing
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point> > contours;
// find squares in the first color plane.
for (int c = 0; c < 1; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
void draw_squares(Mat& img, vector<vector<Point> > squares)
{
for (int i = 0; i < squares.size(); i++)
{
for (int j = 0; j < squares[i].size(); j++)
{
cv::line(img, squares[i][j], squares[i][(j+1) % 4], cv::Scalar(0, 255, 0), 1, CV_AA);
}
}
}
int main(int argc, char* argv[])
{
Mat img = imread(argv[1]);
vector<vector<Point> > squares;
find_squares(img, squares);
std::cout << "* " << squares.size() << " squares were found." << std::endl;
// Ignore all the detected squares and draw just the first found
vector<vector<Point> > tmp;
if (squares.size() > 0)
{
tmp.push_back(squares[0]);
draw_squares(img, tmp);
}
//imshow("squares", img);
//cvWaitKey(0);
imwrite("out.png", img);
return 0;
}
when resizing the image, the image is normally first blurred with a filter, e.g. Gaussian, in order to get rid of high frequencies. The fact that resized one works better is likely because your original image is somehow noisy.
Try blur the image first, e.g. with cv::GaussianBlur(src, target, Size(0,0), 1.5), then it should be equivalent to resizing. (It forgot the theory, if it does not work, try 3 and 6 as well)
Try using a preprocessing pass with the erosion filter. It will give you the same effect as the downscaling - the lines will become thinner and will not disappear at the same time.
The "Blur" filter is also a good idea, as chaiy says.
This way (with blur) it will become something like http://www.ic.uff.br/~laffernandes/projects/kht/index.html (Kernel Based Hough Transform)