Query the virtual table for a function offset - c++

Is there a debugging compiler dependent (Visual Studio 2005) method to determine the size of the virtual table for an object or the offset of a specific function? I would like to add some assertions.
The bigger problem (the context): large industrial application, I'm just new with maintenance, I receive "Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call. [bla-bla-bla]" Because a virtual function calls goes to the wrong function. The cause? The include files order matters (there's no precompiled header). If "ws\winundef.h" (wxWidgets: https://github.com/wxWidgets/wxWidgets/blob/master/include/wx/msw/winundef.h) is included after "windows.h" it works correctly.
Edit From the watch window in debugger: wrong function pointer is 0x0a01dec5 [thunk]:MyPanel::vcall'{696,{flat}}' }'
, the good function pointer is 0x0a12e041 [thunk]:MyPanel::vcall'{692,{flat}}' }'
How can I access this stuff ?

The size of the vtbl doesn't really change between different TUs, so checking it wouldn't help you.
What you need to do is to ensure that you never include <windows.h> before including wxWidgets headers. If you need to include it at all (and most of the time you shouldn't), include <wx/msw/wrapwin.h> instead. Doing this in your PCH (and ensuring that all files in the project do use the PCH) is an almost certain way to solve the problem.

Related

memory address of a member variable of argument objects changes when dll function is called

class SomeClass
{
//some members
MemberClass one_of_the_mem_;
}
I have a function foo( SomeClass *object ) within a dll, it is being called from an exe.
Problem
address of one_of_the_mem_ changes during the time the dll call is dispatched.
Details:
before the call is made (from exe):
'&(this).one_of_the_mem_' - `0x00e913d0`
after - in the dll itself :
'&(this).one_of_the_mem_' - `0x00e913dc`
The address of object remains constant. It is only the member whose address shift by c every time.
I want some pointers regarding how can I troubleshoot this problem.
Code :
Code from Exe
stat = module->init ( this,
object_a,
&object_b,
object_c,
con_dir
);
Code in DLL
Status_C ModuleClass( SomeClass *object, int index, Config *conf, const char* name)
{
_ASSERT(0); //DEBUGGING HOOK
...
Update 1:
I compared the Offsets of members following Michael's instruction and they are the same in both cases.
Update 2:
I found a way to dump the class layout and noticed the difference in size, I have to figure out why is that happening though.
linked is the question that I found to dump class layout.
Update 3:
Final Update : Solved the problem, much thanks to Michael Burr.
it turned out that one of the build was using 32 bit time, _USE_32BIT_TIME_T was defined in it and the other one was using 64 bit time. So it generated the different layout for the object, attached is the difference file.
Your DLL was probably compiled with different set of compiler options (or maybe even a slightly different header file) and the class layout is different as a result.
For example, if one was built using debug flags and other wasn't or even if different compiler versions were used. For example, the libraries used by different compiler versions might have subtle differences and if your class incorporates a type defined by the library you could have different layouts.
As a concrete example, with Microsoft's compiler iterators and containers are sensitive to release/debug, _SECURE_SCL on/off , and _HAS_ITERATOR_DEBUGGING on/off setting (at least up though VS 2008 - VS 2010 may have changed some of this to a certain extent). See http://connect.microsoft.com/VisualStudio/feedback/details/352699/secure-scl-is-broken-in-release-builds for some details.
These kinds of issues make using C++ classes across DLL boundaries a bit more fragile than using straight C interfaces. They can occur in C structures as well, but it seems like C++ libraries have these differences more often (I think that's the nature of having richer functionality).
Another layout-changing issue that occurs every now and then is having a different structure packing option in effect in the different compiles. One thing that can 'hide' this is that pragmas are often used in headers to set structure packing to a certain value, and sometimes you may come across a header that does this without changing it back to the default (or more correctly the previous setting). If you have such a header, it's easy to have it included in the build for one module, but not another.
that sounds a bit wierd, you should show more code, it should 'move' if it being passed by ref, it sounds more like a copy of it is being made and that having the member function called.
Perhaps the DLL versions is compiled against a different version that you are referencing. check and make sure the header file is for the same version as the dll.
Recompile the library if you can.

calling kernel32.dll function without including windows.h

if kernel32.dll is guaranteed to loaded into a process virtual memory,why couldn't i call function such as Sleep without including windows.h?
the below is an excerpt quoting from vividmachine.com
5. So, what about windows? How do I find the addresses of my needed DLL functions? Don't these addresses change with every service pack upgrade?
There are multitudes of ways to find the addresses of the functions that you need to use in your shellcode. There are two methods for addressing functions; you can find the desired function at runtime or use hard coded addresses. This tutorial will mostly discuss the hard coded method. The only DLL that is guaranteed to be mapped into the shellcode's address space is kernel32.dll. This DLL will hold LoadLibrary and GetProcAddress, the two functions needed to obtain any functions address that can be mapped into the exploits process space. There is a problem with this method though, the address offsets will change with every new release of Windows (service packs, patches etc.). So, if you use this method your shellcode will ONLY work for a specific version of Windows. Further dynamic addressing will be referenced at the end of the paper in the Further Reading section.
The article you quoted focuses on getting the address of the function. You still need the function prototype of the function (which doesn't change across versions), in order to generate the code for calling the function - with appropriate handling of input and output arguments, register values, and stack.
The windows.h header provides the function prototype that you wish to call to the C/C++ compiler, so that the code for calling the function (the passing of arguments via register or stack, and getting the function's return value) can be generated.
After knowing the function prototype by reading windows.h, a skillful assembly programmer may also be able to write the assembly code to call the Sleep function. Together with the function's address, these are all you need to make the function call.
With some black magic you can ;). there have been many custom implementations of GetProcAddress, which would allow you to get away with not needing windows.h, this however isn't be all and end all and could probably end up with problems due to internal windows changes. Another method is using toolhlp to enumerate the modules in the process to get kernel.dll's base, then spelunks its PE for the EAT and grab the address of GetProcAddress. from there you just need function pointer prototypes to call the addresses correctly(and any structure defs needed), which isn't too hard meerly labour intensive(if you have many functions), infact under windows xp this is required to disable DEP due to service pack differencing, ofc you need windows.h as a reference to get this, you just don't need to include it.
You'd still need to declare the function in order to call it, and you'd need to link with kernel32.lib. The header file isn't anything magic, it's basically just a lot of function declarations.
I can do it with 1 line of assembly and then some helper functions to walk the PEB
file by hard coding the correct offsets to different members.
You'll have to start here:
static void*
JMIM_ASM_GetBaseAddr_PEB_x64()
{
void* base_address = 0;
unsigned long long var_out = 0;
__asm__(
" movq %%gs:0x60, %[sym_out] ; \n\t"
:[sym_out] "=r" (var_out) //:OUTPUTS
);
//: printf("[var_out]:%d\n", (int)var_out);
base_address=(void*)var_out;
return( base_address );
}
Then use windbg on an executable file to inspect the data structures on your machine.
A lot of the values you'll be needing are hard to find and only really documented by random hackers. You'll find yourself on a lot of malware writing sites digging for answers.
dt nt!_PEB -r #$peb
Was pretty useful in windbg to get information on the PEB file.
There is a full working implementation of this in my game engine.
Just look in: /DEP/PEB2020 for the code.
https://github.com/KanjiCoder/AAC2020
I don't include <windows.h> in my game engine. Yet I use "GetProcAddress"
and "LoadLibraryA". Might be in-advisable to do this. But my thought was the more
moving parts, the more that can go wrong. So figured I'd take the "#define WIN32_LEAN_AND_MEAN" to it's absurd conclusion and not include <windows.h> at all.

How to use CUDA constant memory in a programmer pleasant way?

I'm working on a number crunching app using the CUDA framework. I have some static data that should be accessible to all threads, so I've put it in constant memory like this:
__device__ __constant__ CaseParams deviceCaseParams;
I use the call cudaMemcpyToSymbol to transfer these params from the host to the device:
void copyMetaData(CaseParams* caseParams)
{
cudaMemcpyToSymbol("deviceCaseParams", caseParams, sizeof(CaseParams));
}
which works.
Anyways, it seems (by trial and error, and also from reading posts on the net) that for some sick reason, the declaration of deviceCaseParams and the copy operation of it (the call to cudaMemcpyToSymbol) must be in the same file. At the moment I have these two in a .cu file, but I really want to have the parameter struct in a .cuh file so that any implementation could see it if it wants to. That means that I also have to have the copyMetaData function in the a header file, but this messes up linking (symbol already defined) since both .cpp and .cu files include this header (and thus both the MS C++ compiler and nvcc compiles it).
Does anyone have any advice on design here?
Update: See the comments
With an up-to-date CUDA (e.g. 3.2) you should be able to do the memcpy from within a different translation unit if you're looking up the symbol at runtime (i.e. by passing a string as the first arg to cudaMemcpyToSymbol as you are in your example).
Also, with Fermi-class devices you can just malloc the memory (cudaMalloc), copy to the device memory, and then pass the argument as a const pointer. The compiler will recognise if you are accessing the data uniformly across the warps and if so will use the constant cache. See the CUDA Programming Guide for more info. Note: you would need to compile with -arch=sm_20.
If you're using pre-Fermi CUDA, you will have found out by now that this problem doesn't just apply to constant memory, it applies to anything you want on the CUDA side of things. The only two ways I have found around this are to either:
Write everything CUDA in a single file (.cu), or
If you need to break out code into separate files, restrict yourself to headers which your single .cu file then includes.
If you need to share code between CUDA and C/C++, or have some common code you share between projects, option 2 is the only choice. It seems very unnatural to start with, but it solves the problem. You still get to structure your code, just not in a typically C like way. The main overhead is that every time you do a build you compile everything. The plus side of this (which I think is possibly why it works this way) is that the CUDA compiler has access to all the source code in one hit which is good for optimisation.

Weird MSC 8.0 error: "The value of ESP was not properly saved across a function call..."

We recently attempted to break apart some of our Visual Studio projects into libraries, and everything seemed to compile and build fine in a test project with one of the library projects as a dependency. However, attempting to run the application gave us the following nasty run-time error message:
Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call. This is usually a result of calling a function pointer declared with a different calling convention.
We have never even specified calling conventions (__cdecl etc.) for our functions, leaving all the compiler switches on the default. I checked and the project settings are consistent for calling convention across the library and test projects.
Update: One of our devs changed the "Basic Runtime Checks" project setting from "Both (/RTC1, equiv. to /RTCsu)" to "Default" and the run-time vanished, leaving the program running apparently correctly. I do not trust this at all. Was this a proper solution, or a dangerous hack?
This debug error means that the stack pointer register is not returned to its original value after the function call, i.e. that the number of pushes before the function call were not followed by the equal number of pops after the call.
There are 2 reasons for this that I know (both with dynamically loaded libraries). #1 is what VC++ is describing in the error message, but I don't think this is the most often cause of the error (see #2).
1) Mismatched calling conventions:
The caller and the callee do not have a proper agreement on who is going to do what. For example, if you're calling a DLL function that is _stdcall, but you for some reason have it declared as a _cdecl (default in VC++) in your call. This would happen a lot if you're using different languages in different modules etc.
You would have to inspect the declaration of the offending function, and make sure it is not declared twice, and differently.
2) Mismatched types:
The caller and the callee are not compiled with the same types. For example, a common header defines the types in the API and has recently changed, and one module was recompiled, but the other was not--i.e. some types may have a different size in the caller and in the callee.
In that case, the caller pushes the arguments of one size, but the callee (if you're using _stdcall where the callee cleans the stack) pops the different size. The ESP is not, thus, returned to the correct value.
(Of course, these arguments, and others below them, would seem garbled in the called function, but sometimes you can survive that without a visible crash.)
If you have access to all the code, simply recompile it.
I read this in other forum
I was having the same problem, but I just FIXED it. I was getting the same error from the following code:
HMODULE hPowerFunctions = LoadLibrary("Powrprof.dll");
typedef bool (*tSetSuspendStateSig)(BOOL, BOOL, BOOL);
tSetSuspendState SetSuspendState = (tSuspendStateSig)GetProcAddress(hPowerfunctions, "SetSuspendState");
result = SetSuspendState(false, false, false); <---- This line was where the error popped up.
After some investigation, I changed one of the lines to:
typedef bool (WINAPI*tSetSuspendStateSig)(BOOL, BOOL, BOOL);
which solved the problem. If you take a look in the header file where SetSuspendState is found (powrprof.h, part of the SDK), you will see the function prototype is defined as:
BOOLEAN WINAPI SetSuspendState(BOOLEAN, BOOLEAN, BOOLEAN);
So you guys are having a similar problem. When you are calling a given function from a .dll, its signature is probably off. (In my case it was the missing WINAPI keyword).
Hope that helps any future people! :-)
Cheers.
Silencing the check is not the right solution. You have to figure out what is messed up with your calling conventions.
There are quite a few ways to change the calling convetion of a function without explicitly specifying it. extern "C" will do it, STDMETHODIMP/IFACEMETHODIMP will also do it, other macros might do it as well.
I believe if run your program under WinDBG (http://www.microsoft.com/whdc/devtools/debugging/default.mspx), the runtime should break at the point where you hit that problem. You can look at the call stack and figure out which function has the problem and then look at its definition and the declaration that the caller uses.
I saw this error when the code tried to call a function on an object that was not of the expected type.
So, class hierarchy: Parent with children: Child1 and Child2
Child1* pMyChild = 0;
...
pMyChild = pSomeClass->GetTheObj();// This call actually returned a Child2 object
pMyChild->SomeFunction(); // "...value of ESP..." error occurs here
I was getting similar error for AutoIt APIs which i was calling from VC++ program.
typedef long (*AU3_RunFn)(LPCWSTR, LPCWSTR);
However, when I changed the declaration which includes WINAPI, as suggested earlier in the thread, problem vanished.
Code without any error looks like:
typedef long (WINAPI *AU3_RunFn)(LPCWSTR, LPCWSTR);
AU3_RunFn _AU3_RunFn;
HINSTANCE hInstLibrary = LoadLibrary("AutoItX3.dll");
if (hInstLibrary)
{
_AU3_RunFn = (AU3_RunFn)GetProcAddress(hInstLibrary, "AU3_WinActivate");
if (_AU3_RunFn)
_AU3_RunFn(L"Untitled - Notepad",L"");
FreeLibrary(hInstLibrary);
}
It's worth pointing out that this can also be a Visual Studio bug.
I got this issue on VS2017, Win10 x64. At first it made sense, since I was doing weird things casting this to a derived type and wrapping it in a lambda. However, I reverted the code to a previous commit and still got the error, even though it wasn't there before.
I tried restarting and then rebuilding the project, and then the error went away.
I was getting this error calling a function in a DLL which was compiled with a pre-2005 version of Visual C++ from a newer version of VC (2008).
The function had this signature:
LONG WINAPI myFunc( time_t, SYSTEMTIME*, BOOL* );
The problem was that time_t's size is 32 bits in pre-2005 version, but 64 bits since VS2005 (is defined as _time64_t). The call of the function expects a 32 bit variable but gets a 64 bit variable when called from VC >= 2005. As parameters of functions are passed via the stack when using WINAPI calling convention, this corrupts the stack and generates the above mentioned error message ("Run-Time Check Failure #0 ...").
To fix this, it is possible to
#define _USE_32BIT_TIME_T
before including the header file of the DLL or -- better -- change the signature of the function in the header file depending on the VS version (pre-2005 versions don't know _time32_t!):
#if _MSC_VER >= 1400
LONG WINAPI myFunc( _time32_t, SYSTEMTIME*, BOOL* );
#else
LONG WINAPI myFunc( time_t, SYSTEMTIME*, BOOL* );
#endif
Note that you need to use _time32_t instead of time_t in the calling program, of course.
I was having this exact same error after moving functions to a dll and dynamically loading the dll with LoadLibrary and GetProcAddress. I had declared extern "C" for the function in the dll because of the decoration. So that changed calling convention to __cdecl as well. I was declaring function pointers to be __stdcall in the loading code. Once I changed the function pointer from __stdcall to__cdecl in the loading code the runtime error went away.
Are you creating static libs or DLLs? If DLLs, how are the exports defined; how are the import libraries created?
Are the prototypes for the functions in the libs exactly the same as the function declarations where the functions are defined?
do you have any typedef'd function prototypes (eg int (*fn)(int a, int b) )
if you dom you might be have gotten the prototype wrong.
ESP is an error on the calling of a function (can you tell which one in the debugger?) that has a mismatch in the parameters - ie the stack has restored back to the state it started in when you called the function.
You can also get this if you're loading C++ functions that need to be declared extern C - C uses cdecl, C++ uses stdcall calling convention by default (IIRC). Put some extern C wrappers around the imported function prototypes and you may fix it.
If you can run it in the debugger, you'll see the function immediatey. If not, you can set DrWtsn32 to create a minidump that you can load into windbg to see the callstack at the time of the error (you'll need symbols or a mapfile to see the function names though).
Another case where esp can get messed up is with an inadvertent buffer overflow, usually through mistaken use of pointers to work past the boundary of an array. Say you have some C function that looks like
int a, b[2];
Writing to b[3] will probably change a, and anywhere past that is likely to hose the saved esp on the stack.
You would get this error if the function is invoked with a calling convention other than the one it is compiled to.
Visual Studio uses a default calling convention setting thats decalred in the project's options. Check if this value is the same in the orignal project settings and in the new libraries. An over ambitious dev could have set this to _stdcall/pascal in the original since it reduces the code size compared to the default cdecl. So the base process would be using this setting and the new libraries get the default cdecl which causes the problem
Since you have said that you do not use any special calling conventions this seems to be a good probability.
Also do a diff on the headers to see if the declarations / files that the process sees are the same ones that the libraries are compiled with .
ps : Making the warning go away is BAAAD. the underlying error still persists.
This happened to me when accessing a COM object (Visual Studio 2010). I passed the GUID for another interface A for in my call to QueryInterface, but then I cast the retrieved pointer as interface B. This resulted in making a function call to one with an entirely signature, which accounts for the stack (and ESP) being messed up.
Passing the GUID for interface B fixed the problem.
In my MFC C++ app I am experiencing the same problem as reported in Weird MSC 8.0 error: “The value of ESP was not properly saved across a function call…”. The posting has over 42K views and 16 answers/comments none of which blamed the compiler as the problem. At least in my case I can show that the VS2015 compiler is at fault.
My dev and test setup is the following: I have 3 PCs all of which run Win10 version 10.0.10586. All are compiling with VS2015, but here is the difference. Two of the VS2015s have Update 2 while the other has Update 3 applied. The PC with Update 3 works, but the other two with Update 2 fail with the same error as reported in the posting above. My MFC C++ app code is exactly the same on all three PCs.
Conclusion: at least in my case for my app the compiler version (Update 2) contained a bug that broke my code. My app makes heavy use of std::packaged_task so I expect the problem was in that fairly new compiler code.
ESP is the stack pointer. So according to the compiler, your stack pointer is getting messed up. It is hard to say how (or if) this could be happening without seeing some code.
What is the smallest code segment you can get to reproduce this?
If you're using any callback functions with the Windows API, they must be declared using CALLBACK and/or WINAPI. That will apply appropriate decorations to make the compiler generate code that cleans the stack correctly. For example, on Microsoft's compiler it adds __stdcall.
Windows has always used the __stdcall convention as it leads to (slightly) smaller code, with the cleanup happening in the called function rather than at every call site. It's not compatible with varargs functions, though (because only the caller knows how many arguments they pushed).
Here's a stripped down C++ program that produces that error. Compiled using (Microsoft Visual Studio 2003) produces the above mentioned error.
#include "stdafx.h"
char* blah(char *a){
char p[1];
strcat(p, a);
return (char*)p;
}
int main(){
std::cout << blah("a");
std::cin.get();
}
ERROR:
"Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call. This is usually a result of calling a function declared with one calling convention with a function pointer declared with a different calling convention."
I had this same problem here at work. I was updating some very old code that was calling a FARPROC function pointer. If you don't know, FARPROC's are function pointers with ZERO type safety. It's the C equivalent of a typdef'd function pointer, without the compiler type checking.
So for instance, say you have a function that takes 3 parameters. You point a FARPROC to it, and then call it with 4 parameters instead of 3. The extra parameter pushed extra garbage onto the stack, and when it pops off, ESP is now different than when it started. So I solved it by removing the extra parameter to the invocation of the FARPROC function call.
Not the best answer but I just recompiled my code from scratch (rebuild in VS) and then the problem went away.

Incorrect function addresses in Visual Studio MAP-file

the function addresses (Rva+Base) in my MAP-file from visual studio doesn't match the one I see in the debugger (or when I manually inspect my stack frame).
What could be causing this?
/A.B.
Is the problem in an executable or a DLL?
If it's a DLL what is its preferred load address? If this clashes with any other DLL then it will be rebased by the loader, and this can lead to what you're seeing.
As part of your build process, you should ensure that all your DLLs are rebased (there's a tool to do this) so that their address spaces don't clash (this frees up some page file space as well as improving load time).
Both exe and dll can be relocated, unless you specify a /FIXED command line option when linking. I use following way to determine the real address to determine where my exe was loaded, so that I can compute the offset against the map file.
static void KnownFunctionAddress(){}
...
// check an address of a known function
// and compare this to the value read from the map file
intptr_t CheckRelocationOffset(MapFile map)
{
intptr_t mapAddress = map.PhysicalAddress("?KnownFunctionAddress##YAXXZ");
intptr_t realAddress = (intptr_t)KnownFunctionAddress;
return realAddress-mapAddress;
}
When you are in the debugger and stepping into the code, can you check if the code address is within the range that you see in the "Modules" window? Sometimes the same piece of code may exist in several modules of same / different names.
Once you identify the "Module" which contains the code, use the base address from the Modules window to arrive at (by subtracting) the DLL entry point address.
Finally, there is also the effect of entry jump tables (trampoline), which is a kind of function call indirection that can be added at compile time or at runtime. Thus, the "entry point" address may be a smoke screen and doesn't match the address for the function body.
(My understanding of DLL structure is limited, so there may be inaccuracies in my answer.)
I'm not able to reply directly to Suma's reply for some reason, but you can also just do the following:
extern "C" struct IMAGE_DOS_HEADER __ImageBase; // On platforms other than Win32/Win64, this MAY be a different header type...
...
printf_s("base: %p", &__ImageBase);
__ImageBase is defined by the linker (VC++ at least) and taking its address will give you the base address of the module (EXE/DLL), even if it is relocated at runtime.
There's also
printf_s("calling module's base: %p\n", GetModuleHandle(NULL));
which can give you the same base address value...but there are more caveats to GetModuleHandle (plus it requires windows.h) so I recommend just sticking to __ImageBase.
Like others have mentioned, your problem is probably relating to Windows relocating your module. If there is no .reloc section in the module file, then the file isn't relocatable, in which case it is like you're running into trampolines or such like rwong suggested.